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inequalities and applications
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ABSTRACT. In this paper, we first give some new characterizations of weak sharpness of the solution set
of nonsmooth variational inequalities in terms of partial subdiferentials/Gâteaux derivatives of involving bi-
functions. As applications, we use a new characterization to establish sufficient conditions for guaranteeing
finite termination of an arbitrary algorithm solving nonsmooth variational inequalities under the weak sharp-
ness assumption.

1. INTRODUCTION

In [10], Ferris generalized the notion of sharp minima due to Polyak [23] (or strongly
unique local minima due to Cromme [9]) to include the case of a non-singleton solution
set and introduced the notion of weak sharp minima for a convex optimization problem.
This notion plays an important role in sensitivity analysis, error bounds and (finite) con-
vergence analysis of a large number of optimization algorithms and has been extensively
established by many authors (see, e.g., [11, 8, 5, 6, 7] and the references therein). Ex-
tending this notion, Patricksson [22] introduced the concept of weak sharp solutions for
variational inequalities and studied the finite convergence of approximation algorithms
for solving monotone variational inequalities under the weak sharpness of the solution
sets. Marcotte and Zhu [18] derived the necessary and sufficient condition for a solution
set to be weakly sharp in term of its dual gap function and also studied finite convergence
of sequences generated by some algorithms for solving variational inequalities whose the
solution set is weakly sharp. Later, weak sharpness of solutions and its applications to the
finite convergence property of various algorithms for finding solutions of variational ine-
qualities have been investigated by many authors (see, e.g., [26, 25, 14, 19, 20, 17, 3, 16, 27]
and references therein). Some authors extended and studied the concept of weak sharp
solutions and its applications to general variational inequalities, e.g., set-valued variati-
onal inequalities [1, 24], variational-type inequalities [15], mixed variational inequalities
[13] and nonsmooth variational inequalities [2, 21].

It is well-known that a variational inequality provides the first order necessary and
sufficient optimality conditions for a solution of a convex and differentiable minimization
problem. However, if the objective function of a convex minimization problem is not ne-
cessarily differentiable but has some kind of directional derivative, e.g., Dini directional
derivative, Clarke directional derivative, etc., then the optimization problem can be sol-
ved by using a nonsmooth variational inequality. We refer the reader to [4, Chapter 6]
for a comprehensive study of nonsmooth variational inequalities and their applications.
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Recently, authors [2] introduced the concept of weakly sharp solutions for nonsmooth va-
riational inequalities and gave a characterization of the weak sharpness of the solutions
set in terms of error bound of the dual gap function. An application to the finite conver-
gence of the gradient projection method for solving nonsmooth variational inequalities is
also provided. Other characterizations of weak sharpness of solution set of nonsmooth
variational inequalities and its applications to finite convergence analysis were establis-
hed in [21]. The aim of this paper is to provide some new characterizations of the weak
sharpness of the solutions set for nonsmooth variational inequalities in connections with
partial subdifferentials/Gâteaux derivatives of involving bifunctions. Applications to the
finite convergence of algorithms for solving nonsmooth variational inequalities are also
presented.

2. PRELIMINARIES

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉, || · ||,
respectively. We denote by 0 the zero vector of the corresponding vector space. For a
subset C of H , we denote by coC the convex hull of C, by clC, or C, the closure of C. The
support function of C is defined by ρ(x,C) := sup{〈x, c〉 : c ∈ C} for x ∈ H . The polar C◦

of C is defined by
C◦ := {x∗ ∈ H : 〈x∗, x〉 ≤ 0 for all x ∈ C} .

The distance from a given point x ∈ H to C is defined by

dist(x,C) := inf
y∈C
‖y − x‖,

and the projection of x onto C is defined by

PC(x) := {y ∈ C : ‖y − x‖ = dist(x,C)}.

It is well-known that PC(x) is a singleton set if C is nonempty, closed and convex. In this
case, PC is a nonexpansive mapping, that is,

‖PC(x)− PC(y)‖ ≤ ‖x− y‖, for all x, y ∈ H.

Let X be a nonempty closed convex subset of H . The tangent cone to X at a point
x ∈ X is defined as

TX(x) := cl

(⋃
λ>0

X − x
λ

)
.

The normal cone to X at x ∈ X is defined by NX(x) := [TX(x)]◦. In other words,

NX(x) = {x∗ ∈ H : 〈x∗, y − x〉 ≤ 0 for all y ∈ X} .

Definition 2.1. Let Λ be a subset of [0,+∞). A mapping f : H → (−∞,∞] is said to be

(a) positively homogeneous if f(λx) = λf(x) for all x ∈ H and λ ≥ 0;
(b) Λ-subhomogeneous if f(λx) ≤ λf(x) for all x ∈ H and λ ∈ Λ;
(c) subadditive if f(x+ y) ≤ f(x) + f(y) for all x, y ∈ H .

Let f : H → (−∞,∞] be a function. The domain of f is the set dom(f) := {x ∈ H :
f(x) <∞}. We say that f is convex if it is convex on its domain, and proper if its domain
is nonempty. Let f : H → (−∞,∞] be a proper, convex function and x ∈ dom(f). The
subdifferential of f at x is the set

∂f(x) := {v ∈ H : f(y)− f(x) ≥ 〈v, y − x〉 for all y ∈ H}.
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For v ∈ H and x ∈ dom(f), the directional derivative of f at x in the direction v is defined
by

f ′(x)(v) := lim
t→0+

f(x+ tv)− f(x)

t
.

The function f is said to be Gâteaux differentiable at x if there exists ζ ∈ H such that
f ′(x)(v) = 〈ζ, v〉 for all v ∈ H . The vector ζ is called the Gâteaux derivative of f at x and
denoted by∇f(x).

For a bifunction f : H × H → (−∞,∞] and x, y, d ∈ H , we denote by ∂2f(x; y),
f ′2(x; y)(d) and ∇2f(x; y) the subdifferential, the directional derivative in the direction d
and the Gâteaux derivative of f(x; ·) at y (when they do exist).

From now on, let X be a nonempty, closed and convex subset of H and h : X ×H →
(−∞,∞] be a bifunction such that h(x;0) = 0 for each x ∈ X . The nonsmooth variational
inequality problem (in short, NVIP) is to find x∗ ∈ X such that

(2.1) h(x∗; y − x∗) ≥ 0, for all y ∈ X.
A problem closely to NVIP (2.1) is the following Minty type nonsmooth variational ine-
quality problem (in short, MNVIP): Find x∗ ∈ X such that

(2.2) h(y;x∗ − y) ≤ 0, for all y ∈ X.
We denote by X∗ and X∗ the solution sets of NVIP (2.1) and MNVIP (2.2), respectively.

When h(x; y − x) = 〈F (x), y − x〉 for all x, y ∈ X , where F : X → H , then (2.1) reduces
to the following classical variational inequality problem (in short, VIP): Find x∗ ∈ X such
that

(2.3) 〈F (x∗), y − x∗〉 ≥ 0, for all y ∈ X.
For a comprehensive study of nonsmooth variational inequalities and their applicati-

ons to nonsmooth optimization, we refer [4].

Definition 2.2. LetK ⊆ H be a nonempty convex set. A bifunction h : K×H → (−∞,∞]
is said to be upper sign continuous if for all x, y ∈ K,

h(y + λ(x− y);x− y) ≤ 0 for all λ ∈ (0, 1) ⇒ h(x; y − x) ≥ 0.

Definition 2.3. Let F : H → H be a mapping and K be a subset of H . The mapping F is
said to be

(i) monotone on K if

〈F (x)− F (y), x− y〉 ≥ 0 ∀x, y ∈ K;

(ii) pseudomonotone on K if for all x, y ∈ K,
〈F (x), y − x〉 ≥ 0 ⇒ 〈F (y), y − x〉 ≥ 0;

The monotonicity is extended for bifunctions as follows.

Definition 2.4. Let K ⊂ H be a nonempty set and h : K ×H → (−∞,∞] be a bifunction.
The bifunction h is said to be

(a) monotone on K if for all x, y ∈ K,

h(x; y − x) + h(y;x− y) ≤ 0;

(b) pseudomonotone at x ∈ K if for each y ∈ K,

h(x; y − x) ≥ 0 ⇒ h(y;x− y) ≤ 0;

Remark 2.1. If h is monotone on K, then it is pseudomonotone on K. The inverse is not
true.
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The following lemma provides sufficient conditions for convexity and closedness of
the solution set of NVIP (2.1).

Lemma 2.1. [21] Assume that h is positively homogeneous in the second argument, upper sign
continuous and pseudomonotone. If x 7→ h(y;x − y) is convex on X for each y ∈ X , then X∗ is
convex. If x 7→ h(y;x− y) is lower semicontinuous on X for each y ∈ X , then X∗ is closed.

From now on we always assume that the solution set X∗ of NVIP (2.1) is nonempty,
closed and convex.

3. CHARACTERIZATIONS OF WEAK SHARPNESS AND APPLICATIONS

We first recall the definition of weak sharp solutions for NVIP (2.1) which was introdu-
ced in [2].

Definition 3.5. The solution set X∗ of NVIP (2.1) is said to be weakly sharp if there exists
a constant α > 0 such that, for all x∗ ∈ X∗,

h(x∗; d) ≥ α||d||, for all d ∈ TX(x∗) ∩NX∗(x∗).

The constant α is called the modulus of weak sharpness of the solution set X∗.

Example 3.1. Let X = [0, 1]2 and h : X × R2 → R be defined by

h(x; d) =
x1d1
|d2|+ 1

+ (x1 + x2)(d31 + d32) + d1 + d2

for all x = (x1, x2) ∈ X and d = (d1, d2) ∈ R2. Assume that x∗ = (x∗1, x
∗
2) ∈ X∗ is a

solution of NVIP (2.1). Then,

x∗1(y1 − x∗1)3

|y2 − x∗2|+ 1
+ (x∗1 + x∗2)((y1 − x∗1)3 + (y2 − x∗2)3) + (y1 − x∗1) + (y2 − x∗2) ≥ 0

for all (y1, y2) ∈ [0, 1]2. So, x∗ must be (0, 0). Thus, X∗ = {(0, 0)}. We have TX(0, 0) = R2
+

and NX∗(0, 0) = R2. Hence,

TX(0, 0) ∩NX∗(0, 0) = R2
+.

For any d = (d1, d2) ∈ TX(0, 0) ∩NX∗(0, 0), one has

h(0; d) = d1 + d2 ≥
√
d21 + d22 = ||d||.

Thus, X∗ is weakly sharp with modulus 1.

Example 3.2. LetX = [1, 2]× [0, 1] and h : X×R2 → R be defined by h(x; d) = x1d2+x2d
3
2

for all x = (x1, x2) ∈ X and d = (d1, d2) ∈ R2. If x∗ = (x∗1, x
∗
2) ∈ X is a solution of (2.1),

then
x∗1(x2 − x∗2) + x∗2(x2 − x∗2)3 ≥ 0, ∀x2 ∈ [0, 1].

Thus, x∗2 = 0 and x∗1 ∈ [1, 2] and then X∗ = [1, 2] × {0} is the solution set of (2.1). For
x∗ ∈ X∗, we have TX(x∗) = R×R+ and NX∗(x∗) = {0}×R. Hence, TX(x∗)∩NX∗(x∗) =
{0} × R+. Let x∗ = (x∗1, x

∗
2) ∈ X∗ and d = (d1, d2) ∈ TX(x∗) ∩NX∗(x∗), we have

h(x∗; d) = x∗1d2 + x∗2d2 = x∗1d2 ≥ d2 = ||d||.
Thus, X∗ is weakly sharp with modulus 1.

Some characterizations of weak sharpness for the solution set X∗ of nonsmooth varia-
tional inequalities are presented in [2, 21]. Our aim is to give some new characterizations
for weak sharpness of the solution set X∗. From now on, for our purpose, we assume that
the function h is locally Lipschitz at (x∗,0) for each x∗ ∈ X∗. The first result is stated as
follows.
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Theorem 3.1. Assume that h(x; ·) is convex for each x ∈ X . The following statements are
equivalent:

(i) X∗ is weakly sharp.
(ii) There exists α > 0 such that

(3.4) h(PX∗(x);x− PX∗(x)) ≥ αdist(x,X∗), ∀x ∈ X.
(iii) There exists γ > 0 such that

(3.5) γB ⊂ ∂2h(x∗;0) + [TX(x∗) ∩NX∗(x∗)]◦, ∀x∗ ∈ X∗.

Proof. (i) ⇒ (ii). This was proved in [21]. We present the proof here for the reader’s
convenience. For any x ∈ X , we have ||x− PX∗(x)|| = dist(x,X∗), and

x− PX∗(x) ∈ TX(PX∗(x)) ∩NX∗(PX∗(x)).

Thus, by weak sharpness of X∗, one has

h(PX∗(x);x− PX∗(x)) ≥ α||x− PX∗(x)|| = αdist(x,X∗).

(ii) ⇒ (iii). We follow some lines of the proof of [2, Theorem 4.1]. Let x∗ ∈ X∗. If
TX(x∗) ∩ NX∗(x∗) = {0}, then (3.5) holds. Assume now that TX(x∗) ∩ NX∗(x∗) 6= {0}.
Let 0 6= d ∈ TX(x∗) ∩NX∗(x∗). Then, 〈d, d〉 > 0 and

〈d, y∗ − x∗〉 ≤ 0, for all y∗ ∈ X∗.
Thus, X∗ is separated from x∗ + d by the hyperplane

Hd = {x ∈ H : 〈d, x− x∗〉 = 0}.
Since d ∈ TX(x∗), for each sequence of positive numbers {tk} converging to 0, there exists
a sequence {dk} converging to d such that x∗+tkdk ∈ X . Thus, 〈d, dk〉 > 0 for k sufficiently
large. So 〈d, x∗ + tkdk − x∗〉 = tk〈d, dk〉 > 0 for k large enough, i.e., x∗ + tkdk belongs to
the open set {x ∈ H : 〈d, x− x∗〉 > 0}which is separated from X∗ by Hd. Hence,

dist(x∗ + tkdk, X
∗) ≥ dist(x∗ + tkdk, Hd) =

tk〈d, dk〉
||d||

.

By (3.4), for all k large enough, we have

h(PX∗(x∗ + tkdk);x∗ + tkdk − PX∗(x∗ + tkdk)) ≥ αtk〈d, dk〉
||d||

By the locally Lipschitz continuity of h at (x∗,0), the Lipschitz continuity of PX∗ with
having in mind that x∗ = PX∗(x∗ + tkd) for all k and h(x;0) = 0, the latter inequality
yields

h(x∗; tkd)− h(x∗;0)

tk
≥ α 〈d, dk〉

||d||
.

Letting k →∞ in both sides of the latter inequality, we get

h′2(x∗;0)(d) ≥ α||d||.
It follows that, for all x∗ ∈ X∗, we have

(3.6) sup{〈ζ, d〉 : ζ ∈ ∂2h(x∗;0)} ≥ α||d||, ∀d ∈ TX(x∗) ∩NX∗(x∗).

We will show that, for x∗ ∈ X∗,
(3.7) sup{ζ, d〉 : ζ ∈ ∂2h(x∗;0) + [TX(x∗) ∩NX∗(x∗)]◦} ≥ α||d||, ∀d ∈ H.
Indeed, let x∗ ∈ X∗. If d 6∈ TX(x∗) ∩NX∗(x∗), then there exists d∗ ∈ [TX(x∗) ∩NX∗(x∗)]◦

such that 〈d, d∗〉 > 0. Let ζ∗ ∈ ∂2h(x∗;0) and λ > 0. We have ζ∗ + λd∗ ∈ ∂2h(x∗;0) +
[TX(x∗) ∩ NX∗(x∗)]◦ and 〈ζ∗ + λd∗, d〉 → ∞ as λ → ∞. Thus, the supremum in (3.7) is
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infinite and (3.7) holds for d 6∈ TX(x∗) ∩NX∗(x∗). Suppose d ∈ TX(x∗) ∩NX∗(x∗). Since
0 ∈ [TX(x∗) ∩NX∗(x∗)]◦,

sup{〈ζ, d〉 : ζ ∈ ∂2h(x∗;0)} ≤ sup{〈ζ, d〉 : ζ ∈ ∂2h(x∗;0) + [TX(x∗) ∩NX∗(x∗)]◦}.
This, together with (3.6), implies that (3.7) holds. Hence,

ρ(d, αB) ≤ ρ (d, ∂2h(x∗;0) + [TX(x∗) ∩NX∗(x∗)]◦) , ∀d ∈ H.
This implies that (see, [7, Theorem A1, part 8])

αB ⊂ cl (∂2h(x∗;0) + [TX(x∗) ∩NX∗(x∗)]◦) .

Therefore, (3.5) holds for 0 < γ < α.
(iii) ⇒ (i). Let x∗ ∈ X∗ be any. If TX(x∗) ∩ NX∗(x∗) = {0} then (3.5) holds. Assume
TX(x∗) ∩ NX∗(x∗) 6= {0} and let 0 6= v ∈ TX(x∗) ∩ NX∗(x∗). By (3.5), there exists ζ∗ ∈
∂2h(x∗;0) such that

α
v

||v||
− ζ∗ ∈ [TX(x∗) ∩NX∗(x∗)]◦.

Thus,

(3.8)
〈
α

v

||v||
− ζ∗, v

〉
≤ 0.

Since ζ∗ ∈ ∂2h(x∗;0), we have

〈ζ∗, v〉 = 〈ζ∗, v − 0〉 ≤ h(x∗; v)− h(x∗;0) = h(x∗; v).

This, together with (3.8), implies that α||v|| ≤ h(x∗; v). This ends the proof. �

Remark 3.2. In [21], the equivalence between (i) and (ii) is proved under the assumptions
that h is [0, 1]-subhomogeneous in the second argument and upper semicontinuous in
both arguments. The assumpions required in Theorem 3.1 are different to those required
in [21].

If h(x; ·) is Gâteaux differentiable at 0 for each x ∈ X , then we have the following
characterization of weak sharpness for X∗.

Theorem 3.2. Assume that h(x; ·) is Gâteaux differentiable at 0 for each x ∈ X andX∗ is weakly
sharp. Then, there exists α > 0 such that

(3.9) αB ⊂ ∇2h(x∗,0) + [TX(x∗) ∩NX∗(x∗)]◦, ∀x∗ ∈ X∗.

Proof. It follows the lines of the proof of Theorem 3.1 with ∇2h(x∗;0) in the places of
∂2h(x∗;0) and ζ∗. �

Moreover, when h(x; ·) is convex and it is Gâteaux differentiable at 0, we have the
following result.

Theorem 3.3. Assume, for each x ∈ X , that h(x; ·) is Gâteaux differentiable at 0 and is convex.
The following statements are equivalent:

(i) X∗ is weakly sharp with modulus α > 0.
(ii) There exists α > 0 such that (3.4) holds.

(iii) There exists α > 0 such that (3.9) holds.

Example 3.3. We reconsider Example 3.2. We see that h(x; ·) is convex and Gâteaux dif-
ferentiable for all x ∈ X . For x = (x1, x2) ∈ X , d = (d1, d2) ∈ Rn, we have ∇2h(x; d) =
(0, x1+3x2d2). Thus,∇2h(x;0) = (0, x1). Since [TX(x∗)∩NX∗(x∗)]◦ = R×R− for x∗ ∈ X∗,
we see that

B ⊂ ∇2h(x∗;0) + [TX(x∗) ∩NX∗(x∗)]◦.

Thus, (3.9) holds with α = 1.
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We now apply Theorem 3.2 to give a finite convergence result for algorithms solving a
nonsmooth variational inequality. Our result is stated as follows.

Theorem 3.4. Let {xk} be a sequence inX and {λk}, {γk} be sequences of real numbers. Assume
that h(x; ·) is Gâteaux differentiable at 0 for each x ∈ X , X∗ is weakly sharp and {xk} satisfies

(3.10) lim
k→∞

[H(xk) + PNX(xk)(λkxk + γkH(xk))] = 0,

where H : X → Rn is defined by H(x) = ∇2h(x;0) for x ∈ X . Then, xk ∈ X∗ for all k
sufficiently large, if one of the following conditions holds:

(i) H is monotone on X ;
(ii) H is uniformly continuous on X and dist(xk, X

∗)→ 0 as k →∞.
(iii) H is continuous on X∗, {xk} is bounded and all accumulation points belong to X∗.

Proof. Since X∗ is weakly sharp, by Theorem 3.2, there exists α > 0 such that for each
x∗ ∈ X∗

αB ⊂ H(x∗) + [TX(x∗) ∩NX∗(x∗)]◦.

Then, for any z ∈ B, we have αz − H(x∗) ∈ [TX(x∗) ∩ NX∗(x∗)]◦. Hence, for any v ∈
TX(x∗) ∩NX∗(x∗), one has 〈αz −H(x∗), v〉 ≤ 0. Taking z = v/||v||, we get

(3.11) 〈H(x∗), v〉 ≥ α||v||.

Now, assume that the conclusion of the Theorem does not hold. Then, there exists a
subsequence {xki} of {xk} such that xki 6∈ X∗ for all i. For each i, set yki = PX∗(xki).
Then, yki ∈ X∗ and xki − yki ∈ TX(yki) ∩NX∗(yki). By (3.11), we have

α||xki − yki || ≤ 〈H(yki), xki − yki〉, ∀i.

Since xki 6∈ X∗, we have ||xki − yki || > 0. Hence,

(3.12) α ≤
〈
−H(yki),

yki − xki
||yki − xki ||

〉
, ∀i.

(i) Since H is monotone, by (3.12), we have

α ≤
〈
H(xki)−H(yki),

yki − xki
||yki − xki ||

〉
+

〈
PNX(xki

)[λkxki + γkiH(xki)],
yki − xki
||yki − xki ||

〉
+

〈
−H(xki)− PNX(xki

)[λkxki + γkiH(xki)],
yki − xki
||yki − xki ||

〉
≤ ||H(xki) + PNX(xki

)[λkxki + γkiH(xki)]||

Letting i→∞, we obtain α ≤ 0 which a contradiction. Thus, xk ∈ X∗ for k large enough.
(ii) Since H is uniformly continuous on X , there exists δ > 0 such that ||H(x) −H(y)|| <
α/4 for all x, y ∈ X with ||x− y|| < δ.

Moreover, since ||xki − yki || = dist(xki , X
∗)→ 0 as i→∞, there exists i1 ≥ 1 such that

||xki − yki || < δ for all i ≥ i1. Thus, ||F (xki)− F (yki)|| < α/4 for all i ≥ i1. By (3.10), there
exists i0 ≥ i1 such that ||H(xki) + PNX(xki

)[xki −H(xki ]|| < α/4 for all i ≥ i0. By (3.12),
for all i ≥ i0, we have

α ≤
〈
H(xki)−H(yki),

yki − xki
||yki − xki ||

〉
+

〈
PNX(xki

)[λkxki + γkiH(xki)],
yki − xki
||yki − xki ||

〉
+

〈
−H(xki)− PNX(xki

)[λkxki + γkiH(xki)],
yki − xki
||yki − xki ||

〉
≤ ||H(xki)−H(yki)||+ ||H(xki) + PNX(xki

)[λkxki + γkiH(xki)]||
< < α/4 + α/4 = α/2.
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This is a contradiction. Thus, xk ∈ X∗ for k large enough.
(iii) Since {xk} is bounded, we may assume that {xki} converges to some x∗ ∈ X . The
continuity of the projection mapping PX∗ implies that the sequences {yki} converges to
x∗. Thus, by continuity of H , we have ||H(yki) −H(xki)|| → 0 as i → ∞. Progressing as
in the proof of (ii), we conclude that xk ∈ X∗ for sufficiently large k. �

Remark 3.3. By Moreau decomposition (see, [12, Theorem 3.2.5]), we have, for all k, that

λkxk + γkH(xk) = PTX(xk)(λkxk + γkH(xk)) + PNX(xk)(λkxk + γkH(xk)),

or, equivalently,

H(xk) + PNX(xk)(λkxk + γkH(xk)) = λkxk + (γk + 1)H(xk)− PTX(xk)(λkxk + γkH(xk)).

Thus, (3.4) is equivalent to

(3.13) lim
k→∞

[λkxk + (γk + 1)H(xk)− PTX(xk)(λkxk + γkH(xk))] = 0.

If we choose λk = 0 and γk = −1 for all k, then (3.13) becomes

(3.14) lim
k→∞

PTX(xk)(−H(xk)) = 0.

Note that the condition (3.14) is analogous to a well-known condition ensuring finite ter-
mination of a sequences for solving optimization problems, variational inequalities under
weak sharpness of solution sets (see, e.g., [8, 18]).
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