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in Banach spaces

SIMEON REICH and ALEXANDER J. ZASLAVSKI

ABSTRACT. Given a Lipschitz and convex objective function of an unconstrained optimization problem, de-
fined on a Banach space, we revisit the class of regular vector fields which was introduced in our previous work
on descent methods. We study, in particular, the asymptotic behavior of the sequence of values of the objective
function for a certain inexact process generated by a regular vector field when the sequence of computational
errors converges to zero and show that this sequence of values converges to the infimum of the given objective
function of the unconstrained optimization problem.

1. INTRODUCTION

Given a Lipschitz and convex objective function of an unconstrained optimization pro-
blem, defined on a Banach space, we consider a certain complete metric space of vector
fields, which are self-mappings of the Banach space, with the topology of uniform con-
vergence on bounded subsets. With each such vector field, we associate a certain iterative
process. In our previous work [13, 14] we introduced the class of regular vector fields and
showed, using the generic approach and the porosity notion, that a typical vector field is
regular and that for a regular vector field, the sequence of values of the objective function
evaluated at the points generated by our process tends to the infimum of the given ob-
jective function of the unconstrained optimization problem. In the present paper we study
the behavior of the values of the objective function for an inexact process generated by a
regular vector field and show that the sequence of values of the given objective function
still converges to the infimum of this objective function.

Assume that (X, ‖·‖) is a Banach space with norm ‖·‖, (X∗, ‖·‖∗) is its dual space with
the corresponding dual norm ‖ · ‖∗ and that f : X → R1 is a convex continuous function
which is bounded from below. Recall that for each pair of sets A,B ⊂ X∗,

H(A,B) = max{sup
x∈A

inf
y∈B
‖x− y‖∗, sup

y∈B
inf
x∈A
‖x− y‖∗}

is the Pompeiu-Hausdorff distance between A and B.
For each point x ∈ X , let

∂f(x) = {l ∈ X∗ : f(y)− f(x) ≥ l(y − x) for all y ∈ X}
be the subdifferential of f at x [8, 11, 19]. It is well known that the set ∂f(x) is a nonempty
and bounded subset of (X∗, ‖ · ‖∗).

Set
inf(f) := inf{f(x) : x ∈ X}.
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Denote by A the set of all mappings V : X → X such that V is bounded on every
bounded subset of X (that is, for each K0 > 0, there is K1 > 0 such that ‖V x‖ ≤ K1 if
‖x‖ ≤ K0), and for each x ∈ X and each l ∈ ∂f(x), l(V x) ≤ 0. We denote by Ac the set of
all continuous V ∈ A, by Au the set of all V ∈ Awhich are uniformly continuous on each
bounded subset of X , and byAau the set of all V ∈ Awhich are uniformly continuous on
the subsets

{x ∈ X : ‖x‖ ≤ n and f(x) ≥ inf(f) + 1/n}
for each integer n ≥ 1. Finally, we let Aauc = Aau ∩ Ac.

Next, we endow the set A with a metric ρ: For each V1, V2 ∈ A and each integer i ≥ 1,
we first set

ρi(V1, V2) := sup{‖V1x− V2x‖ : x ∈ X and ‖x‖ ≤ i},
and then define

ρ(V1, V2) :=

∞∑
i=1

2−i[ρi(V1, V2)(1 + ρi(V1, V2))−1].

Clearly (A, ρ) is a complete metric space. It is also not difficult to see that the collection of
the sets

E(N, ε) = {(V1, V2) ∈ A×A : ‖V1x− V2x‖ ≤ ε, x ∈ X, ‖x‖ ≤ N},
where N, ε > 0, is a basis for the uniformity generated by the metric ρ. Evidently Ac, Au,
Aau and Aauc are all closed subsets of the metric space (A, ρ). In the sequel we assign to
all these spaces the same metric ρ.

In order to compute inf(f), we associate in Section 2 with each vector field W ∈ A a
gradient-like iterative process (see below).

At this point we recall that the study of minimization methods for convex functions
is a central topic in optimization theory and its applications. See, for example, [1, 2, 3,
4, 5, 6, 9, 10, 12, 20, 22] and the references mentioned therein. Note, in particular, that
the counterexample studied in Section 2.2 of Chapter VIII of [8] shows that, even for two-
dimensional problems, the simplest choice for a descent direction, namely the normalized
steepest descent direction,

V (x) = argmin
{

max
l∈∂f(x)

〈l, d〉 : ‖d‖ = 1

}
,

may produce sequences the functional values of which fail to converge to the infimum of
the objective function f considered in [8], which attains its minimum. This vector field
V , defined above and discussed in Section 2.2 of Chapter VIII of [8], belongs to our space
of vector fields. The steepest descent scheme (Algorithm 1.1.7) presented in Section 1.1 of
Chapter VIII of [8] corresponds to the iterative process we consider below.

In infinite-dimensional settings the problem is even more difficult and less understood.
Moreover, positive results usually require special assumptions on the space and on the
functions. However, in [13] (under certain assumptions on the objective function f ), for
an arbitrary Banach space X we established the existence of a set F which is a countable
intersection of open and everywhere dense subsets of A such that for any V ∈ F , the
sequence of values of f tends to its infimum for the iterative process associated with V .

In [14] we introduced the class of regular vector fields V ∈ A and showed (under the
two mild assumptions A(i) and A(ii) on f stated below) that the complement of the set
of regular vector fields is not only of the first category, but also σ-porous in each of the
spaces A, Ac, Au, Aau and Aauc. We then showed in [14] that for any regular vector field
V ∈ Aau, the values of f tend to its infimum for the process associated with V . If, in
addition to A(i) and A(ii), f also satisfies assumption A(iii), then this convergence result
is valid for any regular V ∈ A. Note that the results of [14] are also presented in Chapter
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8 of the book [16], which contains many other generic and porosity results. For more
applications of the generic approach and the porosity notion in optimization theory, see
also [21].

Our results are established in any Banach space and for those convex functions which
satisfy the following two assumptions.

A(i) There exists a norm-bounded set X0 ⊂ X such that

inf(f) = inf{f(x) : x ∈ X} = inf{f(x) : x ∈ X0};
A(ii) for each r > 0, the function f is Lipschitz on the ball {x ∈ X : ‖x‖ ≤ r}.
We may assume that the set X0 in A(i) is closed and convex.
It is clear that assumption A(i) holds if lim‖x‖→∞ f(x) =∞.
We say that a mapping V ∈ A is regular if for any natural number n, there exists a

positive number δ(n) such that for each point x ∈ X satisfying

‖x‖ ≤ n and f(x) ≥ inf(f) + 1/n,

and each bounded linear functional l ∈ ∂f(x), we have

l(V x) ≤ −δ(n).

In this connection, see also [15].
Note that a regular vector field was constructed in Section 8.2 of [16]. Conditions for

regularity of vector fields can be found in Section 8.14 of [16].
We denote by F the set of all regular vector fields V ∈ A.
It was also shown in [14] that G := A \ F is a face of the convex cone A in the sense

that if a non-trivial convex combination of two vector fields in A belongs to G, then both
of them must belong to G.

In the sequel we also make use of the following assumption:
A(iii) For each integer n ≥ 1, there exists δ > 0 such that for each x1, x2 ∈ X satisfying

‖x1‖, ‖x2‖ ≤ n, f(xi) ≥ inf(f) + 1/n, i = 1, 2, and ‖x1 − x2‖ ≤ δ,
the following inequality holds:

H(∂f(x1), ∂f(x2)) ≤ 1/n.

This assumption is certainly satisfied if the function f is differentiable and its derivative
is uniformly continuous on those bounded subsets of X over which the infimum of f is
larger than inf(f).

2. MAIN RESULT

For each point x ∈ X and each number r > 0, set

B(x, r) := {y ∈ X : ‖x− y‖ ≤ r}.
Let W ∈ A. We associate with W the following iterative process.
For each point x ∈ X , denote by QW (x) the set of all points

y ∈ {x+ αWx : α ∈ [0, 1]}
such that

f(y) = inf{f(x+ βWx) : β ∈ [0, 1]}.
Given any initial point x0 ∈ X , one can construct a sequence {xi}∞i=0 ⊂ X such that for all
nonnegative integers i,

xi+1 ∈ QW (xi).

This process and its convergence were studied in [13, 14]. In particular, in [14] it is shown
that if W is regular, then limn→∞ f(xn) = inf(f). In the present paper we establish an
extension of this result for inexact iterates of the algorithm.
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Let x ∈ X and δ ≥ 0. Denote by QW,δ(x) the set of all z ∈ X for which there exist a
number λ ∈ [0, 1] and a point y ∈ X such that

‖y −Wx‖ ≤ δ,

f(x+ λy) ≤ f(x+ βy) + δ for all β ∈ [0, 1],

f(x+ λy) ≤ f(x)

and
z = x+ λy.

In other words,

QW,δ(x) := {z ∈ X : there exist λ ∈ [0, 1] and y ∈ B(Wx, δ) such that

(2.1) z = x+ λy and f(z) ≤ f(x+ βy) + δ for all β ∈ [0, 1] and f(z) ≤ f(x)}.

Note that the set QW,δ(x) may be empty.
In Section 3 we establish the following result.

Theorem 2.1. Assume that a vector field V ∈ A is regular, assumptions A(i) and A(ii) are valid
and that at least one of the following conditions holds: 1. V ∈ Aau; 2. A(iii) is valid.

Let a sequence of nonnegative numbers {δi}∞i=0 satisfy

(2.2) lim
i→∞

δi = 0

and let a sequence {xi}∞i=0 ⊂ X be such that

lim inf
i→∞

‖xi‖ <∞

and for each integer i ≥ 0,

(2.3) if QV,δi(xi) 6= ∅, then xi+1 ∈ QV,δi(xi);

otherwise

(2.4) xi+1 = xi.

Then
lim
i→∞

f(xi) = inf(f).

Note that Theorem 2.1 is an extension of Theorem 2.1 of [18], which was established in
the case where the sequence {xi}∞i=0 is bounded.

3. PROOF OF THEOREM 2.1

We first recall the following lemma, which was proved in [17].

Lemma 3.1. Assume that W ∈ A is regular, A(i), A(ii) are valid and that at least one of the
following conditions holds: 1. W ∈ Aau; 2. A(iii) is valid.

Let K̄ and ε̄ be positive. Then there exist positive numbers ᾱ, γ and δ such that for each point
x ∈ X satisfying

‖x‖ ≤ K̄, f(x) ≥ inf(f) + ε̄,

each number β ∈ (0, ᾱ], and each point y ∈ B(Wx, δ), we have

f(x)− f(x+ βy) ≥ βγ.

.
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Proof. By assumption, there exist a strictly increasing sequence of natural numbers {np}∞p=1

and a number K > 0 such that

(3.5) ‖xnp
‖ ≤ K, p = 1, 2, . . . .

By (2.1), (2.3) and (2.4), for all integers i ≥ 0, we have

(3.6) f(xi+1) ≤ f(xi) ≤ f(x0).

Let ε ∈ (0, 1). In view of (3.6), in order to complete the proof of Theorem 2.1, it is
sufficient to show that there exists an integer n ≥ 0 such that

f(xn) ≤ inf(f) + ε.

Lemma 3.1 implies that there exist numbers

α ∈ (0, 1), γ > 0 and δ > 0

such that the following property holds:
(a) for each point x ∈ X satisfying

‖x‖ ≤ K, f(x) ≥ inf(f) + ε,

each number β ∈ (0, α] and each point y ∈ B(V x, δ),

f(x)− f(x+ βy) ≥ βγ.
In view of (2.2), there exists a natural number p1 such that for all integers i ≥ np1 , we

have

(3.7) δi ≤ min{2−1δ, 2−1αγ}.
Fix a natural number

(3.8) p2 > p1 + 4 + 2(αγ)−1(f(x0)− inf(f)).

We claim that there exists a natural number i ∈ [np1 , np2 ] such that

f(xi) ≤ inf(f) + ε.

Suppose to the contrary that

(3.9) f(xi) > inf(f) + ε, i = np1 , . . . , np2 .

Let p ∈ {p1, . . . , p2}. Property (a), (2.1), (2.3), (3.5), (3.7) and (3.9) imply that

QV,δnp
(xnp

) 6= ∅, xnp+1 ∈ QV,δnp
(xnp

)

and that there exists
yp ∈ B(V xnp

, δnp
)

such that

(3.10) f(xnp+1) ≤ f(xnp
+ αyp) + δnp

≤ f(xnp
)− αγ + δnp

≤ f(xnp
)− αγ/2.

It follows from (3.6) and (3.10) that

(3.11) f(xnp+1
) ≤ f(xnp+1) ≤ f(xnp

)− αγ/2.
In view of (3.6) and (3.11), we have

f(x0)− inf(f) ≥ f(xnp1
)− f(xnp2

) =

p2−1∑
p=p1

(f(xnp
)− f(xnp+1

)) ≥ (p2 − p1)αγ/2

and
p2 ≤ p1 + 2(αγ)−1(f(x0)− inf(f)).

This, however, contradicts (3.8). The contradiction we have reached yields our claim and
completes the proof of Theorem 2.1. �
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4. CONCLUSIONS

We have considered an unconstrained optimization problem with a Lipschitz and con-
vex objective function on a general Banach space, and a certain inexact process generated
by a regular vector field associated with the given objective function. We have shown that
if the sequence of computational errors converges to zero, then the sequence of values
of the objective function for this inexact process converges to the infimum of the given
objective function.
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