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Modified inertial double Mann type iterative algorithm for
a bivariate weakly nonexpansive operator

ANANTACHAI PADCHAROEN'! and KAMONRAT SOMBUT?"*

ABSTRACT. We introduce a modified inertial double Mann type iterative method to approximate coupled
solutions of a bivariate nonexpansive operator 7' : C' x C' — C, where C' is a nonempty closed and convex
subset of a Hilbert space. The one theorem and complement important old and recent results in coupled fixed
point theory. Some appropriate examples to illustrate our results and their generalization are also given.

1. INTRODUCTION

Let X be an arbitrary nonempty set. A fixed point for a nonexpansive mapping
T:X — X isapoint x € X such that Tz = z. The fixed point theorems are very impor-
tant in dealing with problems arising in approximation theory, mathematical economics,
theory of differential equations, theory of integral equations, theory of matrix equations,
game theory, etc. (see, e.g., [13, 12, 22, 30, 18, 40]).

A significant body of work on iteration methods for fixed points problems has accu-
mulated in literature (for example, see [34, 19, 20, 39]). Specifically, the Mann algorithm
[24, 25]:

(1.1) T+l = Op@Tp + (]- - an)Txna

for some suitably chosen scalars a, € [0, 1]. The iterative sequence {z,, } converges weakly
to a fixed point of T provided that a, € [0, 1] satisfies

(1.2) Zan(l—an) = 00.
n=1
Mainge [26] introduced the following inertial Mann algorithm by unifying the Mann
algorithm and the inertial extrapolation:

(13) Wp = Tp + an(l'n - xn—l)a
Tn4+l1 = Wnp + An[T(U}n) - ’lUn],

foreachn > 1, a,, € [0, ) for any a € [0,1).

Sakurai and Liduka [37] first proposed an acceleration of the Halpern algorithm to
search for a fixed point of a nonexpansive mapping. Inspired by their work, by combining
the Mann algorithm (1.1) and conjugate gradient methods [29], the authors [15] proposed
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the following accelerated Mann algorithm:

dnJrl = %(T(xn) - xn) + Bndny
(14) Zp = Tp + Adn+11

Tpt1 = WnTn + (1 = p1n) 2n,
for each n > 0, where u € (0,1] and A > 0.

Let X be a nonempty set. A pair (z,y) € X x X is called a coupled fixed point of the
mapping F': X x X — X ifitis a solution of the system:

F(Ivy):z7 F(yvx):y'

Berinde et al. [6] introduced a double Krasnoselskij-type algorithm for approximately
coupled fixed points of F' a bivariate weakly nonexpansive operators :

(15) Tn+1l = /\xn + (]- - )‘)F(xn7xn)7

where A € (0,1).

The coupled fixed point results for contractive type mappings have important applica-
tions in nonlinear analysis and have been applied successfully for solving various classes
of nonlinear functional equations: integral equations and systems of integral equations
[1, 10, 17, 38]; nonlinear Hammerstein integral equations [35]; nonlinear matrix and non-
linear quadratic equations [2, 10] initial value problems for ODE [3, 36], etc.

In this paper, motivated and inspired by the work of Dong and Yuan [15], we pro-
pose an inertial extrapolation algorithm to approximate coupled solutions of a bivariate
nonexpansive operator.

2. NONEXPANSIVE BIVARIATE OPERATORS

We define the concept of nonexpansiveness for bivariate mappings as follows.

Definition 2.1. [6] Let X be a normed linear space and C be a subset of X. A mapping
F :C x C — X is called weakly nonexpansive if

(2.6) [1F(z,y) = F(u,v)|| < allz —ull + blly — vl|,
forall z,y,u,v € C,where a,b >0and a+ b < 1.

Definition 2.2. [31] Let X be a normed linear space and C be a subset of X. A mapping
F: C x C — X is called nonexpansive if

27) 1F(z,y) = F(u,0)|| < ([l —ull + [y —ol),

N =

forall z,y,u,v € C.

Note that condition (2.6) is more general than (2.7): any nonexpansive mapping F is
weakly nonexpansive but the converse is not true, in general, as shown below.

Example 2.1. Let X = R (with the usual metric) and F' : X x X — X be defined by

-3
F(Jf,y):%, $7ZJEX
Then F satisfies condition (2.6) with the constants a = 1 and b = 2 but does not satisfy
condition (2.7). Moreover, F' possesses a unique coupled fixed point of the form (z, z),
i.e., (0,0), but no coupled fixed point theorem established in [7, 8, 9, 11, 14, 21, 23] (and in
other related papers) can be applied to this function F.
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Definition 2.3. [33] A mapping F' : C' x C — H is called demicompact if it has the
property that whenever {u, } and {v,} are bounded sequences in C' with the property
that {F(un,v,) — upn} and {F (vy,u,) — v, } converge strongly to 0, then there exists a
subsequence {(uy, , v, )} of {(un,vy)} such that u,, — wand v,, — v strongly.

Theorem 2.1. [6] Let C be a bounded, closed and convex subset of a Hilbert space H and let
F : C x C — C be a (weakly) nonexpansive operator. Then F has at least one coupled fixed point
in C.

Lemma 2.1. [4] Let {6,} and {6, } be nonnegative sequences satisfying > -, o, < oo and
Ont1 < O+ on, n=1,2,.... Then, {6,,} is a convergent sequence.

Lemma 2.2. [32] Let {z,,} be a sequence of elements of the Hilbert space H which converges
weakly to v € H. Then we have liminf,,_, ||z, —2| < liminf, , ||zn—2|, Vy € H, y # x.

Lemma 2.3. [5] Let X be a real inner product space. Then the following statements hold.

@) [lz+yl* <|llz]*+2(y,x +y), Va,yeX;
®) llz—yll> = lz* + |yl* — 2(z,y), Vz,yeX;
(©) [laz+ (1 —a)yl]* = afzl* + (1 — &)||yl]* — (1l — )|z —y[]*, Va,y e X,YVaecR.

3. MODIFIED INERTIAL DOUBLE MANN TYPE ITERATIVE

In this section, let C be a bounded, closed and convex subset of a Hilbert space H and
let I : C'x C' — C be weakly nonexpansive and demicompact operator.

Algorithm 1. Initialization: Choose 1 € (0,1], 8, € [0,00) and -y, € (0,1).
Step 1: Given A > Oand o = 1 € C, yo = y1 € C, compute

F(x1,y1) — 1 F(y1,21) —

A A '
Step 2: Given x,,—1, T, Yn—1, Yn € C, choose 7, > 0 and e, such that 0 < v, < &y, 0 < <
1, where

; Tn Tn i
Ay = { Inln{aa max { TZn—2n—11° Tyn—"Yn—1l }} lf Tn 7& Tn—1, Yn 7& Yn—1,

«@ otherwise,

di = and dY =

Set n = 1 and compute
Wy, = Tp + an(xn - xn—l) and  up =y, + an(yn - yn—l)'
Step 3: Given w,,,u,, € C x Cand d};,d¥ € C', compute d}, |, d}  , € C by

1 1

z (F(wn,un) —wy) + Bndy, and df | = N

Compute x4 as follows:

Zn = Wp + Ay,

Tpp1 = P YnWn + (1 — pYn)2n,
Vp = Un + Adj, 4,

Ynt1 = [Wntn + (1 — pyn)vn.
Set n :=n+ 1 and go to Step 2.
Denote by CFix(F), the set of all coupled fixed points of F with equal components, i.e.,
CFix(F) = {(2",y") € C: F(a",y") = 2", F(y",2") = y"}.
Assumption 1. The sequences {53, }, {yn} and {7} defined in Algorithm 1 satisfies
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(Al) 220:1 Br, < 00;
(A2) Y0 T < o0;
(A3) 220=1 TYn = OQ.

Moreover, sequence {(wy,, u,)} and {(un, wy,)} are satisfied
(A4) {F(wn,un) — wy} is bounded,

(A5) {F(un,wn) — uyn} is bounded;

(

(

)
)
(A6) {F(wn,un) — x*} is bounded for any x* € Fix(F);
(A7) {F(upn,wy) —y*} is bounded for any y* € Fix(F).

Theorem 3.2. Suppose that F' : C' x C' — C be weakly nonexpansive and demicompact operator
with CFix(F) # 0 and suppose Assumption 1 holds. Then the sequence {(x,,yy)} converges
weakly to a coupled fixed point of F.

Proof. It follows from (A1) that lim,,_, 8, = 0. This implies that there exists ny € N such
that 3, < % for all n > ng. Define a number

2
T .__ x —Q _
My = maX{ (ax ld ], 5 :légHF(wn,un) wnll}-

Then (A4) implies that M{ < co. Assume that ||d}|| < M{ for some n > ng. From dj, | =

%(F(wnv un) - wn) + ﬂndfm we have

1 1
sl = 115 (F (wn, un) = wa) + Badn|l < |5 (F(wn, un) = wa)ll + Bulldyll < M.

Hence, ||df || < MY foralln > ng. So, {dJ;} is bounded.
Similarly, we have {d¥ } is bounded.
Note that v, ||z, — zp—1]] < 7, and o ||Yn, — Yn—1] < 7, this implies that

o o0 o0 oo
(3.8) Z apllxn — zn_1]| < Z Th < oo and Z an|lyn — Yn-1]| < Z T < 00.
n=1 n=1 n=1 n=1

Denote wy, := @, + o (s, — 1) and uy, := yp, + an(Yn — Yn—1) for each n > 1. Then

Tpg1 = (1YnWn + (1 = ) (F(wn, un) + ABpdy,)

(3.9) =wp + (1 — pyn) (F(wn, un) — wy + ABndy))
and
(3.10) Ynt1 = mtin + (1= pyn) (F(un, wn) + ABndy)

= Un + (1 - ,U"Yn)(F(umwn) — Up + )\/Bnd%)
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Let (z*,y*) € CFix(F') and (3.9) and Lemma 2.3(a), we have
(3.11)
[Zn1 =& [* = llwn — 2% + (1 = pyn) (F (W, un) — wp + ABndy)||?
= Jlwn — 2% 4+ (1 = ) (F (W, un) = wn) + (1 = py2)ABndy, |12
< wp — 2" + (1 = pyn) (F (wn, un) — wn)H2 +2(1 = pyn ) (ABudyy, Tngr — %)
= [lwn = 21 + (1 = pyn) 2| F (wn, un ) — wnl|®
+ 2(1 = pyn)(wy, — ¥, F(wp, Uy) — wp)
+2(1 — pyn){(ABndy, Tny1 — %)
< fJwn — x*H2 + (1 = ) [ F (wns up) — wn”2
+ 2(1 = pyn)(wn — F(wp, tn), F(wn, tn) — wp)
+ 2(1 = pyn) (F(wn, up) — 2, F(wn, un) — wy,)
+2(1 = pyn) (ABndy, Tns1 — )
< lwn =2 |* = (1 = py) | F(wn, up) — wn |
201 = 30) (1 (s 1) = & [ F (0 0) = wall + ABall g1 — ]
= wn — &[] = (1 — pyn) |F (wn, un) — wa* + o5,
where ¢ := 2(1—pyn) [ F(wn, un) — 2 ||| F'(wn, un) — wall + ABnl|dy [ 2ns1 — 27[|] . Using
(A1), (A4) and (A5), it follow that {¢*} is bounded. Thus there exists M5 > 0 such that
o7 < M3 foralln > 1.

Following similar process as in (3.11), we get
(3.12)

Yyn+1 — y*H2 = [Jun —y" + (1 — pyn) (F (un, wp) — un + /\ﬂnd%)HQ
< ||un - y*”2 — (T = pyn) | F (e, wp) — unH2
+2(1 = pyn) [I1F (i, wn) = y* L (i, wn) = unll + ABnlldy lyni1 — 3]
= llun =y I = (1 = gy | F (un, wn) — unl|* + o3,

where ¢ = 2(1—pyp) [[[F'(un, wn) — y*[[[[F (un, wn) = unll + ABnl|d} [ [yns1 — y7[|] - Using
(A2), (A5) and (A6), it follow sthat {¢¥ } is bounded. Thus there exists MY > 0 such that
oY < MY foralln > 1.

Using Lemma 2.3(c), we get

*”2 = Hxn + an(xn - xn—l) - l‘*||2

lwpn, —
(3.13) =1+ an)(zn —27) — an(Tn_1 — m*)||2
=1+ ap)llzn — x*||2 —apllzn—1— x*H2 +an (14 an)||zn — xn—1||2~

Similarly, we get

||un - y*Hz = ||yn + an(yn - ynfl) - y*”Q
(3.14) = 11+ an)(yn — ") — an(yn-1 — )|
= L+ a)lyn =y I1* = anllyn—1 — ¥ I” + @n(l + an) lyn — yn-1*.
Using (3.13) in (3.11), we obtain
[ =21 = (1 + @)l — [+ nlln s — 2

(3.15) 9 5 .
< (1 = py) [ F (wns un) — wal|* + an (1 + an)||lzn — xn—lu + ¢
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Using (3.14) in (3.12), we obtain
yn+1 = y* 11> = (L4 an)llyn — v 1> + anllyn—1 — v

(3.16) ) ) )
7(1 - H’Yn)”F(unawn) - Un” + OZn(l + an)||yn - yn—ln + ¢n'
Observe that
_ 2 _ _ B
e A e (R )

S an”xn - xn—IHMgza

where My := sup,,>; ((1 + ap)l|zn — xn_1||) and

an(1+ an n — Yn— 220[»” n — Yn— 1+a, n — Yn—
6.18) (1 )90 = -1 = allyn = gt} (L + ) 19 = 91

< an”yn - yanHM?%

where MY = sup,.»; ((1+ an)lyn = ya1])-
Observe that M{ exists and MY exists. Since {z,,} and {y,,} are bounded. Thus,

oo oo
Z (1+an)||xn_xn—l|‘2 < Zanllxn_xn—lHM?:f < 00,
(3.19) o n=1
Z 1 + oy ”yn Yn— 1” < Z%Hyn Yn— 1||My < 0.
n=1 n=1
Hence,

(3.20) nh_{r;o an(1+ ap)l|n — p—1|| =0 and n11—>120 an(1+ an)llyn — Yn-1] = 0.
From (3.15), we get
(1= )1 (wn, ) — wal?
(3.21) <l = 22 = lenss — 2*1* + anlllen — 2|* = zn-1 — 2™]?)
+ an(l+ an)l|z, — xn—le + &
From (3.16), we get
(1 = pyn) | F (s wp) — un[®
(3.22) < lyn =y 17 = llynsr = ¥ 17 + anlllyn — "1 = lyn—1 — " [I*)
+an(L+an)llyn = yn-1]? + 6.

Observe that lim,, o ¢% = 0, lim,, o, ¢¥ = 0 in view of > 7, 8, < oo, {z,} and {y,}
are bounded. Hence, we get from (3.21) and (3.22) that

> (= ) | F(wnyun) —wal® < oo and > (1 = pyn) | F(tn, wn) =t [|* < o0.
n=1 n=1
Thus,
liminf | F(wp, u,) —wy| =0 and lminf | F(uy, w,) — uy| = 0.
n—oo n—oo
Furthermore,
lwn — zn|| = anllzn — Tn—1|| = 0 as n — oo,
(3.23)

ltn — Ynll = @nllYn — Yn_1]| = 0 as n — oo,

since Y00 apllzn — zpoa|| < coand Y07 anllyn — Yn—1]] < co.
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We show that lim,, o || F(wp, us) — wy|| = 0. Observe from (3.9), we have

1P (wn, un) = wall = |

Tp+1 — Wp _)\B dT
1—jry o

n

(324) _ ‘ .’I,'n+1—.’L'n—CV(xn—.’IJn,1) _)\Bndﬁ
1- HYn
Lp — Tn +« Tn — Tp— x
— UYn
Thus, by (A1), {dZ} is bounded and (3.8), we obtain
(3.25) lim ||F(wy,un) — wn| = 0.
n—oo
Next, we show that lim,, o || F (4, ws) — uy|| = 0. Observe from (3.9), we have
Yn+1 — Yn
F Up, Wn) — Un|| = ‘ - )\Bnd%
P 00) =] = |2
(3.26) _ ’ Ynt1 — Yn — a(Yn — Yn-1) ABod!
1- Hn
< ||yn+1 — yTLH + oz||yn - yn—1|| + /\ﬁan?jLH
L= pyn
Thus, by (A1), {d¥} is bounded and (3.8), we obtain
(3.27) lim || F(un, wy,) — uy| = 0.

n— oo

Since {z, } and {y, } are bounded, then there exist subsequences {xz,, } of {z,}, {yn, }
of {yn} and (z,y) € C x C such that z,,, — = and y,,, — y. By (3.23), we get w,,, — x and
Uy, — Y. Applying Lemma 2.3(b), we obtain

1F (2,y) = @nll® = [|F(z,9) = 2l® + llz = 2 ]|* + 2(F(2,y) — 2,2 — 22).
Since, {z,,} convergent weakly to z, we obtain
nler;Q(F(x, Y) — 2, — Tpn) = 0.
Hence,
limsup | (2, y) — 2| = || F(z, y) — ]2 + lim sup |1z — |
n—oo n—oo
Also , using the condition of coupled weakly nonexpansive , we get
i [|F(,y) — 2] < |F@.y) — Flewy)ll + m [[F(ay) — 2] < 2 — 2],
Thus, we have
IF(e,y) — o + limsup | — 2| < Timsup [}z — a2
n— oo n—oo
Therefore,
IF (z,y) - z]|* = 0.

Therefore, we get F(x,y) = z and similarly we can prove that Fly,z)=y. Thus, (z,y)€
CFix(F).

Finally, we claim that z,, — = and y, — y. On the contrary, assume that there are
subsequence {z,, } of {z,} such that z,,,, — T as ¥ — oo and subsequence {y;, } of {y,}
such that y;,, — yas k — oo, as well as (z,y) # (Z,7).
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By the Lemma 2.2 (Opial lemma), we have
hm lxn — x||2 hm |2n, — 5r:||2 = hmlnf lwn, — mH2
< liminf |2, —|?
k—o00
T 2 2
= lim ||z, —7|" = lim [z, —7]
= lim |z, —7|* = liminf ||z,,, —|?
k—o0 k—o0
2

< liminf |z, — ||
k— o0

= lim ||zm, —:r||2 = lim |z, —x||2,
k—oc0 n—o00

which is a contradiction. Thus, x,, — z. By the same method, we can prove y,, — y. Hence
(@n, yn) — (z,y) € CFix(F). 0

4. NUMERICAL EXPERIMENTS

Example 4.2. Let H = R, we consider C = [—1,1]. Define a mapping F : C x C — C by
F(z,y) = “=% forall 2,y € C.

Since |22 — by — (u? — 5v)| < |22 — w?| + 5|y — v| holds for all z,y,u,v € C. Therefore, we
have

22 -5y  u?—5v

1
< (]2 — w4 5y — o).

Thus, F' satisfies all the hypotheses of Theorem 3.2. Then there exists a coupled fixed point of F,
e., (0, 0) In Algorithm 1, we set o, = 0.718, A =05, u =1, 7, = 100n*%,% = 0.9 and
Bn = e H)Q Then, we have results in Table 1, Tnble 2, Figure 1 and Figure 2.

TABLE 1. Result of Example 4.2 with initial point (zo,v0) = (0.9, —0.9).

Algorithm 1
Time Iter Approximation ln+1 — Znll + |[Yn+1 — ynl|
0.039870 1  (0.882321, -0.853393) 0.064286
2 (0.850071, -0.785270) 0.100373
3 (0.805367,-0.711875) 0.118099
4 (0.750706, -0.641306) 0.125229
5  (0.689107,-0.576913) 0.125993
10 (0.377858, -0.340034) 0.094650
20 (0.086018, -0.084588) 0.028891
30  (0.015962, -0.015988) 0.006140
35  (0.006466, -0.006466) 0.002617
40 (0.002509, -0.002502) 0.001068
45 (0.000925, -0.000926) 0.000417
50  (0.000323, -0.000323) 0.000156
55 (0.000104, -0.000104) 0.000055
60  (0.000029, -0.000029) 0.000018
65  (0.000006, -0.000006) 0.000005
66 (0.000004, -0.000004) 0.000004
67  (0.000003, -0.000003) 0.000003
68  (0.000002, -0.000002) 0.000002
69  (0.000001, -0.000001) 0.000002
70  (0.000000, -0.000000) 0.000001

71 (-0.000000, 0.000000) 0.000001
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FIGURE 1. Result of Example 4.2 with initial point (x¢, yo) = (0.9, —0.9).

TABLE 2. Result of Example 4.2 with initial point (z¢,y0) = (—0.5, 0.7).

Algorithm 1

Time  Iter Approximation lznt1 — znll + lynt1 — Ynll
0.036877 1  (-0.495536, 0.665893) 0.038571
2 (-0.484953, 0.614517) 0.061958
3 (-0.467162, 0.557050) 0.075258
4 (-0.442434, 0.499643) 0.082135
5 (-0.412048, 0.445470) 0.084559
10 (-0.237505, 0.242598) 0.065258
20 (-0.055294, 0.055903) 0.019071
30 (-0.010219, 0.010270) 0.003974
35 (-0.004111, 0.004119) 0.001681
40  (-0.001584, 0.001581) 0.000681
45 (-0.000579, 0.000579) 0.000264
50 (-0.000199, 0.000200) 0.000098
55  (-0.000063, 0.000063) 0.000034
60  (-0.000017, 0.000017) 0.000011
65  (-0.000003, 0.000003) 0.000003
66 (-0.000002, 0.000002) 0.000002
67  (-0.000001, 0.000001) 0.000002
68  (-0.000001, 0.000001) 0.000001
69  (-0.000000, 0.000000) 0.000001
1
—
Yn
05
g
£
0 L
-0.5 : ‘ ‘ ‘
0 10 20 30 40 50 60 70

Number of iterations

FIGURE 2. Result of Example 4.2 with initial point (x¢, y) = (—0.5, 0.7).
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Example 4.3. Let H = R, we consider C' = [0, 1]. Define a mapping F' : C' x C — C by
F(z,y) = “43% forall 2,y € C.

Since |22+ 3y? — (u? +3v?)| < |2? 4+ u?| 4 3|y? —v?| holds for all z,y, u,v € C. Therefore,
we have

8 8
1
< (e =’ +3ly* — %)),

Thus, F satisfies all the hypotheses of Theorem 3.2. Then there exists a coupled fixed point
of F, ie., (0,0). In Algorithm 1, we set a,, = 0.53, A = 0.5, p = 1, 7, = 100n~2, 7, = 0.9
and 3,, = ﬁ Then, we have the results in Table 3, Table 4, Figure 3 and Figure 4.

TABLE 3. Result of Example 4.3 with initial point (z, y0) = (0.8, 0.9).

Algorithm 1
Time  Iter Approximation Znt1 — zn|l + |[Ynt1 — Ynl]

0.048907 1  (0.747969, 0.830156) 0.121875

2 (0.672649, 0.733389) 0.172087

3 (0.588924, 0.630987) 0.186127

4 (0.504522, 0.532275) 0.183114

5  (0.423979, 0.441535) 0.171283

10 (0.139360, 0.140016) 0.080673

20  (0.006394, 0.006302) 0.005244

30 (0.000141, 0.000137) 0.000142

31  (0.000092, 0.000090) 0.000096

32 (0.000060, 0.000058) 0.000064

33 (0.000038, 0.000037) 0.000042

34 (0.000024, 0.000024) 0.000028

35 (0.000015, 0.000015) 0.000018

36  (0.000009, 0.000009) 0.000012

37  (0.000006, 0.000005) 0.000007

38  (0.000003, 0.000003) 0.000005

39  (0.000002, 0.000002) 0.000003

40  (0.000001, 0.000001) 0.000002

41 (0.000000, 0.000000) 0.000001

0.8 - —Zn
—Yn
. 0.6
=04
0.2
0
0 5 10 15 20 25 30 35 40 45

Number of iterations

FIGURE 3. Result of Example 4.3 with initial point (zg,y0) = (0.9, 0.8).
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TABLE 4. Result of Example 4.3 with initial point (z¢, yo) = (0.6, 0.4).

Algorithm 1
Time  Iter Approximation lzn+1 — znll + |Ynt1 — Ynll
0.030499 1  (0.538125, 0.369375) 0.092500
2 (0.455792, 0.325561) 0.126147
3 (0.373395, 0.277895) 0.130063
4 (0.298954, 0.231266) 0.121070
5 (0.235137,0.188362) 0.106721
10 (0.058413, 0.052795) 0.037620
20  (0.001889, 0.001920) 0.001701
30  (0.000029, 0.000034) 0.000036
31 (0.000018, 0.000022) 0.000024
32 (0.000011, 0.000013) 0.000015
33 (0.000007, 0.000008) 0.000010
34  (0.000004, 0.000005) 0.000006
35  (0.000002, 0.000003) 0.000004
36 (0.000001, 0.000002) 0.000002
37 (0.000000, 0.000001) 0.000001
38  (0.000000, 0.000000) 0.000001
0.6
—
0.5 —Yn
04 :
2
03¢ 1
=
0.2
0.1F 1
0 . . : ‘
0 5 10 15 20 25 30 35 40

Number of iterations
FIGURE 4. Result of Example 4.3 with initial point (x¢, y0) = (0.6, 0.4).
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