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Solving split generalized mixed equality equilibrium
problems and split equality fixed point problems for
nonexpansive-type maps

M. O. NNAKWE

ABSTRACT. Let X be a 2-uniformly convex and uniformly smooth real Banach space. In this paper, an
iterative algorithm of Krasnosel’skii-type is constructed and used to approximate a common solution of split ge-
neralized mixed equality equilibrium problems (SGMEEP ) and split equality fixed point problems (SEFPP ) for
quasi-ψ-nonexpansive maps. A strong convergence theorem of the sequence generated by this algorithm is proved
without imposing any compactness-type condition on either the operators or the space considered. The theorem
proved improves and complements important recent results in the literature.

1. INTRODUCTION

Let K be a nonempty closed convex subset of real Banach space X with dual space, X∗.
Let χ be a map from K to R. Let f be a bifunctional from K × K to R and A from K to
X∗. The generalized mixed equilibrium problem, is a problem of finding:

(1.1) u ∈ K such that f(u, y) + χ(y)− χ(u) + 〈Au, y − u〉 ≥ 0, ∀ y ∈ K.
The set of solutions of inequality (1.1), denoted by GMEP, is given by

GMEP = {u ∈ K : f(u, y) + χ(y)− χ(u) + 〈Au, y − u〉 ≥ 0, ∀ y ∈ K}.
It is known that this class of problems contains the class of equilibrium problems, variatio-
nal inequality problems e.t.c., which many problems in physics, optimization, economics
and other applied sciences can be reduced to particular cases of (GMEP ). These pro-
blems have been studied extensively by many authors in the setting of Hilbert spaces and
Bancach spaces (see e.g., Blum and Oettli [4], Chang et al [11], Chidume and Monday [12],
and the references contained in them).

Recently, Moudafi [19] studied the split equality fixed point problem (SEFPP) in a Hilbert
space. This problem is a problem of finding:

u ∈ F (Y), v ∈ F (R) such that Au = Bv,
where Y : H1 → H1, R : H2 → H2 are nonlinear maps with nonempty fixed point
sets, A : H1 → H3 and B : H2 → H3 are bounded linear maps. The set of solutions of
(SEFPP ) is denoted by

SEFPP = {(u, v) ∈ K ×M : u ∈ F (Y), v ∈ F (R) and Au = Bv}.(1.2)

This problem has recently attracted the attention of numerous researchers due to its di-
ver applications, for example, applications in game theory, intensity-modulated radiation
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therapy, decomposition methods for partial differential equations, application in fully dis-
cretized models of inverse problems which arise from phase retrievals and in medical
image reconstruction (see, e.g., Censor et al. [8], Attouch et al. [3], Byrne [6, 7] and the
references therein). If H2 = H3 and B is the identity map on H2, then, the (SEFPP )
reduces to the split common fixed point problem (SCFPP ) introduced by Censor and Segal
[9]. For more results on (SEFPP ), see e.g., Zhao [22], Chidume et al. [14], Chang et al.
[10], Giang et al. [15] and the references therein.

Motivated by the result of Moudafi [19], Bnouchachem [5], introduced the following split
equilibrium problem in Hilbert spaces.
Let f : K × K → R and g : M ×M → R be bifunctionals, where K and M are closed
convex subsets of H1 and H2, respectively, and A : H1 → H2 is a bounded linear map.

The split equilibrium problem (SEQP) is the problem of finding u ∈ K such that

(1.3) f(u, y) ≥ 0, ∀ y ∈ K, such that v = A(u) ∈M solves g(v, z) ≥ 0, ∀ z ∈M.

Motivated by the result of Bnouchachem [5], Zhaoli et al. [17], considered the following
split equality equilibrium problem (SEEP), which is a problem of finding (u, v) ∈ K × M
such that

(1.4) f(u, y) + χ(y)− χ(u) ≥ 0, ∀ y ∈ K, g(v, z) + ϕ(z)− ϕ(v) ≥ 0 and Au = Bv,

where f : K × K → R and g : M ×M → R are bifunctionals, χ : K → R ∪ {∞} and
g : M ×M → R ∪ {∞} are proper lower semi-continuous functions, A : K ⊂ H1 → H3

and B : M ⊂ H2 → H3 are bounded linear maps. They proved in a real Hilbert space that
the sequence generated by the following algorithm with (x1, y1) ∈ K ×M, given by

(1.5)


f(un, u) + χ(u)− χ(un) + 1

rn
〈u− un, un − xn〉 ≥ 0, ∀ u ∈ K,

g(vn, v) + χ(v)− χ(vn) + 1
rn
〈v − vn, vn − yn〉 ≥ 0, ∀ v ∈M,

xn+1 = anun + (1− an)T (un − γnA∗(Aun − Bvn)), ∀ n ≥ 1,

yn+1 = anvn + (1− an)S(vn − γnB∗(Aun − Bvn)), ∀ n ≥ 1,

converges weakly to a solution of F (T ) ∩ F (S) ∩ (SEFPP ), where {an}, {rn} and {γn}
are positive real sequences satisfying certain conditions. The authors obtained strong
convergence by further assuming that T and S are semi-compact.

We remark that in order to obtain strong convergence of the sequence generated by algo-
rithm (1.5), compactness-type condition was imposed.

Motivated by the results above, we study the following split generalized mixed equality
equilibrium problem in real Banach spaces. Let X1, X2 and X3 be real Banach spaces and
K,M be nonempty closed and convex subsets ofX1 andX2, respectively. Let f : K×K →
R and g : M ×M → R be bifunctionals, χ : K → R ∪ {∞} and ϕ : M → R ∪ {∞} be
proper lower semi-continuous and convex functions. LetA : K → X∗1 and B : M → X∗2

be continuous and monotone maps, and U : X1 → X3, V : X2 → X3 be bounded linear
maps.
The split generalized mixed equality equilibrium problem is a problem of finding (u, v) ∈ K ×
M such that

f(u, y) + ψ(y)− ψ(u) + 〈Au, y − u〉 ≥ 0, for all y ∈ K,
g(v, z) + ϕ(z)− ϕ(v) + 〈Bv, z − v〉 ≥ 0, for all z ∈M,

and Uu = V v.
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The set of solutions of split generalized mixed equality equilibrium problem shall be de-
noted by:

SGMEEP =
{

(u, v) ∈ K ×M : f(u, y) + χ(y)− χ(u) + 〈Au, y − u〉 ≥ 0, ∀ y ∈ K,
g(v, z) + ϕ(z)− ϕ(v) + 〈Bv, z − v〉 ≥ 0, ∀ z ∈M and Au = Bv

}
.(1.6)

We study the following Krasnosel’skii-type algorithm given by

(1.7)



(x1, y1) ∈ X1 ×X2, K1 = X1, M1 = X2, en ∈ JX3(Uun − V vn),

un = Qrx
n, vn = Qry

n, θn = J−1X1 (JX1un − µU∗en),

δn = J−1X2 (JX2vn + µV ∗en), zn = J−1X1 (βJX1xn + (1− β)JX1Yθn),

wn = J−1X2 (βJX2yn + (1− β)JX2Rδn), Kn+1 = {p ∈ Kn : ψ(p, zn) ≤ ψ(p, xn)},
Mn+1 = {q ∈Mn : ψ(p, wn) ≤ ψ(q, yn)},
xn+1 = ΠKn+1x1, yn+1 = ΠMn+1y1, n ≥ 1,

where X1 and X2 are 2-uniformly convex and uniformly smooth real Banach spaces, X3

is a real Banach space, Y andR are closed quasi-ψ-nonexpansive maps, U and V are boun-
ded linear maps, β ∈ (0, 1) and µ are some positive constants satisfying appropriate mild
conditions. Then, the sequence generated by Algorithm (1.7) converges strongly to some
point in the solution set. The theorem proved, in particular, improves and complements
the results of Chidume et al. [13] and Zhaoli et al. [18, 17], which themselves are impor-
tant generalization of some recent results in the literature (see e.g., Chidume et al. [13] and
Zhaoli et al. [18, 17]).

2. PRELIMINARIES

Let X be a real normed space with with dual space X∗. Consider a map ψ : X ×X → R
defined by ψ(u, y) = ||u||2 − 2〈u, Jv〉 + ||v||2, for all u, v ∈ X. This map which was
introduced by Alber [1] will play a central role in the sequel.

The following lemmas will be needed in the sequel.

Lemma 2.1. (Alber and Ryazantseva [2]) Let X be a reflexive strictly convex and smooth Ba-
nach space with X∗ as its dual. Then,

ψ(u, J−1u∗) =M(u, u∗) ≤M(u, u∗ + v∗)− 2〈J−1u∗ − u, v∗〉, ∀ u ∈ X, u∗, v∗ ∈ X∗.

Lemma 2.2. (Alber, [1]) Let K be a nonempty closed and convex subset of a smooth and strictly
convex Banach space X . Then,

ψ(u,Πv) + ψ(Πv, v) ≤ ψ(u, v), ∀ u ∈ K, v ∈ X.

Lemma 2.3. (Kamimura and Takahashi, [16]) Let X be a uniformly convex and uniformly
smooth real Banach space and {xn}, {yn} be sequences in X such that either {xn} or {yn} is
bounded. If lim

n→∞
ψ(xn, yn) = 0, then, lim

n→∞
||xn − yn|| = 0.

Lemma 2.4. Let X be a 2-uniformly convex and smooth real Banach space and J−1 : X∗ → X
be the normalized duality map. Then, there exists a positive constant a such that

||J−1u− J−1v|| ≤ 1

a
||u− v||, ∀ u, v ∈ X∗

Lemma 2.5. (Xu, [20]) Let X be a uniformly convex real Banach space. Let r > 0. Then, there
exists a strictly increasing continuous and convex function g : [0,∞)→ [0,∞) such that g(0)=0
and for all u, v ∈ Br(0) := {v ∈ E : ||v|| ≤ r} and λ ∈ [0, 1], we have that:

||λu+ (1− λ)v||2 ≤ λ||u||2 + (1− λ)||v||2 − λ((1− λ))g(||u− v||).
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Definition 2.1. Let K be a nonempty, closed and convex subset of a real Banach space, X
and Y : K → K be a map.

(1) Y is called quasi-ψ-nonexpansive if F (Y) 6= ∅, ψ(p,Yu) ≤ ψ(p, u), ∀ p ∈ F (Y), u ∈ K.
(2) Y is said to be closed if for any sequence {xn} ⊂ K with xn → x∗ and Yxn → y, then,
y = Yx∗.

Basic Assumptions. Let K be a nonempty closed convex subset of a real Banach space
X with dual space, X∗. Let χ : K → R be a lower semi-continuous and convex functio-
nal. Let A : K → X∗ be continuous and monotone. For solving the generalized mixed
equilibrium problems, (1.1), we assume that the bifunctional f : K ×K → R satisfies the
following conditions:
(A1) f(u, u) = 0, for all u ∈ K,
(A2) f is monotone, i.e. f(u, v) + f(v, u) ≤ 0, for all u, v ∈ K,
(A3) lim sup

t↓0
f(u+ t(z − u), v) ≤ (u, v), for all u, v, z ∈ K,

(A4) f(u, ·) is convex and lower semi-continuous, for all u ∈ K.

3. MAIN RESULT

Theorem 3.1. Let X1, X2 be 2-uniformly convex and uniformly smooth real Banach spaces,
X3 be a real Banach space. Let K and M be nonempty closed convex subsets of X1 and X2,
respectively. Let f : K × K → R and g : M ×M → R be bifunctionals satisfying conditions
(A1) - (A4). Let χ : K → R ∪ {∞} and ϕ : M → R ∪ {∞} be proper lower semi-continuous
and convex functions. Let A : K → X∗1 and B : M → X∗2 be continuous and monotone
maps. Let U : X1 → X3 and V : X2 → X3 be bounded linear maps with adjoints U∗ and V ∗,
respectively. Let Y : X1 → X1 and R : X2 → X2 be closed quasi-ψ-nonexpansive maps such
that F (Y) 6= ∅ and F (R) 6= ∅. Let {(xn, yn)} be a sequence in X1 × X2 generated iteratively
by algorithm (1.7). Assume F := SGMEEP ∩ SEFPP 6= ∅, β ∈ (0, 1) and µ is such that
0 < µ < a/(||A||2 + ||B||2), where a is the constant in Lemma 2.4. Then, {(xn, yn)} converges
strongly to some point (x∗, y∗) ∈ F .

Proof. We divide the proof into three steps.
Step 1. We show that the sequences {xn}, {yn} are well defined; F ⊂ Kn ×Mn, ∀ n ≥ 1.
First, we show that Kn and Mn, are closed and convex. Clearly, K1 = X1 and M1 = X2

are closed and convex. Assume that Kn and Mn are closed and convex for some n ≥ 1.
Applying the definition of Kn+1, we have that: Kn+1 = {p ∈ Kn : 2〈p, Jxn − Jzn〉 ≤
||xn||2 − ||zn||2}. Thus, Kn+1 is closed and convex. Similarly, Mn+1 is closed and convex.
These imply that Kn and Mn are closed and convex. Hence, {xn}, {yn} are well defined.

Claim. F ⊂ Kn ×Mn, ∀ n ≥ 1. Clearly, F ⊂ K1 ×M1. Assume that F ⊂ Kn ×Mn, for
some n ≥ 1. Let (p, q) ∈ F . Then, by Lemma 2.5 and definition of Y , we have that:

ψ(p, zn) = ψ(p, J−1X1 (βJX1xn + (1− β)JX1Yθn))

≤ βψ(p, xn) + (1− β)ψ(p,Yθn)− β(1− β)G
(
||JX1xn − JX1Yθn||

)
≤ βψ(p, xn) + (1− β)ψ(p, θn)− β(1− β)G

(
||JX1xn − JX1Yθn||

)
.(3.7)

Again, using equation (1.7), Lemma 2.1 and a result of Zhang [21], we have that:

ψ(p, θn) = M(p, JX1un − µU∗en)

≤ M(p, JX1un)− 2µ〈J−1X1 (JX1un − µU∗en)− p, U∗en〉



A strong convergence theorem for SGMEEP and SEFPP. 123

= ψ(p, un)− 2µ〈U(θn − p), en〉(3.8)
≤ ψ(p, xn)− 2µ〈U(θn − p), en〉.(3.9)

From inequalities (3.7) and (3.9), we get that:

(3.10) ψ(p, zn) ≤ ψ(p, xn)− 2µ(1− β)〈U(θn − p), en〉 − β(1− β)G
(
||JX1xn − JX1Yθn||

)
.

Similarly, we obtain that

(3.11) ψ(q, wn) ≤ ψ(q, yn) + 2µ(1− β)〈V (δn − q), en〉 − β(1− β)G
(
||JX2yn − JX2Rδn||

)
.

From inequalities (3.10), (3.11) and the fact that Up = V q, we get that:

ψ(p, zn) + ψ(q, wn) ≤ ψ(p, xn) + ψ(q, yn)− 2µ(1− β)〈Uθn − V δn, en〉
−β(1− β)

[
G
(
||JX1xn − JX1Yθn||+G

(
||JX2yn − JX2Rδn||

)]
(3.12)

Furthermore, from equation (1.7), Lemma (2.4) and inequality (3.12), we have that:

−2µ(1− β)〈Uθn − V δn, en〉 = −2µ(1− β)||Uun − V vn||2 + 2µ(1− β)〈U(un − θn), en〉
+2µ(1− β)〈V (δn − vn), en〉

≤ −2µ(1− β)||Uun − V vn||2

+ 2
µ2(1− β)

a
(||U ||2 + ||V ||2)||Uun − V vn||2

= −2µ(1− β)
[
1− µ

a
(||U ||2 + ||V ||2)

]
||Uun − V vn||2.(3.13)

From inequalities (3.12), (3.13) and ω := 2µ(1 − β)
[
1 − µ

a (||U ||2 + ||V ||2)
]
> 0, we have

that:

ψ(p, zn) + ψ(q, wn) ≤ ψ(p, xn) + ψ(q, yn)− ω||Uun − V vn||2

−β(1− β)
[
G
(
||JX1xn − JX1Yθn||

)
+G

(
||JX2yn − JX2Rδn||

)]
(3.14)

≤ ψ(p, xn) + ψ(q, yn).(3.15)

This implies that (p, q) ∈ Kn+1 ×Mn+1. Hence, F ⊂ Kn ×Mn, for all n ≥ 1.

Step 2. We prove that the sequences {xn} and {yn} are convergent.
First, we prove that {xn} and {yn} are bounded. From the definition of {xn} and Lemma
2.2, we have that ψ(xn, x1) ≤ ψ(p, x1)−ψ

(
p, xn) ≤ ψ(p, x1), ∀ (p, q) ∈ F ⊂ Kn×Mn. This

implies that {ψ(xn, x1)} is bounded. Hence, {xn} is bounded. Since xn+1 = ΠKn+1x1 ∈
Kn+1 ⊂ Kn and xn = ΠKnx1, we have that ψ(xn, x1) ≤ ψ(xn+1, x1) and this implies that
{ψ(xn, x1)} is nondecreasing. Hence, lim

n→∞
φ(xn, x1) exists. Furthermore, for m ≥ n, we

have that:

φ(xm, xn) = φ(ΠKmx1,ΠKnx1) ≤ φ(ΠKmx1, x1)− φ(ΠKnx1, x1)

= φ(xm, x1)− φ(xn, x1)→ 0 (as n→∞).

It follows from Lemma 2.3 that ||xn − xm|| → 0 as m,n → ∞. Hence, {xn} is Cauchy.
Thus, there exists x∗ ∈ X1 such that lim

n→∞
xn = x∗. Following the same argument, we also

obtain that {yn} is Cauchy. Hence, there exists y∗ ∈ X2 such that lim
n→∞

yn = y∗.

Step 3. We show that lim
n→∞

||un − xn|| = 0 and lim
n→∞

||vn − yn|| = 0.

From equation (1.7), and for m ≥ n, (xm, ym) ∈ Km × Mm ⊂ Kn × Mn. Therefore,
ψ(xm, zn) ≤ ψ(xm, xn)→ 0 as m,n → ∞ and ψ(ym, wn) ≤ ψ(ym, yn) → 0 as m,n → ∞.
Hence, by Lemma 2.3, we have that zn → x∗ as n→∞ and wn → y∗ as n→∞.
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From inequality (3.14), set ηn =
(
ψ(p, xn)−ψ(p, zn)+ψ(q, yn)−ψ(q, wn)

)
. Then, we have:

||Uun − V vn||2 ≤ ω−1ηn and

G(||JX1xn − JX1Yθn||) +G(||JX2yn − JX2Rδn||) ≤ (β(1− β))−1ηn.

It follows that:

lim
n→∞

|Uun − V vn|| = 0; lim
n→∞

G(||JX1xn − JX1Yθn||) = 0;

lim
n→∞

G(||JX2yn − JX2Rδn||) = 0.(3.16)

Applying the property of G and Lemma 2.4, we obtain that:

lim
n→∞

||JX1xn − JX1Yθn|| = 0 and lim
n→∞

||xn − Yθn|| = 0,(3.17)

lim
n→∞

||JX2yn − JX2Rδn|| = 0 and lim
n→∞

||yn −Rδn|| = 0.(3.18)

From equations (1.7), (3.16) and Lemma 2.4, we have that:

(3.19) ||un − θn|| ≤ µ

a
||U ||||Uun − V vn|| → 0; ||vn − δn|| ≤ µ

a
||V ||||Uun − V vn|| → 0.

Also, from equations (1.7), (3.17), (3.18) and Lemma 2.4, we have:

||wn − yn|| ≤ (1− β)

a
||JX2Rδn − JX2yn|| → 0 as n→∞

||zn − xn|| ≤ (1− β)

a
||JX1Yθn − JX1xn|| → 0 as n→∞.(3.20)

Now, we show that lim
n→∞

ψ(un, xn) = 0 and lim
n→∞

ψ(vn, yn) = 0.

Since (p, q) ∈ F , un = Qrxn and vn = Qryn, by a result of Zhang [21], we have that:

(3.21) ψ(p, un) ≤ ψ(p, xn)− ψ(un, xn) and ψ(q, vn) ≤ ψ(q, yn)− ψ(vn, yn).

From inequalities (3.7), (3.8) and (3.21), we have that:

ψ(p, zn) ≤ βψ(p, xn) + (1− β)
[
ψ(p, un)− 2µ〈U(θn − p), en〉

]
≤ ψ(p, xn)− (1− β)ψ(un, xn)− 2µ(1− β)〈U(θn − p), en〉.(3.22)

Similarly, we obtain that:

(3.23) ψ(q, wn) ≤ ψ(q, yn)− (1− β)ψ(vn, yn) + 2µ(1− β)〈V (δn − q), en〉.
Utilizing inequalities (3.22), (3.23), (3.12), (3.13) and Step 2, we obtain that:

ψ(un, xn) +ψ(vn, yn) ≤ 1

(1− β)

(
ψ(p, xn)−ψ(p, zn) +ψ(q, yn)−ψ(q, wn)

)
→ 0 as n→∞.

By Lemma 2.3, we obtain that:

(3.24) lim
n→∞

||xn − un|| = 0 and lim
n→∞

||yn − vn|| = 0.

Step 4. We show that (x∗, y∗) ∈ F and Ux∗ = V y∗. From equations (3.16) and (3.24), we
obtain that:

(3.25) Ux∗ = V y∗.

Using equations (3.19), (3.24) and (3.17), we have that:

(3.26) ||θn − Yθn|| ≤ ||θn − un||+ ||un − xn||+ ||xn − Yθn|| → 0 as n→∞.
Similarly, using equations (3.19), (3.24) and (3.18), we have that:

(3.27) ||δn −Rδn|| ≤ ||δn − vn||+ ||vn − yn||+ ||yn −Rδn|| → 0 as n→∞.
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Since, Y , R are closed and the fact that lim
n→∞

θn = x∗, lim
n→∞

δn = y∗, we conclude that

(x∗, y∗) ∈ F (Y)×F (R). This together with equation (3.25) implies that (x∗, y∗) ∈ SEFPP .
Furthermore, from equation (1.7), un = Qrxn and vn = Qryn. By a result of Zhang [21],
we have that:

(3.28) F (un, w) +
1

r
〈w − un, Jun − Jxn〉 ≥ 0, ∀ w ∈ X1,

where F (un, w) = f(un, w) + χ(w) − χ(un) + 〈Aun, w − un〉. By condition (A2), we have
that 1

r 〈w − un, Jun − Jxn〉 ≥ F (w, un). Since w 7→ F (u,w) is convex and lower semi-
continuous, applying equation (3.24), we obtain from the above inequality that
0 ≥ F (w, x∗), ∀ w ∈ X1. For λ ∈ (0, 1], w ∈ X1, let wλ = λw + (1− λ)x∗ ∈ X1.
Hence, 0 ≥ F (wλ, x∗), ∀ w ∈ X1. By condition (A1), we have that

0 = F (wλ, wλ) ≤ λF (wλ, w) + (1− λ)F (wλ, x∗) ≤ F (x∗ + λ(w − x∗), w)

Letting λ ↓ 0, by condition (A3), we obtain that:

(3.29) F (w, x∗) ≥ 0, ∀ w ∈ H1.

This implies that x∗ ∈ GMEP (f,A, χ). Similarly, we also have that y∗ ∈ GMEP (g,B, ϕ).
These together with equation (3.25) imply that (x∗, y∗) ∈ SGMEEP . Hence, we conclude
that (x∗, y∗) ∈ F . This completes the proof. �

3.1. Conclusion. In Theorem 3.1, it is proved that the sequence of Algorithm (1.7) con-
verges strongly to a solution of (SEFPP ) ∩ (SGMEEP ) in 2-uniformly convex and uni-
formly smooth real Banach spaces. Moreover, no compactness-type condition is imposed
on any of the operators involved. The theorem proved is an improvement on the result of
Chidume et al. [13] in the sense that (SGMEEP ) was not studied. The result of Zhaoli et
al. [17] is a special case of Theorem 3.1 in which X is a real Hilbert space. Furthermore,
the compactness-type condition imposed on the operators and the fact that {rn} ⊂ [0,∞)
is such that lim |rn+1 − rn| = 0 in the theorem of Zhaoli et al. [18] were dispensed with
in Theorem 3.1. The class of (SMEEP ) studied in the theorem of Zhaoli et al. [18] is
contained in the class of (SGMEEP ) considered in Theorem 3.1. Finally, Algorithm (1.7)
studied is slightly different from the algorithm considered by Zhaoli et al. [18].
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