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CUIJIE ZHANG, QIAO-LI DONG and JIAJIA CHEN

ABSTRACT. In this article, we introduce the multi-step inertial proximal contraction algorithms (MiPCA)
to approximate a zero of the sum of two monotone operators, with one of the two operators being monotone
and Lipschitz continuous. The weak convergence of the MiPCA is shown under the summability condition
formulated in terms of the iterative sequence in a Hilbert space setting. We also investigate the unconditional
convergence of the one-step inertial proximal contraction algorithm. Finally, numerical experiments are given
to illustrate the advantage of the multi-step inertial proximal contraction algorithms.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. We focus on the
following monotone variational inclusion:

(1.1) Find x∗ ∈ H such that 0 ∈ A(x∗) + f(x∗),

where A : H → 2H is a maximally monotone operator and f : H → H is a single-valued
monotone operator. When f ≡ 0, the problem (1.1) reduces to the inclusion problem in
[27], which plays an important role in minimization problems and other fields of mat-
hematics. In recent years, the problem (1.1) attracts the increasing attention due to its
applicability in machine learning and like fields, where data sets of unprecedented size
are processed, often in real time.

A great deal of iterative algorithms have been introduced and developed for solving
this problem (1.1), most of which are splitting algorithms by involving the operators indi-
vidually ( see, for example, [5, 12, 14, 16, 17, 30, 33, 34, 35, 36]). One of the most popular
splitting methods is the well-known forward-backward algorithm (see, e.g., [20]).

It is easy to verify that x∗ ∈ H is a solution of the problem (1.1) if and only if x∗ is a
fixed point of the operator JAλ (I − λf), i.e., x∗ = JAλ (I − λf)x∗, where JAλ is the resolvent
operator of A defined by

JAλ = (I + λA)−1, λ > 0.

By using this relation, the forward-backward splitting algorithm

(1.2) xk+1 = JAλk
(I − λkf)xk, λk > 0, k ≥ 0,

was naturally introduced (see, [2]).
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However, the forward-backward splitting algorithm (1.2) may take a lot of iterati-
ons: indeed, when f is the gradient of a convex and differential function, the forward-
backward splitting algorithm (1.2) becomes the proximal gradient algorithm for convex
optimization problems, which can be slow in practice [24, Section 5].

To speed up the convergence of iterative algorithms, the inertial extrapolation techni-
que was introduced in 1964, which originates from the heavy ball method [26]. The main
features of inertial type algorithms is that the next iterate is defined by making use of the
previous two iterates. Nesterov [23] in 1983 introduced and developed an inertial type
method for minimizing a smooth convex function, which was proven to be an “optimal”
first order (gradient) method in the sense of complexity analysis.

By combining the inertial extrapolation technique and the forward-backward algo-
rithm (1.2), the Moudafi and Oliny [22] introduced the following inertial proximal al-
gorithm:

(1.3)

{
yk = xk + αk(xk − xk−1),

xk+1 = JAλk
(yk − λkf(yk)), k ≥ 0,

where f was cocoercive and αk is the inertial parameter. The convergence of the iterative
sequence {xk} was established under the summability condition formulated in terms of
{xk} and αk. An open problem proposed in [22] is “to investigate, theoretically as well as
numerically, which are the best choices for the inertial parameter αk in order to accelerate the
convergence”.

Since the open problem was proposed, there has been little progress. Until 2009, Beck
and Teboulle [3] introduced the well-known fast iterative shrinkage-thresholding algo-
rithm (FISTA) to solve the linear inverse problems, which is an inertial version of the
iterative shrinkage-thresholding algorithm (ISTA). The inertial parameters {αk} in FISTA
is chosen as follows:

αk =
tk − 1

tk+1
,

where t1 = 1, and

tk+1 =
1 +

√
1 + 4t2k
2

, k ≥ 1.

They proved that FISTA has global rate O(1/k2) of convergence, while the global rate of
convergence of ISTA is O(1/k). Since its inception, FISTA has received a great deal of
attention due to its excellent computational effect and important applications (see [1] and
the references therein). Many authors improved it in various ways (see, e.g., [1, 6, 18, 24]).
Note that the linear inverse problems studied in [3] can be seen as a special case of the
monotone variational inclusion (1.1), for which f is the gradient of a convex continuously
differentiable function. So, the open problem of Moudafi and Oliny has not been fully
resolved until now.

Lorenz and Pock [21] introduced the following inertial forward-backward splitting
method

(1.4)

{
yk = xk + αk(xk − xk−1),

xk+1 = JAλkM−1(yk − λkM−1f(yk)),

where M is a linear selfadjoint and positive definite map and f is cocoercive. Two kinds
of the conditions on inertial parameters {αk} were considered, one of which involves
the iterative sequence {xk}, and the other can be chosen a-priori. In subsequent work
[9], by combining Nesterov’s acceleration scheme and Haugazeau’s algorithm, an iner-
tial forward-backward method was proposed, the sequence generated by which has the
strong convergence.
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Polyak [25] suggested to accelerate the convergence of the iterative algorithms by using
more previous iterates. Following his idea, Liang [19] proposed the variable metric multi-
step inertial operator splitting method (MUSTARD). Let S = {0, · · · , s − 1}, s ∈ N+.
MUSTARD is defined as follows:

(1.5)


ya,k = xk +

∑
i∈S ai,k(xk−i − xk−i−1),

yb,k = xk +
∑
i∈S bi,k(xk−i − xk−i−1),

xk+1 = JγkM−1
k A(ya,k − γkM−1k f(yb,k)),

where {Mk} is a sequence of symmetric positive definite operators and f is cocoercive.
The weak convergence of MUSTARD was established under the summability conditions
of the inertial parameters {ai,k}, {bi,k} and the iterative sequence {xk}. Furthermore, nu-
merical examples illustrated that MUSTARD behaves better than FISTA. Very recently,
motivated by Liang’s work, the authors [8] introduced the multi–step inertial Krasno-
sel’skiı̌–Mann algorithm (MiKM), which was extended to the monotone variational inclu-
sion (1.1) with the cocoercive f .

As far as we know, the inertial algorithms and their convergence for the problem (1.1)
when A is maximal monotone and f is cocoercive has been studied extensively in the
literature. However, there are still few results on the inertial algorithms concerning more
general case of the problem (1.1) when A is maximal monotone and f is monotone and
Lipschitz continuous. This is the gap that this paper aims to achieve.

Our aim in this paper is to propose a multi-step inertial proximal contraction algo-
rithm for solving the monotone variational inclusion (1.1) by combining the proximal
contraction method in [37] and the inertial technique. We also introduce one-step inertial
proximal contraction algorithm and two convergent results are given. The application
of the multi-step inertial proximal contraction algorithm is presented in the variational
inequality problems. In summary,

• We introduce the multi-step inertial proximal contraction algorithm for the mo-
notone variational inclusion (1.1) and its weak convergence is established under
the summability condition formulated in terms of the iterative sequence and in-
ertial parameters when A is maximal monotone and f is monotone and Lipschitz
continuous.

• We present the conditional convergence and unconditional convergence for the
one-step inertial proximal contraction algorithm. The inertial parameters in the
former involve the iterative sequence, while the inertial parameters in the latter
can be chosen a-priori.

• We extend the multi-step inertial proximal contraction algorithm to the variational
inequality problems and first propose the multi-step inertial projection contraction
algorithm for the variational inequality problems

• Two numerical examples are given to confirm the importance of the presence of
multi-step inertial terms in our method, especially for two-step inertial terms.

The paper is organized as follows: We first recall some definitions and preliminary
results which will be used in main results in Section 2. The multi-step inertial proximal
contraction algorithms is introduced and the analysis of the convergence is investigated
in Section 3. Two convergence results for the one-step inertial proximal contraction algo-
rithm are presented. An application of the proposed algorithms is presented in the vari-
ational inequality problems in Section 4. We give numerical implementations in Section
5.
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2. PRELIMINARIES

Throughout this paper, we use xk ⇀ x and xk → x to indicate that {xk} converges
weakly to x and converges strongly to x, respectively. Assume that T is an operator, we
denote the fixed point set of T by Fix(T ).

In order to prove our results, we collect some necessary conceptions and lemmas in
this section.

Definition 2.1. A mapping T : H → H is said to be
• L-Lipshcitz continuous iff for all x, y ∈ H ,

(2.6) ‖Tx− Ty‖ ≤ L‖x− y‖,
where L > 0 is Lipschitz constant;
• nonexpansive iff L ≡ 1 in (2.6);
• firmly nonexpansive iff 2T − I is nonexpansive, or equivalently for all x, y ∈ H ,

(2.7) 〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2.

If T is firmly nonexpansive, then I − T is firmly nonexpansive. If Fix(T ) 6= ∅, we have
that

(2.8) 〈x− Tx, Tx− y〉 ≥ 0 for all x ∈ H, y ∈ Fix(T ).

Definition 2.2. A single-valued mapping T : H → H is said to be
• monotone iff for all x, y ∈ H ,

(2.9) 〈Tx− Ty, x− y〉 ≥ 0.

A multi-valued mapping A : H → 2H is called
•monotone iff

(2.10) 〈u− v, x− y〉 ≥ 0 whenever u ∈ A(x), v ∈ A(y),

• maximal monotone iff, in addition, its graph

(2.11) G(A) := {(x, y) ∈ H ×H : y ∈ A(x)}
is not properly contained in the graph of any other monotone operator.

It is well-known that a monotone mapping A is maximal if and only if for (x, y) ∈
H ×H ,〈x− v, y − w〉 ≥ 0 for every (v, w) ∈ G(A) implies y ∈ A(x).

In the proof of the main theorem, we will use Pythagoras relation:

(2.12) 2〈c1 − c2, c1 − c3〉 = ‖c1 − c2‖2 + ‖c1 − c3‖2 − ‖c2 − c3‖2,
where c1, c2, c3 ∈ H .

Lemma 2.1. ([4]) Let A : H → 2H be a maximal monotone mapping and let f : H → H be a
Lipschitz continuous mapping. Then the mapping B = A+ f is a maximal monotone mapping.

Lemma 2.2. ([2]) In a Hilbert space H , there holds the equality

‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2

for all x, y ∈ H and t ∈ R.

Lemma 2.3. ([2]) Let C be a nonempty set of H , and {xk} be a sequence in H . If the following
conditions hold:

(i) for every x ∈ C, limk→∞ ‖xk − x‖ exists;
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(ii) every weak sequential cluster point of {xk} belongs to C.
Then the sequence {xk} converges weakly to a point in C.

Lemma 2.4. ([19]) Let s ∈ N+ and S = {0, 1, · · · , s − 1}. Let {dk}, {δk} be two non-negative
sequences, and ω = (ωi)s ∈ Rs such that

dk+1 ≤
∑
i∈S

ωidk−i + δk,

for all k ≥ s. If
∑
i∈S ωi ∈ [0, 1) and

∑∞
k=1 δk < +∞, then
∞∑
k=1

dk < +∞.

3. ALGORITHMS AND CONVERGENCE ANALYSIS

In this section we introduce the multi-step inertial proximal contraction algorithm and
establish its weak convergence. Two convergence results of the one-step inertial proximal
contraction algorithm are also presented.

3.1. The multi-step inertial proximal contraction algorithm.
In this subsection, we give a precise statement of our multi-step inertial proximal con-

traction algorithm. Its convergence analysis is postponed to the next subsection. We first
state the assumptions that we will assume to hold through the rest of this paper.

Condition (i) The solution set of (1.1), denoted by Γ, is nonempty.

Condition (ii) The mapping f is monotone on H .

Condition (iii) The mapping f is Lipschitz continuous on H with constant L > 0.

We next give a precise statement of the multi-step inertial proximal contraction algo-
rithm (MiPCA):

Algorithm 3.1. Let s ∈ N+ and S := {0, · · · , s − 1}. Let {αi,k}i∈S ∈ (−1, 1)s. Choose
x0 ∈ H , x−i−1 = x0, i ∈ S.

(S.1) Compute
ωk = xk +

∑
i∈S

αi,k(xk−i − xk−i−1),

and

(3.13) yk = JAλk
(ωk − λkf(ωk)).

If wk − yk = 0: STOP.
(S.2) Calculate

d(ωk, yk) = (ωk − yk)− λk(f(ωk)− f(yk)),

and
xk+1 = ωk − γβkd(ωk, yk),

where γ ∈ (0, 2),

(3.14) βk :=


φ(ωk, yk)

‖d(ωk, yk)‖2
‖d(ωk, yk)‖ 6= 0;

c ‖d(ωk, yk)‖ = 0,

where c > 1 is an arbitrary constant and φ(ωk, yk) := 〈ωk − yk, d(ωk, yk)〉.
(S.3) Set k ← k + 1, and go to (S.1).
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Remark 3.1. Based on the choice of the inertial parameters αi,k, the relations between
Algorithm 3.1 with the other work are as following:

(i) Let s = 1 and α0,k = αk, then Algorithm 3.1 reduces to the following one-step
inertial proximal contraction scheme (1-MiPCA):

(3.15)


ωk = xk + αk(xk − xk−1),

yk = JAλk
(ωk − λkf(ωk)),

d(ωk, yk) = (ωk − yk)− λk(f(ωk)− f(yk)),

xk+1 = ωk − γβkd(ωk, yk).

(ii) Let αi,k ≡ 0 for i ∈ S and k ∈ N, then Algorithm 3.1 becomes the original proximal
contraction algorithm (PCA) in [37] as follows:

(3.16)


yk = JAλk

(xk − λkf(xk)),

d(xk, yk) = (xk − yk)− λk(f(xk)− f(yk)),

xk+1 = xk − γβkd(xk, yk).

Definition 3.3. Let c1, c2 > 0 be given constants in (0, 1). λk is said to satisfy the stepsize
conditions in Algorithm 3.1, if λk satisfies

(3.17) φ(ωk, yk) ≥ c1‖ωk − yk‖2,

(3.18) βk ≥ c2,

and

(3.19) inf
k≥0
{λk} ≥ λ > 0.

Using [29, Lemma 5.2] and [38, Lemma 3.4], we obtain the following result.

Lemma 3.5. Assume that the sequence {xk} is generated by Algorithm 3.1. Then λk satisfies
the stepsize conditions when we take λk ∈ [a, b] ⊂ (0, 1/L) or λk is given self-adaptively, i.e.,
λk = σηmk , σ > 0, η ∈ (0, 1), where mk is the smallest nonnegative integer such that

(3.20) λk‖f(xk)− f(yk)‖ ≤ ν‖xk − yk‖,

where ν ∈ (0, 1) is given.

From the next lemma, it follows that stopping condition in Algorithm 3.1 is valid.

Lemma 3.6. ([37, Lemma 3.1]) If ωk = yk in (3.13), then ωk ∈ Γ.

3.2. Convergence analysis.
Before proceeding with the main theorem we establish a key result (see Lemma 3.7

below) that is crucial for the convergence analysis.

Lemma 3.7. Let λk satisfy (3.17) and (3.18), and let u ∈ Γ. Then under Conditions (i), (ii) and
(iii), we have

(3.21) ‖xk+1 − u‖2 ≤ ‖ωk − u‖2 −
2− γ
γ
‖ωk − xk+1‖2,

and

(3.22) ‖ωk − yk‖2 ≤
1

c1c2γ2
‖ωk − xk+1‖2.
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Proof. We prove the inequality (3.21) firstly. By the definition of xk+1, we have

(3.23)
‖xk+1 − u‖2 = ‖ωk − u− γβkd(ωk, yk)‖2

= ‖ωk − u‖2 − 2γβk〈ωk − u, d(ωk, yk)〉+ γ2β2
k‖d(ωk, yk)‖2.

Since JAλk
is firmly-nonexpansive, it follows that

(3.24)
〈JAλk

(I − λkf)ωk − JAλk
(I − λkf)u, (I − λkf)ωk − (I − λkf)u〉

≥‖JAλk
(I − λkf)ωk − JAλk

(I − λkf)u‖2 = ‖yk − u‖2.

Using (3.24), we have

〈yk − u, ωk − yk − λkf(ωk)〉
=〈JAλk

(I − λkf)ωk − JAλk
(I − λkf)u, (I − λkf)ωk − (I − λkf)u+ (I − λkf)u− yk〉

≥‖yk − u‖2 + 〈yk − u, u− yk〉+ 〈yk − u,−λkf(u)〉
=− 〈yk − u, λkf(u)〉.

Hence,

(3.25) 〈yk − u, ωk − yk − λk(f(ωk)− f(u))〉 ≥ 0.

From the monotonicity of f and λk > 0, we have

(3.26) 〈yk − u, λkf(yk)− λkf(u)〉 ≥ 0.

Adding (3.25) and (3.26), we obtain that

〈yk − u, d(ωk, yk)〉 = 〈yk − u, ωk − yk − λkf(ωk) + λkf(yk)〉 ≥ 0.

Thus,

(3.27)

〈ωk − u, d(ωk, yk)〉 =〈ωk − yk, d(ωk, yk)〉+ 〈yk − u, d(ωk, yk)〉
≥〈ωk − yk, d(ωk, yk)〉
=φ(ωk, yk).

Substituting (3.27) into (3.23), it follows that

(3.28)
‖xk+1 − u‖2 ≤ ‖ωk − u‖2 − 2γβkφ(ωk, yk) + γ2βkφ(ωk, yk)

= ‖ωk − u‖2 − γ(2− γ)βkφ(ωk, yk).

From the definition of xk+1, it follows that

(3.29) βkφ(ωk, yk) = ‖βkd(ωk, yk)‖2 =
1

γ2
‖ωk − xk+1‖2.

Combining (3.28) and (3.29), we obtain (3.21). Then we prove the inequality (3.22).

From (3.29) and (3.18), we get

(3.30) φ(ωk, yk) =
1

βkγ2
‖ωk − xk+1‖2 ≤

1

c2γ2
‖ωk − xk+1‖2.

Combining (3.30) and (3.17), we know

‖ωk − yk‖2 ≤
1

c1
φ(ωk, yk) ≤ 1

c1c2γ2
‖ωk − xk+1‖2.

The proof is completed. �
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Theorem 3.1. Assume that Conditions (i), (ii) and (iii) hold and λk satisfies the stepsize condi-
tions. Support that

∑
i∈S αi < 1, where αi := supk∈N |αi,k|. Then the sequence {xk} generated

by Algorithm 3.1 is bounded. If moreover the following summability condition holds

(3.31)
+∞∑
k=1

max
i∈S
|αi,k|

∑
i∈S
‖xk−i − xk−i−1‖2 < +∞,

then {xk}, {yk} and {ωk} weakly converge to the same solution of the variational inclusion pro-
blem (1.1).

Proof. Fix u ∈ Γ. From the definition of ωk, we have

(3.32)

‖xk+1 − u‖2 − ‖xk − u‖2

=− ‖xk+1 − xk‖2 − 2〈xk+1 − u, xk − xk+1〉
=− ‖xk+1 − xk‖2 − 2〈xk+1 − u, ωk − xk+1〉+ 2〈xk+1 − u, ωk − xk〉

=− ‖xk+1 − xk‖2 − 2〈xk+1 − u, ωk − xk+1〉+ 2
∑
i∈S

αi,k〈xk+1 − u, xk−i − xk−i−1〉.

By using (2.12), we have

(3.33)

〈xk−i − xk−i−1, xk+1 − u〉
=〈xk−i − xk−i−1, xk+1 − xk + xk − xk−i〉+ 〈xk−i − xk−i−1, xk−i − u〉

=〈xk−i − xk−i−1, xk+1 − xk〉+
1

2
(‖xk − xk−i−1‖2 − ‖xk − xk−i‖2)

+
1

2
(‖xk−i − u‖2 − ‖xk−i−1 − u‖2),

and

(3.34) 〈xk+1 − u, ωk − xk+1〉 =
1

2
(‖ωk − u‖2 − ‖ωk − xk+1‖2 − ‖xk+1 − u‖2).

Hence, from (3.21) and (3.34), it follows that

(3.35) 〈xk+1 − u, ωk − xk+1〉 ≥
1− γ
γ
‖ωk − xk+1‖2.

Combining (3.32), (3.33) and (3.35), we have
(3.36)
‖xk+1 − u‖2 − ‖xk − u‖2

≤− ‖xk+1 − xk‖2 −
2(1− γ)

γ
‖ωk − xk+1‖2 + 2〈xk+1 − xk,

∑
i∈S

αi,k(xk−i − xk−i−1)〉

+
∑
i∈S

αi,k(‖xk − xk−i−1‖2 − ‖xk − xk−i‖2) +
∑
i∈S

αi,k(‖xk−i − u‖2 − ‖xk−i−1 − u‖2),

which follows that
(3.37)

‖xk+1 − u‖2 − ‖xk − u‖2 −
∑
i∈S

αi,k(‖xk−i − u‖2 − ‖xk−i−1 − u‖2)

≤− ‖xk+1 − xk‖2 −
2(1− γ)

γ
‖ωk − xk+1‖2 + 2〈xk+1 − xk,

∑
i∈S

αi,k(xk−i − xk−i−1)〉

+
∑
i∈S

αi,k(‖xk − xk−i−1‖2 − ‖xk − xk−i‖2).
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Since
(3.38)
‖xk+1 − ωk‖2 = ‖xk+1 − xk −

∑
i∈S

αi,k(xk−i − xk−i−1)‖2

=‖xk+1 − xk‖2 + ‖
∑
i∈S

αi,k(xk−i − xk−i−1)‖2 − 2
∑
i∈S

αi,k〈xk+1 − xk, xk−i − xk−i−1〉.

Combining (3.37) and (3.38), we have

(3.39)

‖xk+1 − u‖2 − ‖xk − u‖2 −
∑
i∈S

αi,k(‖xk−i − u‖2 − ‖xk−i−1 − u‖2)

≤− ‖xk+1 − xk‖2 −
2(1− γ)

γ

[
‖xk+1 − xk‖2 + ‖

∑
i∈S

αi,k(xk−i − xk−i−1)‖2

− 2
∑
i∈S

αi,k〈xk+1 − xk, xk−i − xk−i−1〉
]

+ 2〈xk+1 − xk,
∑
i∈S

αi,k(xk−i − xk−i−1)〉

+
∑
i∈S

αi,k(‖xk − xk−i−1‖2 − ‖xk − xk−i‖2)

=− 2− γ
γ
‖xk − xk+1‖2 −

2(1− γ)

γ
‖
∑
i∈S

αi,k(xk−i − xk−i−1)‖2

+
∑
i∈S

αi,k(‖xk − xk−i−1‖2 − ‖xk − xk−i‖2)

+
2(2− γ)

γ
〈xk+1 − xk,

∑
i∈S

αi,k(xk−i − xk−i−1)〉.

In the following, we apply some techniques from [19]. Define

β =
2− γ
γ

and νk = xk+1 − xk −
∑
i∈S

αi,k(xk−i − xk−i−1).

Then, we obtain

‖xk+1 − u‖2 − ‖xk − u‖2 −
∑
i∈S

αi,k(‖xk−i − u‖2 − ‖xk−i−1 − u‖2)

≤− β‖xk+1 − xk‖2 +
∑
i∈S

αi,k(‖xk − xk−i−1‖2 − ‖xk − xk−i‖2)

+ (1− β)‖
∑
i∈S

αi,k(xk−i − xk−i−1)‖2 + 2β〈xk+1 − xk,
∑
i∈S

αi,k(xk−i − xk−i−1)〉.

It follows that

(3.40)

‖xk+1 − u‖2 − ‖xk − u‖2 −
∑
i∈S

αi,k(‖xk−i − u‖2 − ‖xk−i−1 − u‖2)

≤− β‖νk‖2 + ‖
∑
i∈S

αi,k(xk−i − xk−i−1)‖2

+
∑
i∈S
|αi,k|(‖xk − xk−i−1‖2 + ‖xk − xk−i‖2).

Then, we define the sequence {δk} by

δk = ‖
∑
i∈S

αi,k(xk−i − xk−i−1)‖2 +
∑
i∈S
|αi,k|(‖xk − xk−i−1‖2 + ‖xk − xk−i‖2).
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Hence, apply the Jensen’s inequality, we have

(3.41)

δk ≤
{∑
i∈S
|αi,k|‖xk−i − xk−i−1‖

}2

+
∑
i∈S
|αi,k|(‖xk − xk−i−1‖2 + ‖xk − xk−i‖2)

≤
∑
i∈S
|αi,k|

∑
i∈S
|αi,k|‖xk−i − xk−i−1‖2 + 2s

∑
i∈S
|αi,k|

∑
j∈S
‖xk−j − xk−j−1‖2

≤ smax
i∈S
|αi,k|

∑
i∈S
‖xk−i − xk−i−1‖2 + 2s2 max

i∈S
|αi,k|

∑
i∈S
‖xk−i − xk−i−1‖2

≤ (s+ 2s2) max
i∈S
|αi,k|

∑
i∈S
‖xk−i − xk−i−1‖2.

Since s + 2s2 is a constant, and the sequence {δk} is summable if condition (3.31) holds.
Next we define θk = ‖xk − u‖2 − ‖xk−1 − u‖2, then from (3.40), we get

(3.42) θk+1 ≤ −β‖νk‖2 +
∑
i∈S

αi,kθk−i + δk.

Set [θ]+ = max{θ, 0}, then from (3.42), we obtain

[θk+1]+ ≤
∑
i∈S
|αi,k|[θk−i]+ + δk

≤
∑
i∈S

αi[θk−i]+ + δk.

From Lemma 2.4, since
∑
i∈S αi < 1, {[θk]+} is summable. In turn,

‖xk+1 − u‖2 −
k+1∑
j=1

[θj ]+ ≤ ‖xk+1 − u‖2 − θk+1 −
k∑
j=1

[θj ]+

= ‖xk − u‖2 −
k∑
j=1

[θj ]+.

So the sequence {‖xk−u‖2−
∑k
j=1[θj ]+} is decreasing and bounded from below, there-

fore convergent, and we can also obtain that {‖xk−u‖} is convergent and {xk} is bounded.
From assumption (3.31), we have, for any i ∈ S,

(3.43) lim
k→∞

|αi,k|‖xk−i − xk−i−1‖ = 0.

Moreover, from (3.42), we obtain
∞∑
k=1

‖νk‖2 ≤
1

β
(‖x1 − u‖2 +

∞∑
k=1

(
∑
i∈S

αi[θk−i]+ + δk)) < +∞,

and νk → 0. From (3.43), we have xk+1 − xk → 0. Then we get

‖xk+1 − ωk‖ ≤ ‖xk+1 − xk‖+
∑
i∈S
|αi,k‖xk−i − xk−i−1‖.

So we have limk→∞ ‖xk+1 − ωk‖ = 0. From (3.22), it follows that limk→∞ ‖yk − ωk‖ = 0.
Since the sequence {xk} is bounded, there exists a subsequence {xkj} ⊂ {xk} such that

xkj ⇀ x̂ as j →∞. Subsequently, we get ωkj ⇀ x̂ as j →∞ and ykj ⇀ x̂ as j →∞. Now,
we will show that x̂ is a solution of (1.1), that is, x̂ ∈ Γ.
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We observe that the mapping f is Lipschitz continuous. From Lemma 2.1, we know
that A + f is maximal monotone. Let (v, w) ∈ G(A + f), that is, w − f(v) ∈ A(v). Since
ykj = JAλkj

(ωkj − λkjf(ωkj )), we have

ωkj − λkjf(ωkj ) ∈ (I + λkjA)(ykj ),

that is,

(3.44)
ωkj − ykj − λkjf(ωkj )

λkj
∈ Aykj .

By virtue of the maximal monotonicity of A, we have

〈v − ykj , w − f(v)−
ωkj − ykj − λkjf(ωkj )

λkj
〉 ≥ 0.

Hence,

〈v − ykj , w〉 ≥ 〈v − ykj , f(v) +
ωkj − ykj − λkjf(ωkj )

λkj
〉

= 〈v − ykj , f(v)− f(ykj ) + f(ykj )− f(ωkj ) +
ωkj − ykj
λkj

〉

≥ 〈v − ykj , f(ykj )− f(ωkj )〉+ 〈v − ykj ,
ωkj − ykj
λkj

〉.

Since limk→∞ ‖yk−ωk‖ = 0, and f is Lipschitz continuous, we obtain that limj→∞ ‖f(ykj )−
f(ωkj )‖ = 0. And since infk≥0{λk} ≥ λ > 0, it follows that

lim
j→∞
〈v − ykj , w〉 = 〈v − x̂, w〉 ≥ 0.

It follows from the maximal monotonicity of A+ f that 0 ∈ (A+ f)(x̂), that is, x̂ ∈ Γ.
Then from the Lemma 2.3, we can know that the sequences {xk}, {yk} and {ωk} con-

verge weakly to a point in Γ. �

Remark 3.2. If the inertial parameters {αi,k} are chosen in [0, 1), then the condition (3.31)
simplifies to

(3.45)
+∞∑
k=1

max
i∈S

αi,k
∑
i∈S
‖xk−i − xk−i−1‖2 < +∞.

The condition (3.45) can be enforced by a simple online updating rule such as, for each
i ∈ S and αi ∈ [0, 1),

(3.46) αi,k = min{αi, ci,k},

where ci,k and max{ci,k}
∑
i∈S ‖xk−i − xk−i−1‖2 is summable. For instance, one can

choose
ci,k =

ci
k1+δ

∑
i∈S ‖xk−i − xk−i−1‖2

, ci > 0, δ > 0.

Remark 3.3. Using Liang’s way in [19], it is easy to generalize Algorithm 3.1 and Theorem
3.1 and give the corresponding variable metric versions.

From Theorem 3.1, we get the convergence of the one-step inertial proximal contraction
algorithm (3.15).
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Corollary 3.1. (Conditional convergence for s = 1) Assume that Conditions (i), (ii) and (iii)
hold and λk satisfies the stepsize conditions. Suppose that αk ∈ (−1, 1), and supk∈N |αk| < 1.
Then the sequence {xk} generated by the algorithm (3.15) is bounded. If moreover the following
summability condition holds

(3.47)
+∞∑
k=1

|αk|‖xk − xk−1‖2 < +∞,

then {xk}, {yk} and {ωk} weakly converge to the same solution of the variational inclusion pro-
blem (1.1).

In Corollary 3.1, the inertial parameters {αk} depend on the iterative sequence {xk}
which is the origin of its name. Next we address the question whether inertial parameters
{αk} can be chosen a-priori such that the algorithm (3.15) is guaranteed to converge.

Theorem 3.2. (Unconditional convergence for s = 1) Assume that Conditions (i), (ii), and
(iii) hold and λk satisfies the stepsize conditions. Assume that {αk} is nondecreasing with α1 = 0
and 0 ≤ αk ≤ α < 1, and σ, δ > 0 are such that

(3.48) δ >
α2(1 + α) + ασ

1− α2
, 0 < γ ≤ 2[δ − α(α(1 + α) + αδ + σ)]

δ[1 + α(1 + α) + αδ + σ]
.

Then the sequences {xk}, {yk} and {ωk} generated by the algorihtm (3.15) weakly converge to the
same solution of the variational inclusion problem (1.1).

Proof. Fix u ∈ Γ, from lemma 2.2, we have

(3.49)
‖ωk − u‖2 = ‖(1 + αk)(xk − u)− αk(xk−1 − u)‖2

= (1 + αk)‖xk − u‖2 − αk‖xk−1 − u‖2 + αk(1 + αk)‖xk − xk−1‖2.

From (3.21), it follows that

(3.50)
‖xk+1 − u‖2 − (1 + αk)‖xk − u‖2 + αk‖xk−1 − u‖2

≤− 2− γ
γ
‖ωk − xk+1‖2 + αk(αk + 1)‖xk − xk−1‖2.

Then,

(3.51)

‖xk+1 − ωk‖2

=‖(xk+1 − xk)− αk(xk − xk−1)‖2

=‖xk+1 − xk‖2 + α2
k‖xk − xk−1‖2 − 2αk〈xk+1 − xk, xk − xk−1〉

≥‖xk+1 − xk‖2 + α2
k‖xk − xk−1‖2 + αk(−ρk‖xk+1 − xk‖2 −

1

ρk
‖xk − xk−1‖2)

≥(1− αkρk)‖xk+1 − xk‖2 +
αk(αkρk − 1)

ρk
‖xk − xk−1‖2,

where ρk = 2
2αk + δγ

. Combining (3.50) and (3.51), we obtain

(3.52)
‖xk+1 − u‖2 − (1 + αk)‖xk − u‖2 + αk‖xk−1 − u‖2

≤− 2− γ
γ

(1− αkρk)‖xk+1 − xk‖2 + τk‖xk − xk−1‖2,

where

(3.53) τk = αk(1 + αk) +
(2− γ)αk(1− αkρk)

γρk
.
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Since αkρk < 1 and γ ∈ (0, 2), τk ≥ 0. From the choice of ρk, we have

δ =
2(1− ρkαk)

ρkγ
.

It follows that
τk = αk(1 + αk) + (1− γ

2
)αkδ ≤ α(1 + α) + αδ.

Define the sequence {φk} and {ξk} for all k ≥ 1 by

φk = ‖xk − u‖2, ξk = φk − αkφk−1 + τk‖xk − xk−1‖2.

Using the facts that φk ≥ 0 and {αk} is nondecreasing, we have

ξk+1 − ξk ≤ φk+1 − (1 + αk)φk + αkφk−1 + τk+1‖xk+1 − xk‖2 − τk‖xk − xk−1‖2.

From (3.52), we have

(3.54) ξk+1 − ξk ≤ (
(2− γ)(αkρk − 1)

γ
+ τk+1)‖xk+1 − xk‖2.

Now we claim that

(3.55)
(2− γ)(αkρk − 1)

γ
+ τk+1 ≤ −σ.

If this assertion does not hold, then

(3.56)

(2− γ)(αkρk − 1)

γ
+ τk+1 > −σ

⇐⇒γ(τk+1 + σ) + (2− γ)(αkρk − 1) > 0

⇐⇒γ(τk+1 + σ)− δγ(2− γ)

2αk + δγ
> 0

⇐⇒(2αk + δγ)(τk+1 + σ) + δγ > 2δ.

However, from (3.48), it follows

(2αk + δγ)(τk+1 + σ) + δγ ≤ (2α+ δγ)(α(1 + α) + αδ + σ) + δγ ≤ 2δ.

It is obvious that they are contradictory. Hence (3.55) is true.
Then from (3.54) and (3.55), it follows that

(3.57) ξk+1 − ξk ≤ −σ‖xk+1 − xk‖2 ≤ 0,

which implies that {ξk} is nonincreasing. From φk ≥ 0, αk ≤ α, τk ≥ 0 and the definition
of {ξk}, we have for all k ≥ 1,

(3.58) −αφk−1 ≤ φk − αφk−1 ≤ φk − αkφk−1 + τk‖xk − xk−1‖2 = ξk ≤ ξ1.

It follows that

φk ≤ αkφ0 + ξ1

k−1∑
n=0

αn ≤ αkφ0 +
ξ1

1− α
.

Since α1 = 0, we notice that ξ1 = φ1 ≥ 0. Combining (3.57) and (3.58), we have

(3.59)
σ

k∑
n=1

‖xn+1 − xn‖2 ≤ ξ1 − ξk+1 ≤ ξ1 + αφk

≤ αk+1φ0 +
ξ1

1− α
≤ φ0 +

φ1
1− α

.
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It follows that

(3.60)
∞∑
k=1

‖xk+1 − xk‖2 < +∞,

and limk→∞ ‖xk+1 − xk‖ = 0. Using similar arguments in the proof of Theorem 3.1 in [7],
we obtain that limk→∞ ‖xk − u‖ exits. Hence {xk} is bounded. From (3.15), we have

(3.61) ‖xk+1 − ωk‖ ≤ ‖xk+1 − xk‖+ αk‖xk − xk−1‖ ≤ ‖xk+1 − xk‖+ α‖xk − xk−1‖.
So limk→∞ ‖xk+1 − ωk‖ = 0. And from (3.22), we obtain

lim
k→∞

‖yk − ωk‖ = 0.

Next, using similar arguments in the proof of Theorem 3.1, we get that {xk}, {yk} and
{ωk} converge weakly to the same solution of problem (1.1).

4. APPLICATIONS TO VARIATIONAL INEQUALITY PROBLEMS

Let C be a nonempty closed convex subset of a real Hilbert space H . Let A = NC ,
where NC(v) is the normal cone of C at v ∈ C, i.e.,

NC(v) := {d ∈ H|〈d, y − v〉 ≤ 0,∀y ∈ C}.
Let f : C → H be a singe-valued mapping.Then the problem (1.1) becomes

(4.62) Find x∗ ∈ H such that 0 ∈ NC(x∗) + f(x∗).

It is easy to show that the problem (4.62) equals to the classical variational inequality
problem, which is to find a point x∗ ∈ C such that

(4.63) 〈f(x∗), x− x∗〉 ≥ 0, for all x ∈ C.
This problem captures various applications arising in many areas, such as partial dif-

ferential equations, and optimization problems. Recently, there are increasing research on
the inertial-type projection algorithms [7, 10, 11, 31, 28]. However, there is no results on
the multi-step inertial projection algorithms.

Now we extend Algorithm 3.1 to the variational inequality problems (4.63). Since
JNC

λk
= PC , Algorithm 3.1 reduces to the following:

Algorithm 4.1. Let s ∈ N+ and S := {0, · · · , s − 1}. Let {αi,k}i∈S ∈ (−1, 1)s. Choose
x0 ∈ H , x−i−1 = x0, i ∈ S.

(S.1) Compute
ωk = xk +

∑
i∈S

αi,k(xk−i − xk−i−1),

and
yk = PC(ωk − λkf(ωk)).

If wk − yk = 0: STOP.
(S.2) Calculate

d(ωk, yk) = (ωk − yk)− λk(f(ωk)− f(yk)),

and
xk+1 = ωk − γβkd(ωk, yk),

where γ ∈ (0, 2) and βk is given as in (3.14).
(S.3) Set k ← k + 1, and go to (S.1).

By Theorem 3.1, we obtain the following convergence result for the problem (4.63).
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Corollary 4.2. Assume that Conditions (ii) and (iii) hold and λk satisfies the stepsize conditions.
Assume that the solution set of the problem (4.63) is nonempty. Suppose that

∑
i∈S αi < 1, where

αi := supk∈N |αi,k|. Then the sequence {xk} generated by Algorithm 4.1 is bounded. If moreover
the following summability condition holds

(4.64)
+∞∑
k=1

max
i∈S
|αi,k|

∑
i∈S
‖xk−i − xk−i−1‖2 < +∞,

then {xk}, {yk} and {ωk} weakly converge to the same solution of the variational inequality
problem (4.63).

Remark 4.4. When s = 1, Algorithm 4.1 and Theorem 3.2 becomes Algorithm 3.1 and
Theorem 3.1 in [7], respectively.

5. NUMERICAL RESULTS

In this section, we present two numerical examples to compare the performance of the
original proximal contraction algorithm (PCA), one-step inertial PCA with the uncondi-
tional convergence (1-uMiPCA), one-step inertial PCA with the conditional convergence
(1-MiPCA) and two-step inertial PCA (2-MiPCA).

All programs are written in Matlab version 7.0. and performed on a PC Desktop In-
tel(R) Core(TM) i5-4200U CPU @ 1.60GHz 2.30 GHz, RAM 4.00 GB.

In the numerical results listed in the following tables, ‘Iter.’ and ‘CPU time’ denote the
number of iterations and the execution time in seconds, respectively.

Example 5.1. Consider the variational inequality (4.63) with the linear operator f(x) :=
Mx+ q, which is taken from [13] and has been considered by many authors for numerical
experiments, see, for example [15], where

M = BBT + S +D,

and B is an m × m matrix, S is an m × m skew-symmetric matrix, and D is an m × m
diagonal matrix, whose diagonal entries are nonnegative (so M is positive semidefinite),
q is a vector in Rm. The feasible set C ⊆ Rm is closed and convex and defined as

C := {x ∈ Rm | Qx ≤ b},

where Q is an l × m matrix and b is a nonnegative vector. It is clear that f is monotone
and L-Lipschitz continuous with L = ‖M‖. For q = 0, the solution set of the variational
inequality problem (4.63) {0}.

TABLE 1. Comparison of four algorithms for l = 60 and different m

Iter. CPU time
m PCA 1-uMiPCA 1-MiPCA 2-MiPCA PCA 1-uMiPCA 1-MiPCA 2-MiPCA

20 14122 2157 2001 1756 0.2344 0.0938 0.0625 0.0469
30 20611 4140 4401 3669 0.3438 0.1563 0.0781 0.0625
40 30385 6737 6488 5559 0.4063 0.2813 0.1406 0.0938
50 27778 7866 5635 4606 0.4844 0.1875 0.1719 0.1563
60 38615 10607 5255 4957 0.7500 0.2031 0.1719 0.1406
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FIGURE 1. Comparison of four algorithms for m = 50 and l = 60.

Just as in [7], we randomly choose the starting points x0 ∈ [0, 1]m in PCA, 1-uMiPCA,
1-MiPCA and 2-MiPCA and let x−1 = x0 in 1-uMiPCA and 1-MiPCA. Take the stopping
criterion as ‖xk‖ ≤ ε and the size l = 60 and m = 20, 30, 40, 50, 60. The matrices B,S,D
and the vector b are generated randomly.

The numerical results in Figure 1 and Table 1 illustrate that the three inertial-type PCA
behave far better that the original PCA from the number of iterations and CPU time. 1-
MiPCA is the better than 1-uMiPCA and the performance of 2-MiPCA is best among all
inertial-type algorithms.

Example 5.2. Let x∗ ∈ Rn be a K-sparse signal, K � n. The sampling matrix G ∈
Rm×n(m � n) is stimulated by standard Gaussian distribution and vector b = Gx∗ + e,
where e is additive noise. When e = 0, it means that there is no noise to the observed data.
Our task is to recover the signal x∗ from the data b.

FIGURE 2. Comparison of four algorithms for m = 600, n = 2560 and
K = 100.
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It’s well-known that the sparse signal x∗ can be recovered by solving the following
LASSO problem [32],

(5.65) min
x∈Rn

1

2
‖Gx− b‖22 + γ‖x‖1,

which equals to

(5.66) Find x∗ ∈ H such that 0 ∈ γ∂‖x∗‖1 +GT (Gx∗ − b).

We have that (5.66) is a special case of the problem (1.1). The resolvent J∂‖.‖1λ is given by
the Moreau decomposition

J
∂‖.‖1
λ (x) = (I + λ∂‖.‖1)−1(x)

= Proxλ‖.‖1(x) = sgn(x) max{|x| − λ, 0}.

Take the stopping criteria ‖xk − x∗‖ ≤ ε, where ε > 0 is a given small constant. We
randomly choose the starting points x0 ∈ [0, 1]n.

TABLE 2. Computational results of four algorithms for different problem sizes.

Problem size Iter. CPU time
n m K PCA 1-uMiPCA 1-MiPCA 2-MiPCA PCA 1-uMiPCA 1-MiPCA 2-MiPCA

120 512 20 1170 541 289 250 6.2813 3.1719 1.7656 1.3594
120 512 25 1462 681 346 272 8.3438 3.4375 2.2344 1.5469
240 1024 40 2306 1079 570 496 26.125 12.1563 7.6719 6.4219
240 1024 50 2694 1262 625 462 28.4531 14.7344 6.9375 5.3906
360 1536 60 2911 1365 725 628 52.125 27.1563 13.5469 12.1563
360 1536 70 3934 1852 934 752 70.4688 34.0938 17.0156 14.4531
480 2048 80 4333 2034 1044 898 102.4844 46.8438 27.0781 23.3125
480 2048 90 5153 2428 1213 952 126.7969 60.0313 28.7031 24.5313
600 2560 100 5277 2486 1285 1163 183.5 86.4219 46.3438 42.5781
600 2560 110 6528 3077 1538 1198 224.1406 101.0469 48.2031 44.4063

From Figure 2 and Table 2, we get the similar results with Example 5.1. By these two
examples, it is necessary to investigate the multi-step inertial algorithms. Note that we
don’t give comparison with three-step inertial PCA since it improves 2-MiPCA very little.

6. CONCLUSION

In this article we introduce the multi-step inertial proximal contraction algorithms
(MiPCA) for the monotone variational inclusion problems and present the weak conver-
gence analysis of the MiPCA. We establish the conditional and unconditional convergence
of the one-step inertial proximal contraction algorithm. The numerical experiments are gi-
ven to illustrate the advantage of the multi-step inertial proximal contraction algorithms.

Note that it needs further research on the convergence rate of the MiPCA and the iner-
tial parameters which do not involve the iterative sequence {xk}.
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