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ABSTRACT. In this paper, we consider a split equality fixed point problem for asymptotically quasi-pseudo
contractive operators which includes split feasibility problem, split equality problem, split fixed point problem
etc, as special cases. Furthermore we propose a new algorithm for solving the split equality fixed point problem,
and prove a weak and strong convergence theorem. The results obtained in this paper generalize and improve
the recent ones announced by many others.

1. INTRODUCTION

Throughout this paper, we always assume that H1 and H2 are real Hilbert spaces, let
C ⊂ H1, Q ⊂ H2 be two nonempty closed convex sets, let A : H1 → H2 be a bounded
linear operator. Recall that the split feasibility problem (SFP) consists of finding a point
x∗ ∈ H1 such that

x∗ ∈ C and Ax∗ ∈ Q.(1.1)

The SFP was first introduced in 1994 by Censor and Elfving [2] in finite-dimensional Hil-
bert spaces for modeling inverse problems arising from phase retrieval and medical image
reconstruction. Recently the SFP has been widely studied by many authors (see, e.g.,
[1, 16, 15, 14])

Note that if the SFP (1.1) is consistent, it is no hard to see that x∗ solves the SFP (1.1) if
and only if it solves the fixed point equation

x∗ = PC(I − γA∗(I − PQ)A)x∗,

where PC and PQ are the metric projections fromH1 onto C and fromH2 ontoQ, respecti-
vely, γ is a positive constant and A∗ denotes the adjoint of A (see [13, Proposition 3.2] for
the details). This implies that the SFP (1.1) can be solved by using fixed point algorithms.

A popular algorithm used in approximating the solution of the SFP (1.1) is the CQ-
algorithm of [1]:

xn+1 = PC(I − γA∗(I − PQ)A)xn,

for each n ≥ 1, where γ ∈ (0, 2/λ) with λ being the spectral radius of the operator A∗A.
In [3], Censor and Segal consider the following split common fixed-point problem

(SCFP):

find x∗ ∈ F (U) such that Ax∗ ∈ F (T ),(1.2)

Received: 29.09.2017. In revised form: 07.07.2018. Accepted: 30.03.2019
2010 Mathematics Subject Classification. 47J20, 49J40, 49J52.
Key words and phrases. Split equality fixed-point problem, asymptotically quasi-pseudocontractive mapping, weak

convergence, iterative algorithm.
Corresponding author: Tae-Hwa Kim; taehwa@pknu.ac.kr

147



148 Y. Q. Wang, Y. L. Song, X. L. Fang and T. H. Kim

where A : H1 → H2 is a bounded linear operator, U : H1 → H1 and T : H2 → H2 are
two directed operators with nonempty fixed-point sets. To solve (1.2), Censor and Segal
[3] proposed and proved, in finite-dimensional spaces, the convergence of the following
algorithm:

xn+1 = U(xn + γAt(T − I)Axk), k ∈ N,

where γ ∈ (0, 2
λ ) with λ being the largest eigenvalue of the matrix AtA(At stands for

matrix transposition).
In 2013, Moudafi and Al-Shemas [11] introduced the following split equality fixed point

problem (SEFP). Let H1, H2, H3 be real Hilbert spaces, let A : H1 → H3, B : H2 → H3

be two bounded linear operators, let U : H1 → H1 and T : H2 → H2 be two firmly
quasi-nonexpansive operators. The SEFP in [11] is to

find x∗ ∈ F (U), y∗ ∈ F (T ) such that Ax∗ = By∗.(1.3)

If H2 = H3 and B = I , the SEFP (1.3) reduces to the SCFP (1.2).
For solving the SEFP (1.3), Moudafi and Al-Shemas [11] introduced the following si-

multaneous iterative method:{
xk+1 = U(xk − γkA∗(Axk −Byk)),
yk+1 = T (yk + γkB

∗(Axk −Byk))

for firmly quasi-nonexpansive operators U and T , where γk ∈ (ε, 2
λA+λB

− ε), λA, λB
stand for the spectral radiuses of A∗A and B∗B, respectively.

Recently, Che and Li [5] proposed the following iterative algorithm for finding a solu-
tion of the SEFP (1.3): 

un = xn − γnA∗(Axn −Byn),
xn+1 = αnxn + (1− αn)Tun,
vn = yn + γnB

∗(Axn −Byn),
yn+1 = αnyn + (1− αn)Svn

(1.4)

for quasi-nonexpansive operators T and S. And they obtained the weak convergence of
the scheme (1.4).

Very recently, Chang et al. [4] considered the following iterative algorithm for solving
the SEFP (1.3):

un = xn − γnA∗(Axn −Byn),
xn+1 = αnxn + (1− αn)((1− ξ)I + ξT ((1− η)I + ηT ))un,
vn = yn + γnB

∗(Axn −Byn),
yn+1 = αnyn + (1− αn)((1− ξ)I + ξS((1− η)I + ηS))vn,

(1.5)

where T and S are quasi-pseudocontractive operators. Furthermore, they established the
weak and strong convergence of the scheme (1.5).

Note that the class of quasi-pseudocontractive operators which properly includes the
classes of quasi-nonexpansive operators, directed operators and demicontractive opera-
tors, is more desirable for example in fixed point methods in image recovery where in
many cases, it is possible to map the set of images possessing a certain property to the
fixed point set of a nonlinear quasi-nonexpansive operator.

The purpose of this paper is to extend the above results to the class of operators which
are both uniformly Lipschitzian and asymptotically quasi-pseudocontractive. We con-
struct an iterative algorithm for such operators based on the algorithm (1.5) and prove its
weak and strong convergence.
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2. PRELIMINARIES

Let C be a nonempty closed convex subset of a real Hilbert space H and F (T ) denotes
the set of the fixed points of an operator T . The notations “→” and “⇀” stand for strong
convergence and weak convergence, respectively. We use ωw(xn) = {x : ∃ xnj

⇀ x} to
stand for the weak ω-limit set of {xn}.

Definition 2.1. An operator T : C → C is said to be
(i) L-Lipschitzian if there exists a constant L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ C;

(ii) uniformly L-Lipschitzian if there exists a constant L > 0 such that

‖Tnx− Tny‖ ≤ L‖x− y‖, ∀x, y ∈ C, n ≥ 1.

Definition 2.2. An operator T : C → C is said to be
(i) nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖, ∀ x, y ∈ C;
(ii) quasi-nonexpansive if F (T ) 6= ∅ and ‖Tx− q‖ ≤ ‖x− q‖, ∀ x ∈ C, q ∈ F (T );
(iii) firmly nonexpansive if

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T )x− (I − T )y‖2, ∀ x, y ∈ C,
or equivalently,

‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉, ∀ x, y ∈ C;

(iv) directed if F (T ) 6= ∅ and

‖Tx− q‖2 ≤ ‖x− q‖2 − ‖x− Tx‖2, ∀ x ∈ C, q ∈ F (T );

(v) µ-strictly pseudocontractive if there exists µ ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + µ‖x− Tx− (y − Ty)‖2, ∀ x, y ∈ C;

(vi) µ-demicontractive if F (T ) 6= ∅ and the exists a constant µ ∈ (−∞, 1) such that

‖Tx− q‖2 ≤ ‖x− q‖2 + µ‖x− Tx‖2, ∀ x ∈ H, q ∈ F (T );

(vii) asymptotically nonexpansive if there exists a sequence {kn}⊂ [1,∞) with lim
n→∞

kn= 1

such that
‖Tnx− Tny‖2 ≤ kn‖x− y‖2, ∀ x, y ∈ C.

Especially, T is said to be asymptotically quasi-nonexpansive if F (T ) 6= ∅ and

‖Tnx− q‖2 ≤ kn‖x− q‖2, ∀ x ∈ C, q ∈ F (T ).

Definition 2.3. An operator T : C → C is said to be
(i) pseudocontractive if

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2, ∀ x, y ∈ C.
It is well-known that T is pseudocontractive if and only if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖x− Tx− (y − Ty)‖2, ∀ x, y ∈ C;

(ii) quasi-pseudocontractive if F (T ) 6= ∅ and

‖Tx− q‖2 ≤ ‖x− q‖2 + ‖x− Tx‖2, ∀ x ∈ C, q ∈ F (T ).

It is obvious that the class of quasi-pseudocontractive operators includes the class of de-
micontractive operators as its special case;
(iii) asymptotically pseudocontractive if there exists a sequence {kn} ⊂ [1,∞) with
lim
n→∞

kn = 1 such that

〈Tnx− Tny, x− y〉 ≤ kn‖x− y‖2, ∀ x, y ∈ C.
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It is easy to see that T is asymptotically pseudocontractive if and only if

‖Tnx− Tny‖2 ≤ (2kn − 1)‖x− y‖2 + ‖x− Tnx− (y − Tny)‖2, ∀ x, y ∈ C;

(iv) asymptotically quasi-pseudocontractive if F (T ) 6= ∅ and if there exists a sequence
{kn} ⊂ [1,∞) with lim

n→∞
kn = 1 such that

〈Tnx− q, x− q〉 ≤ kn‖x− q‖2, ∀ x ∈ C, q ∈ F (T ).(2.6)

It is clear that T is asymptotically quasi-pseudocontractive if and only if

‖Tnx− q‖2 ≤ (2kn − 1)‖x− q‖2 + ‖x− Tnx‖2, ∀ x ∈ C, q ∈ F (T ).

It is worth noting that the class of asymptotically quasi-pseudocontractive operators is
more general than the class of asymptotically quasi-nonexpansive operators.

Definition 2.4. (i) An operator T : H → H is said to be demiclosed at origin [8] if, for
any sequence {xn} which converges weakly to x, and if the sequence {Txn} converges
strongly to 0, then Tx = 0;
(ii) An operator T : H → H is said to be semi-compact if, for any bounded sequence
{xn} ⊂ H with ‖xn − Txn‖ → 0, there exists a subsequence {xni} ⊂ {xn} such that {xni}
converges strongly to some point x ∈ H.

Definition 2.5. Let S be a nonempty closed convex subset of a real Hilbert space H . We
say that a sequence {xn} ⊂ H is a quasi-Fejér of Type II relative to the target set S (later
called S-quasi-Fejérian) [6] if

‖xn+1 − a‖2 ≤ ‖xn − a‖2 + εn, a ∈ S, n ≥ 1,

where {εn} is a sequence in (0,∞) such that
∑∞
n=1 εn <∞.

In any Hilbert space, the following conclusion holds:

‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2.(2.7)

Lemma 2.1. ([7]) Let X and Y be Banach spaces, A be a continuous linear operator from X to Y .
Then A is weakly continuous.

Lemma 2.2. ([6]) Let S be a nonempty closed convex subset of a real Hilbert space H . Suppose
that {xn} ⊂ H is S-quasi-Fejérian. Then xn ⇀ x ∈ S if and only if ωw(xn) ⊂ S.

Lemma 2.3. ([12]) Let {sn} and {δn} be positive real sequences. Assume that
∑∞
n=1 δn <∞. If

either sn+1 ≤ (1 + δn)sn or sn+1 ≤ sn + δn for all n, then the limit of the sequence {sn} exists.

Lemma 2.4. Let C be a nonempty closed convex subset of H and T : C → C be a uniformly L-
Lipschitzian and asymptotically quasi-pseudocontractive operator. Then F (T ) is a closed convex
subset of C.

Proof. Since T is L-Lipschitzian, then we deduce F (T ) is closed. Next we only need to
prove that F (T ) is convex. To this aim, let p1, p2 ∈ F (T ) and write p = tp1 + (1 − t)p2
for any t ∈ (0, 1). we plan to show p = Tp, i.e., p ∈ F (T ). Take α ∈ (0, 1

1+L ) and define
yα,n = (1− α)p+ αTnp. Since T is L-Lipschitzian, we have

〈p− yα,n, (p− Tnp)− (yα,n − Tnyα,n)〉(2.8)
= 〈p− yα,n, (p− yα,n)− (Tnp− Tnyα,n)〉
≤ ‖p− yα,n‖2 + ‖p− yα,n‖‖Tnp− Tnyα,n‖
≤ (1 + L)‖p− yα,n‖2

= (1 + L)α2‖p− Tnp‖2.
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Hence, for any q ∈ F (T ), from (2.6) and (2.8) we obtain

‖p− Tnp‖2 = 〈p− Tnp, p− Tnp〉 =
1

α
〈p− yα,n, p− Tnp〉

=
1

α
〈p− yα,n, (p− Tnp)− (yα,n − Tnyα,n)〉+

1

α
〈p− yα,n, yα,n − Tnyα,n〉

=
1

α
〈p− yα,n, (p− Tnp)− (yα,n − Tnyα,n)〉+

1

α
〈p− q, yα,n − Tnyα,n〉

+
1

α
〈q − yα,n, yα,n − q〉+

1

α
〈q − yα,n, q − Tnyα,n〉

≤ α(1 + L)‖p− Tnp‖2 +
1

α
〈p− q, yα,n − Tnyα,n〉+

1

α
(kn − 1)‖q − yα,n‖2,

which implies that

α(1− α(1 + L))‖p− Tnp‖2 ≤ 〈p− q, yα,n − Tnyα,n〉+ (kn − 1)‖q − yα,n‖2.(2.9)

Since T is L-Lipschitzian, we get

‖q − yα,n‖2 = ‖(1− α)(p− q) + α(Tnp− q)‖2(2.10)

≤ (1− α)‖p− q‖2 + α‖Tnp− q‖2

≤ (1− α+ αL2)‖p− q‖2 = M.

It follows from (2.9) and (2.10) that

α(1− α(1 + L))‖p− Tnp‖2 ≤ 〈p− q, yα,n − Tnyα,n〉+ (kn − 1)M.(2.11)

Taking q = p1 and q = p2 in (2.11), multiplying t and 1− t on both sides of (2.11), respecti-
vely, and adding up yield

α(1− α(1 + L))‖p− Tnp‖2 ≤ (kn − 1)M → 0,

which implies that Tnp→ p, then we have Tn+1p→ p. Noting that

‖p− Tp‖ ≤ ‖p− Tn+1p‖+ ‖Tn+1p− Tp‖
≤ ‖p− Tn+1p‖+ L‖Tnp− p‖ → 0,

we have p = Tp, completing the proof. �

Remark 2.1. Comparing with Lemma 1.3 in [9], we do not require that the subset C of H
is bounded in Lemma 2.4.

Lemma 2.5. ([17])Let H be a real Hilbert space. Let T : H → H be a uniformly L-
Lipschitzian asymptotically pseudocontractive operator with coefficient kn. If 0 < ζ <
η < 1√

k2n+L
2+kn

for all n ≥ 1, then

‖(1− ζ)x+ ζTn((1− η)I + ηTn)x− x∗‖2

≤ [1 + 2(kn − 1)ζ + 2(kn − 1)(2kn − 1)ηζ]‖x− x∗‖2, ∀x ∈ H, x∗ ∈ F (T ).

Remark 2.2. From the proof of Proposition 3.2 in [17], we know that if the asymptotically
pseudocontractive operator T is an asymptotically quasi-pseudocontractive operator with
coefficient kn, the conclusion of Lemma 2.5 still holds.
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3. MAIN RESULTS

In this section, we always assume that H1, H2, H3 are real Hilbert spaces. Let an
operator T : H1 → H1 be both uniformly L1-Lipschitzian and asymptotically quasi-
pseudocontractive with coefficient k(1)n and S : H2 → H2 be both uniformlyL2-Lipschitzian
and asymptotically quasi-pseudocontractive with coefficient k(2)n , F (T ) 6= ∅ and F (S) 6= ∅.
Let A : H1 → H3 and B : H2 → H3 be two bounded linear operators with their adjoints
A∗ and B∗, respectively.

Put H∗ = H1 ×H2. Define the inner product of H∗ as follows:

〈(x1, y1), (x2, y2)〉 = 〈x1, x2〉+ 〈y1, y2〉, ∀ (x1, y1), (x2, y2) ∈ H∗.

It is easy to see that H∗ is also a real Hilbert space and

‖(x, y)‖ = (‖x‖2 + ‖y‖2)
1
2 , ∀ (x, y) ∈ H∗.

We use Γ to stand for the solution set of the SEFP (1.3), i.e.,

Γ = {(x, y) ∈ H∗| x ∈ F (T ), y ∈ F (S) such that Ax = By}.

Now we present our algorithm for solving the SEFP (1.3).

Algorithm 3.1. Choose {αn} ⊂ (0, 1). Take arbitrary x0 ∈ H1, y0 ∈ H2. Assume that the nth
iterate xn ∈ H1, yn ∈ H2 has been constructed, then we calculate (n+ 1)th iterate (xn+1, yn+1)
via the formula

(3.12)


un = xn − γnA∗(Axn −Byn),
xn+1 = αnxn + (1− αn)((1− ξn)I + ξnT

n((1− ηn)I + ηnT
n))un,

vn = yn + γnB
∗(Axn −Byn),

yn+1 = αnyn + (1− αn)((1− ξn)I + ξnS
n((1− ηn)I + ηnS

n))vn.

Put kn = max{k(1)n , k
(2)
n }, L = max{L1, L2}. Based on the assumption on the operators

T and S, we can readily see that S and T are both uniformly L-Lipschitzian and asymp-
totically quasi-pseudocontractive with coefficient kn.

Theorem 3.2. Let H1, H2, H3, A,B, S, T and Γ be the same as above. If I − T and I − S are
demiclosed at 0 and the following conditions are satisfied:
(a) γn ∈ (ε, 2

λA+λB
− ε), ∀n ≥ 1;

(b) 0 < a∗ < ξn < ηn < b∗ < 1√
k2n+L

2+kn
;

(c) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1 and
∑∞
n=1(kn − 1) <∞,

where λA, λB stand for the spectral radiuses of A∗A and B∗B, respectively and ε > 0 is small
enough. Then the following conclusions hold:
(I) the sequence {(xn, yn)} generated by Algorithm 3.1 converges weakly to a solution of the SEFP
(1.3);
(II) In addition, if S, T are also semi-compact, then {(xn, yn)} generated by Algorithm 3.1 con-
verges strongly to a solution of the SEFP (1.3).

Proof. By Lemma 2.4 we have F (T ) and F (S) are both closed convex sets. Since A and B
are both linear, it is easy to see that Γ is a closed convex subset inH∗. Given any (p, q) ∈ Γ,
then p ∈ F (T ), q ∈ F (S) such that Ap = Bq. By (3.12) and the definitions of λA and λB ,
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we have

‖un − p‖2

= ‖xn − γnA∗(Axn −Byn)− p‖2

= ‖xn − p‖2 − 2γn〈xn − p,A∗(Axn −Byn)〉+ γ2n‖A∗(Axn −Byn)‖2

= ‖xn − p‖2 − 2γn〈Axn −Ap,Axn −Byn〉
+γ2n〈A∗(Axn −Byn), A∗(Axn −Byn)〉

= ‖xn − p‖2 − 2γn〈Axn −Ap,Axn −Byn〉
+γ2n〈Axn −Byn, AA∗(Axn −Byn)〉

≤ ‖xn − p‖2 − 2γn〈Axn −Ap,Axn −Byn〉+ γ2nλA‖Axn −Byn‖2,

and

‖vn − q‖2

= ‖yn + γnB
∗(Axn −Byn)− q‖2

= ‖yn − q‖2 + 2γn〈Byn −Bq,Axn −Byn〉+ γ2n‖B∗(Axn −Byn)‖2

= ‖yn − q‖2 + 2γn〈Byn −Bq,Axn −Byn〉
+γ2n〈Axn −Byn, BB∗(Axn −Byn)〉

≤ ‖yn − q‖2 + 2γn〈Byn −Bq,Axn −Byn〉+ γ2nλB‖Axn −Byn‖2.

Adding the above inequalities and noticing Ap = Bq, we have

‖un − p‖2 + ‖vn − q‖2

≤ ‖xn − p‖2 + ‖yn − q‖2 − γn[2− (λA + λB)γn]‖Axn −Byn‖2.(3.13)

Put

Kn := (1− ξn)I + ξnT
n((1− ηn)I + ηnT

n),

Gn := (1− ξn)I + ξnS
n((1− ηn)I + ηnS

n).

It follows from Algorithm 3.1, Lemma 2.5 and (2.6) that

‖xn+1 − p‖2(3.14)
= ‖αn(xn − p) + (1− αn)(Knun − p)‖2

= αn‖xn − p‖2 + (1− αn)‖Knun − p‖2 − αn(1− αn)‖Knun − xn‖2

≤ αn‖xn − p‖2 − αn(1− αn)‖Knun − xn‖2

+(1− αn)[1 + 2(kn − 1)ξn + 2(kn − 1)(2kn − 1)ηnξn]‖un − p‖2,

and

‖yn+1 − q‖2(3.15)
= ‖αn(yn − q) + (1− αn)(Gnvn − q)‖2

= αn‖yn − q‖2 + (1− αn)‖Gnvn − q‖2 − αn(1− αn)‖Gnvn − yn‖2

≤ αn‖yn − q‖2 − αn(1− αn)‖Gnvn − yn‖2

+(1− αn)[1 + 2(kn − 1)ξn + 2(kn − 1)(2kn − 1)ηnξn]‖vn − q‖2.
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From (3.13), (3.14) and (3.15) we have

‖xn+1 − p‖2 + ‖yn+1 − q‖2

≤ αn(‖xn − p‖2 + ‖yn − q‖2)

−αn(1− αn)(‖Knun − xn‖2 + ‖Gnvn − yn‖2) + (1− αn)

×[1 + 2(kn − 1)ξn + 2(kn − 1)(2kn − 1)ηnξn](‖un − p‖2 + ‖vn − q‖2)

≤ αn(‖xn − p‖2 + ‖yn − q‖2)

−αn(1− αn)(‖Knun − xn‖2 + ‖Gnvn − yn‖2) + (1− αn)

×[1 + 2(kn − 1)ξn + 2(kn − 1)(2kn − 1)ηnξn](‖xn − p‖2 + ‖yn − q‖2)

−(1− αn)[1 + 2(kn − 1)ξn + 2(kn − 1)(2kn − 1)ηnξn]γn

×[2− (λA + λB)γn]‖Axn −Byn‖2

= {1 + (1− αn)[2(kn − 1)ξn + 2(kn − 1)(2kn − 1)ηnξn]}(‖xn − p‖2 + ‖yn − q‖2)

−αn(1− αn)(‖Knun − xn‖2 + ‖Gnvn − yn‖2)

−(1− αn)[1 + 2(kn − 1)ξn + 2(kn − 1)(2kn − 1)ηnξn]γn

×[2− (λA + λB)γn]‖Axn −Byn‖2.

Setting sn = ‖xn − p‖2 + ‖yn − q‖2, we have

sn+1 ≤ {1 + (kn − 1)[2ξn + 2(2kn − 1)ηnξn]}sn(3.16)
−αn(1− αn)(‖Knun − xn‖2 + ‖Gnvn − yn‖2)

−(1− αn)[1 + 2(kn − 1)ξn + 2(kn − 1)(2kn − 1)ηnξn]γn

×[2− (λA + λB)γk]‖Axn −Byn‖2

for all n. Since
∑∞
n=1(kn − 1) < ∞, now use Lemma 2.3 to get that lim

n→∞
sn exists. Subse-

quently, the sequences {xn}, {yn}, {un} and {vn} are all bounded. The following simpli-
city of (3.16) implies that the sequence {(xn, yn)} ⊂ H∗ is also Γ-quasi-Fejérian:

‖(xn+1, yn+1)− (p, q)‖2 = sn+1

≤ ‖(xn, yn)− (p, q)‖2 + εn, (p, q) ∈ Γ,

where εn = (kn−1)M with a positive constantM such that [2ξn+2(2kn−1)ηnξn]‖sn‖ ≤M
for all n. On one hand, from (3.16) we obtain

αn(1− αn)(‖Knun − xn‖2 + ‖Gnvn − yn‖2)(3.17)
+(1− αn)[1 + 2(kn − 1)ξn + 2(kn − 1)(2kn − 1)ηnξn]γn

×[2− (λA + λB)γn]‖Axn −Byn‖2

≤ {1 + (kn − 1)[2ξn + 2(2kn − 1)ηnξn]}sn − sn+1 → 0,

since lim
n→∞

sn exists and kn → 1. Hence it follows from (3.17), the conditions (a)-(c) and
limn→∞ kn = 1 that

lim
n→∞

‖Knun − xn‖ = lim
n→∞

‖Gnvn − yn‖ = 0,(3.18)

lim
n→∞

‖Axn −Byn‖ = 0.(3.19)
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From (3.12), (3.18) and (3.19) we get

(3.20)


lim
n→∞

‖un − xn‖ = lim
n→∞

γn‖A∗(Axn −Byn)‖ = 0,

lim
n→∞

‖vn − yn‖ = lim
n→∞

γn‖B∗(Axn −Byn)‖ = 0,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− αn)‖Knun − xn‖ = 0,

lim
n→∞

‖yn+1 − yn‖ = lim
n→∞

(1− αn)‖Gnvn − yn‖ = 0.

Hence

lim
n→∞

‖Knun − un‖ = lim
n→∞

‖Gnvn − vn‖ = 0,(3.21)

‖un+1 − un‖ ≤ ‖un+1 − xn+1‖+ ‖xn+1 − xn‖+ ‖xn − un‖ → 0,(3.22)
‖vn+1 − vn‖ ≤ ‖vn+1 − yn+1‖+ ‖yn+1 − yn‖+ ‖yn − vn‖ → 0.

From the condition (b) we have

0 < a∗ < ξn < ηn < b∗ <
1√

k2n + L2 + kn
<

1

L
.(3.23)

Since T is uniformly L-Lipschitzian, we can derive

‖un − Tnun‖ ≤ ‖un − Tn((1− ηn)I + ηnT
n)un‖

+‖Tn((1− ηn)I + ηnT
n)un − Tnun‖

≤ 1

ξn
‖un − (1− ξn)un − ξnTn((1− ηn)I + ηnT

n)un‖

+L‖(1− ηn)un + ηnT
nun − un‖

=
1

ξn
‖un −Knun‖+ Lηn‖un − Tnun‖,

which together with (3.21) and (3.23) implies that

‖un − Tnun‖ ≤
1

ξn(1− Lηn)
‖un −Knun‖ → 0.(3.24)

Since T is uniformly L-Lipschitzian, from (3.22) and (3.24) we can obtain

‖un+1 − Tun+1‖
≤ ‖un+1 − Tn+1un+1‖+ ‖Tn+1un+1 − Tn+1un‖+ ‖Tn+1un − Tun+1‖
≤ ‖un+1 − Tn+1un+1‖+ L‖un+1 − un‖+ L‖Tnun − un+1‖
≤ ‖un+1 − Tn+1un+1‖+ 2L‖un+1 − un‖+ L‖Tnun − un‖ → 0.

This combined with (3.22) and uniform L-Lipschitz of T again yields

lim
n→∞

‖un − Tun‖ = 0.(3.25)

Similarly, we can get

lim
n→∞

‖vn − Svn‖ = 0.(3.26)

Next, we prove that ωw(xn, yn) ⊂ Γ. Indeed, taking (x̃, ỹ) ∈ ωw(xn, yn), from (3.20) we
have (x̃, ỹ) ∈ ωw(un, vn). Then x̃ ∈ ωw(un) and ỹ ∈ ωw(vn). Since I − T and I − S are
demiclosed at 0, it follows from (3.25) and (3.26) that x̃ ∈ F (T ) and ỹ ∈ F (S). On the other
hand, by Lemma 2.1 we have Ax̃ − Bỹ ∈ ωw(Axn − Byn), which together with weakly
lower semicontinuity of the norm implies that

‖Ax̃−Bỹ‖ ≤ lim inf
n→∞

‖Axn −Byn‖ = 0.

Therefore, (x̃, ỹ) ∈ Γ. So ωw(xn, yn) ⊂ Γ.
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Since Γ is closed convex set and we have shown that {(xn, yn)} is Γ-quasi-Fejérian and
ωw(xn, yn) ⊂ Γ, Lemma 2.2 ensures that the sequence {(xn, yn)} generated by Algorithm
3.1 converges weakly to a point of Γ. This completes the proof of the conclusion (I).

Now we prove that the conclusion (II) holds. In fact, since {un} ,{vn} are bounded and
S, T are semi-compact, from (3.25) and (3.26), there exist subsequences {uni} ⊂ {un} and
{vni
} ⊂ {vn} such that uni

→ x∗ and vni
→ y∗. Then (x∗, y∗) ∈ ωw(un, vn), furthermore

(x∗, y∗) ∈ ωw(xn, yn). Being similar to the proof of ωw(xn, yn) ⊂ Γ, we have (x∗, y∗) ∈ Γ.
Also from (3.20) we have xni

→ x∗ and yni
→ y∗. Repeating the previous proof with

sn = ‖xn − x∗‖2 + ‖yn − y∗‖2, we also arrive at the existence of limn→∞ sn. Combined
with the fact sni → 0, it results sn → 0; hence

lim
n→∞

‖xn − x∗‖ = 0 and lim
n→∞

‖yn − y∗‖ = 0.

Therefore {(xn, yn)} generated by Algorithm 3.1 converges strongly to (x∗, y∗) ∈ Γ which
is a solution of the SEFP (1.3), completing the proof. �

Remark 3.3. Theorem 3.2 extends and improves Theorem 3.2 in [4] from quasi-pseudocon-
tractive operators to asymptotically quasi-pseudocontractive operators, and modifies the
conditions on {γn} and {αn}. Meanwhile, our proof is different from that of Theorem 3.2
in [4]. Also, Theorem 3.2 is still remained in a special case which the operators T and S
are asymptotically quasi-nonexpansive, under the same parameter conditions (a)-(c)

For giving an example of an operator which satisfies all hypotheses of our main theo-
rem, we could revisit the example in [10] which is not asymptotically quasi-nonexpanive
for k = 3/2.

Acknowledgments.†Supported by the Natural Science Foundation of China (no. 11401388,
11671365), Zhejiang Provincial Natural Science Foundation of China (no. LQ13A010007,
LY14A010006).

REFERENCES

[1] Byrne, C., Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18
(2002), 441–453

[2] Censor, Y. and Elfving, T., A multiprojection algorithm using Bergman projections in a product space, Numer.
Algorithms, 8 (1994), No. 2, 221–239

[3] Censor, Y. and Segal, A., The split common fixed point problem for directed operators, J. Convex Anal., 16 (2009),
587–600

[4] Chang, S. S., Wang, L. and Qin, L. J., Split equality fixed point problem for quasi-pseudo-contractive mappings
with applications, Fixed Point Theory Appl., 2015 (2015), 12 pp.

[5] Che, H. and Li, M., A simultaneous iterative method for split equality problems of two finite families of strictly
pseudononspreading mappings without prior knowledge of operator norms, Fixed Point Theory Appl., 2015 (2015),
14 pp.
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