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A parallel inertial S-iteration forward-backward algorithm
for regression and classification problems

LIMPAPAT BUSSABAN!, SUTHEP SUANTAI? and ATTAPOL KAEWKHAO3

ABSTRACT. In this paper, a novel algorithm, called parallel inertial S-iteration forward-backward algorithm
(PISFBA) is proposed for finding a common fixed point of a countable family of nonexpansive mappings and
convergence behavior of PISFBA is analyzed and discussed. As applications, we apply PISFBA to estimate the
weight connecting the hidden layer and output layer in a regularized extreme learning machine. Finally, the
proposed learning algorithm is applied to solve regression and data classification problems.

1. INTRODUCTION

In the past decade, Extreme learning machine (ELM) [7], a new learning algorithm for
single-hidden layer feedforward networks (SLENSs), has been extensively studied in vari-
ous research topics for machine learning and artificial intelligence such as face classifica-
tion, image segmentation, regression and data classification problems. ELM was proved
in theory that it has extremely fast learning speed and good performance better than the
gradient-based learning such as backpropagation in most of the cases. The target of this
model is to find the parameter 5 that solves the following minimization problem, called
ordinary least square (OLS),

(L.1) min [HS — T3,

where |||, is lo-norm defined by ||z, = /> i, |z5]?, T € RN*™ is the target of data, 5 €

RM>m js a weight which connects hidden layer and output layer and H € RV*M ig the
hidden layer output matrix. In general mathematical modeling, there are several methods
to estimate the solution of (1.1), in this case, the solution 3 obtained by 3 = H'T where
HT is the MoorePenrose generalized inverse of H. However, in real situation, the number
of unknown variable M is much more than the number of training data /N which causes
the network may lead to overfitting. On the other hand, the accuracy is low while the
number of hidden nodes M is small. Thus, in order to improve (1.1), several reqularization
methods, were introduced. The classical two standard techniques for improving (1.1) are
subset selection and ridge regression (sometimes called Tikhonov regularization) [20]. In
this paper, we focus on the following problem, called least absolute shrinkage and selection
operator (LASSO) [19],

(1.2) min [ Hf — T3+ XAl ,
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where |-, is l;-norm defined by |jz||, = >.I, |2;| and XA > 0, called regularization pa-
rameter. LASSO tries to retain the good features of both subset selection and ridge re-
gression [19]. After the regularization methods and the original ELM were introduced for
improving performance of OLS, 5 years later, the regularized extreme learning machine [11]
was proposed and applied to solve regression problems. It is noted that LASSO is a spe-
cial case of eq.(5) [11] by setting oo = 1. In general, (1.2) can be rewritten as minimization
of sum of two functions,

13) min F(a) = f(@) +9(a)

where g is a convex smooth (or possible non-smooth) function and f is a smooth convex
loss function with gradient having Lipschitz constant L. By using Fermats rule, Theorem
16.3 in [3], the solution of (1.3) can be characterized as follows:  minimizing (f +g) if and
only if 0 € 0¢g(Z) + V f(Z) where d¢g(Z) and V f(Z) refer to the subdifferential and gradient
of g and f, respectively. In fixed point theory, the solution of (1.3) can be characterized
[14] as follows: Z is a minimizer of f + ¢ if and only if

(1.4) T =proxeg(I — cVf)(Z) = Jeag(I —cV [f)(Z),

where ¢ > 0, [ is an identity operator, prox.4 is the proximity operator of cg and Jp, is the
resolvent of dg defined by Jy, = (I + dg) ', more description of these operators will be
mentioned in Section 2. For convenience, (1.4) can be rewritten as:

(1.5) 7 =Tz,

where T := proz.q,(I — ¢V f) which is called forward-backward operator. 1t is observed that
a solution of (1.5) is a fixed point of T and 7’ is a nonexpansive mapping when c € (0, 2).
The existence of a fixed point of nonexpansive mappings was guaranteed by Browder’s
theorem, see [1] for detail. In order to find a point Z satisfying (1.5), many researchers pro-
posed various methods for finding the approximate solution. In this paper, we consider
one of iterative method for finding fixed piont of an operator 7', called S-iteration process
[2], defined as follows:

(1.6) { Yn = (1= Bn)an + BnTn,

Tn+1 = (1 - an)Txn + anTyp,n > 1,

where initial point z; is chosen randomly and {«,,}, {8} are sequences in [0,1]. In [2],
Agarwal, O’'Regan and Sahu proved that this iteration process is independent of Mann
and Ishikawa iteration process and converges faster than both of them. However, the
speed of convergence of S-iteration process is needed to be improved. Thus, to speed up,
the technique for improving speed and giving a better convergence behavior was intro-
duced firstly by [15] by adding an inertial step. The following iterative methods improve
performance of Forward-backward algorithm by adding inertial step.
A fast iterative shrinkage-thresholding algorithm (FISTA), [4], is defined by:

Yn = T-rnv
1+ /11422 th—1
(17) tas = — Y 0, =

tn+1 ’

Tptl = Yn + gn(yn - yn71)7

where z1 = yo € R, t; =1, T := prom%g(I — %Vf) and 6, is called inertial step size.
FISTA was suggested by Beck and Teboulle [4]. They proved that rate of convergence
of FISTA is better than that of ISTA and applied FISTA to image deblurring problems
[4]. The inertial step size §,, of FISTA was firstly introduced by Nesterov [13]. Generally,
FISTA was modified for improving its performance by replacing ¢, with appropriate
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sequences. For example, Chambolle and Dossal [5] turned out ¢, to be ¢ for a > 2,

Liang and Schonlieb [8] interpolated ¢,,11 into a general form as t,,11 = pryatrt, q+rt where
p,q > 0and 0 < r < 4 and proved weak convergence theorem of FISTA.

A new accelerated proximal gradient algorithm (nAGA) [21] was defined by Verma and
Shukla as the following:

n:*xn“i’an Tp —Tn-1),
(1.8) { Y ( 1)

Tnt1 = Tr[(1 — an)yn + anThynl,

l|lzn — $n71||2

where {0,,}, {a.,} are sequences in (0,1) and — 0. They proved a con-

vergence theorem of nAGA and applied this method for solving the non-smooth convex
minimization problem with sparsity-inducing regularizes for the multitask learning fra-
mework.

Motivated by those works mentioned above, in this paper, a novel iterative method
for sloving (1.3) is proposed by employing the concepts of S-iteration process together
with the inertial step for a countable family of nonexpansive mappings. This paper is
organized as follows: The basic concept and mathematical background will be given in
Section 2. A weak convergence theorem will be proved in Section 3. Moreover, in Section
4, we apply the proposed method for solving regression and data classification problems.

2. PRELIMINARIES

2.1. Mathmatical Background. Let H be a real Hilbert space with norm ||| and inner
product (-|-). A mapping T : H — H is said to be L-Lipschtiz operator if there exists L > 0
such that ||Tx —Ty|| < L|lz —y| for any =,y € H. An L-Lipschitz operator is called
nonexpansive operator if L = 1. A mapping A : H — 2H is called monotone operator if

(z —ylu—v) >0,

for any (z,u), (y,v) € graA, where graA = {(z,y) € H x H : x € H,y € Az} is the graph
of A. A monotone operator A is called maximal monotone operator if the graph graA is not
properly contained in the graph of any other monotone operator. It is known that A is
maximal monotone operator if and only if R(/ + AA) = H for every A > 0.

Let A : H — 2% be a maximal monotone operator and ¢ > 0. The resolvent of A
is defined by J.4 = (I + cA)~! where I is an identity operator. If A = Jf for some
f eTo(H), T'y(H)is denoted by the set of proper lower semicontinuous convex functions
from H to (—oo, +0], then J.4 = prox.; where prox; is proximity operator [3] of f given
by

proxy(x) = argminger (1(5) + 3 12— yl*).
If f = ||-||;, then prox.s can be represented by

PTOSUCH-Hl(ﬂC) = sgn(z)maz{||z|, — ¢, 0},

see Chapter 24 in [3] for detial.

Let {7, } and 7 be a families of nonexpansive operators such that 0 = F'(T) C(,—, F(T},),
where F(T) is the set of all common fixed points of T € T. Then, {T,,} is said to satisfy
NST-condition(I) with T [12, 17] if for each bounded sequence {z,},

lim ||z, — Thz,| = 0implies lim |z, —Tx,||=0forallT € T.
n—roo n—oo

If T is singleton, i.e. 7 = {T'}, then {T}, } is said to satisfy NST-condition(I) with T
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Proposition 2.1. Let H be a Hilbert space and let A : H — 2% be a maximal monotone
opemtor and B : H — H be an L-Lipschitz operator. Let o > 0 and x,p € H. Setting
A, L(I = Joa(I — aB)). Then, the following hold:

(7) Aax§ AJoa(I — aB)x + Bx.
(i7) p € Aqx ifand only if (x — ap,p — Bzx) € graA.
) HAQ:EH < || Az + Bz| where || Az + Bz|| := inf{||2|| : z € Az + Bz).
Proof.

(i) Letu = Ayx. Then 2 —au = J,a(I — aB)x which implies that u — Bz € A(z —au).
Thus, Apz € Adoua(I —~aB):c + Bzx.
(#4) By using definition of A, and J, 4, we have

p=Agz o x—ap=Jua(l —aB)z & (I —aB)zx € (I + aA)(x — ap)
< p—Bxe Alx —ap) & (x —ap,p — Bz) € graA.

(iii) Letw = A,z and u € Az + Bz. Then, by monotonic of A, we have
(u—wlw) = é((u — Bz) — (w — Bz)|xz — (z — aw)) > 0.
By CauchySchwarz inequality, we obtain that ||w|| < |Ju||. Thus,
=

‘ = inf{||z]| : z € Agx} <inf{|z| : z € Az + Bz} = | Az + Bz||.

Lemma 2.1. ([18]) Let {ay,}, {b,} and {3, } be sequences of nonnegative numbers such that
ant1 < (14 0n)an + by, Vn € N.

If>°° 6 <ooandy " | b, < oo, then lim,,_, « a, exists.

Lemma 2.2 (Opial lemma). Let H be a Hilbert space and {x,,} be a sequence in H such that

there exists a nonempty subset 2 of H satisfying the following conditions:

o forally € Q, lim,,_, ||, — y| exists,
o Any weak-cluster point of {x,,} belongs to Q.

Then, there exists T € Q such that x,, — .

2.2. Extreme Learning Machine. Let D = {(x;,t;) : x; € R",t; e R™,i=1,2,...,N} be
a training set with N distinct samples, x; and t; is called input data and target, respectively.
A standard SLFNs with M hidden nodes and activation function ®(x), e.g. sigmoid, are
mathematically modeled as

(2.9) Zﬁj (W;|x;) +b;) =0i,i=1,...,N,

where w; is the weight vector connecting the jth hidden node and the input node, f;
is the weight vector connecting the jth hidden node and the output node, and b; is the
threshold of the jth hidden node. The target of standard SLENSs is to approximate these
N samples with zero error means that ZZ\LI lo;i — t;|| =0, i.e., there exist 8;, w,,b; such
that

(2.10) Zﬁj ((wj|xi) +b;) =ti,i=1,...,N.
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From above N equations, we can formulate a simple equation as

2.11) HB =T,
where
S((wilx1) +b1) - @((wWarlx1) +bar)
H= : . : )
P((wilxn) +01) - PUWamlxN) +00m)] y o
B=[61, . B T =t R

The goal of a standard SLENS is to estimate 3;, w; and b; for solving (2.11) while ELM
aim to find only $; with randomly w; and b;. An original ELM algorithm is defined as
follows.

ELM algorithm: Given a training set D = {(x;,t;) : x; € R",t; e R™,i=1,2,...,N},
activation function g(z), and hidden node number M,

Step 1: Randomly w; and b;,i =1,..., M.
Step 2: Calculate the hidden layer output matrix H.
Step 3: Calculate 3 by

f=H'T,

where H' is the MoorePenrose generalized inverse of matrix H [16] and T =
[t1,...,tn]T.

3. MAIN RESULTS

In this section, we propose a new iterative method, called parallel inertial S-iteration
forward-backward algorithm (PISFBA), for findind a fixed point of a countable family of
nonexpansive mappings. Convergence theorems of PISFBA are proved in 3.1 and the
proposed learning algorithm base on ELM will be discussed in 3.2.

3.1. Convergence Theorems of PISFBA.

Theorem 3.1. Let H be a Hilbert space, {T’,} be a family of nonexpansive operators of H into
itselfand T : H — H be a nonexpansive operator such that {T,,} satisfies NST-condition(I) with
T. Suppose that () # F(T) C N0, F(T,,). Let {x,} be a sequence in H generated by

xo,2r1 € H,

Yn = Tpn + Op(Ty — Tp—1),

zn = (1= Bn)Tn + BnTnn,
Tt = (1 — ap)Toyn + anThnzp,

(3.12)

where 0 < ¢ < a, <1,0<s< B, <1 <1,0<0, <land> 7 0, |z, — zp_1] < oo
Then, {x,, } converges weakly to a point in F(T).

Proof. Letz* € F(T') and let {x,,} C H be generated by (3.12). Then,
[Zn1 — 2| < (1= an) | Toyn — 2| + an [ Tnzn — 2°||
< (1 =) lyn — [ + an llzn — 27|
< —ap)l|lzn —2" |+ (1 — )0 |20 — Tp-1|| + an [[2n — 27|

< [lzn = 2" 4 On 2 — 20l
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Thus by Lemma 2.1, lim,,_, ||z, — 2*|| exists which implies that {x,} is bounded. By
(3.12), we have

lyn = 2" = llwn — 2*(|* + 03 &0 — 2nal|* + 205 (@0 — 27|20 — 20)
< lwn — @[+ 05 20 — 2p1|* + 2600 |20 — 2" | 20 — 201 ]| -
Then,
ll2n — x*H2 = (1= 8n) llzn - x*Hz + B | Ton — m*||2 = Bn(1 = Bn) [l — Tnxn”2
< lwn = 2*|* = Ba(l = Bn) lzn — Tuwn?,

and

( )
< (1= an) [ Toyn — 2* [ + o | Tozn — 2°||°
( ) lgn —*|* + an llz0 — 27|
< lan — |+ (1 — )02 o — 20l
+2(1 = an)bh 20 — 2| |2 — Tpr|l = Bl = Bn) |20 — Tuzal®.

As n — oo, we have lim,,_, o ||z, — Th2p|| = 0. Since {z,,} is bounded and {T,,} satisfies
NST-condition(I) with 7', we obtain that ||x,, — Tx,| — 0. Thus, by using Opial lemma,
{z,,} weakly converges to some point in F(T). O

Lemma 3.3. Let H be a Hilbert space. Let A : H — 2 be a maximal monotone operator and
B : H — H bean L-Lipschitz operator. Let v, 3 > 0. Then,

1+ al

1
3 |Jaa(I — aB)x — Jga(I — BB)Jaa(I — aB)z|| < |z — Joa(I — aB)z||,
for every x € H.

Proof. Letx € H. Set A, = 1(I—Jaa(I—aB)). Then, by using Proposition 2.1, we obtain
1
3 |Jaa(I — aB)x — Jga(l — fB)Jaa(I — aB)z|]

- HflﬁJaA(IfaB)xH

< [|[Adaa(I — aB)x + BJoa(I — aB)zx||

< ||AJoua(I — aB)x + Bx| + ||Bx — BJaa(I — aB)z||
< Hflax ‘ VLl — Joall — aB)z||

_1+4alL

le — Jaa(I — aB)z|| .
O

Theorem 3.2. Let H be a Hilbert space. Let A : H — 2H be a maximal monotone operator
and B : H — H be an L-Lipschitz operator. Let ¢ € (0,%) and {c,} C (0,2) such that
¢n — ¢ Define T,, = J., a(I — ¢, B). Then, {T,,} satisfies the NST-condition(I) with T, where
TC = cA(I — CB).

Proof. Let {x,} be a bounded sequence in H. Suppose that ||z, — T,,z,| — 0. Since T,,
and T, are nonexpansive for all n € N, see Theorem 26.14 in [3] for detail, by Lemma 3.3,
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we obtain that
|20 — Texn| = l2n — JeaI — cB)xa||
< Nawn— Je,aI— cnB)xp ||+ e, aA(I—cnB)xn—Jea(I—cB)Je, A(I—cnB)xy||
+ | JealI —eB)Je, a(I — ¢y B)xy — Joa(I — ¢B)zy||
(1 +eplL)

n

<2||@p — Jep 4l — cnB)aal|| + lwn — Je, a(I — enB)xy]|

c(l+e,L)

Thus, {T,,} satisfies the NST-condition(I) with ... O

=(2+ Y|zn — Than|| =0

Corollary 3.1. Let H be a Hilbert space. Let A : H — 28 be maximal monotone operator and
B : H — H be an L-Lipschitz operator. Let ¢ € (0, %) and {c,} C (0, %) such that ¢,, — .
Define T,, = J., a(I — ¢, B) and T = J.s(I — ¢B). Suppose that zer(A + B) # 0. Let {x,,} be
a sequence in H generated by (3.12). Then, {x,,} converges weakly to a point in zer(A + B).

Proof. Using Proposition 26.1(iv)(a) in [3] , we have F(T) = F(T,,) = zer(A + B) and we
know that {T},} and T are nonexpansive operators for all n, by Proposition 26.1(iv)(d) in
[3]. Then, the proof is completed by Theorem 3.1 and Theorem 3.2. O

Corollary 3.2 (PISFBA). Let H be a Hilbert space. Let g € I'o(H) and f : H — R be convex
and differentiable with an L-Lipschitz continuous gradient, let ¢ € (0,2) and {c,} C (0,%)
such that ¢,, — c. Define T,, = proz.,,(I — ¢, Vf) and T = prox.q(I — cV f). Suppose that
argmin(f + g) # 0. Let {x,} be a sequence in H generated by (3.12). Then, {x,} converges
weakly to a point in argmin(f + g).

Proof. Setting A := Jg and B := Vf, then A is maximal monotone operator, by using
Theorem 20.25 in [3]. The proof is completed by Corollary 3.1. O

3.2. Proposed Learning Algorithm. In this section, we apply PISFBA to propose a lear-
ning algorithm base on ELM algorithm for solving (1.2).

Modified regularized ELM algorithm: Given a training set D = {(x;,t;) : x; € R",
t; e R™ 1 =1,2,..., N}, activation function g(z),
Step 1: Select regularization parameter A and hidden node number M.
Step 2: Randomly w; and b;,i =1,..., M.
Step 3: Calculate the hidden layer output matrix H.
Step 4: Calculate 3 by using PISFBA (Corollary 3.2) or nAGA (1.8) or FISTA (1.7).

4. PERFORMANCE EVALUATION AND ANALYSIS

In this section, we predict a function sine and classify datasets by the proposed learning
algorithm. All results are performed on Intel Core-i7 gen 8th with 8.00 GB RAM, windows
10, under MATLAB computing environment.

4.1. Regression a function sine. In order to regression a function sine, we set a training

set by randomly 10 distinct data with command unifrnd, activation function is sigmoid,

0.9 1
regularization parameter A = 1 x 1072, ay, = B = Tnl and 6,, = m, if
n n Tp — Tp—1

Zn # Tn—1; =0, otherwise. Then, we obtain comparision result with FISTA and nAGA in
Figure 1 and mean squre error (MSE) in Table 1.
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Method MSE Computational time

PISFBA 1.775601 x 1073 2.159882 x 10!

FISTA 7.667023 x 1072 3.903217 x 102

nAGA  1.213818 x 1072 1.764385 x 107!
TABLE 1. Numerical results of regression of a function sine.

Table 1 and Figure 1 show that PISFBA gives a better performance to predict a function

sine than FISTA and nAGA while a computational time have a few difference. However,
in this simple problem, the original ELM is not only the best performance by 8.824458 x
1075 of MSE, but also the fastest computational time by 1.303190 x 10~* of computational

time.

target output
PISFBA
FISTA
nAGA

-4 -3 2 -1 0 1 2 3 4

FIGURE 1. A simple regression for a function sine.

4.2. Data classification. In order to classify datasets, we would to thanks
“https:/ /archive.ics.uci.edu/” and “https:/ /www.kaggle.com/” for supporting database
website.

e Parkinsons dataset [10] This dataset is composed of a range of biomedical voice

measurements from 31 people, 23 with Parkinson’s disease (PD). The aim of this
dataset is to classify people who healthy and PD.

Heart Disease UCI dataset [9] The original dataset contains 76 attributes, but all
published experiments refer to using a subset of 14 of them. This dataset refers
to the presence of heart disease in the patient. The predicted attribute is aim to
classify the data into 2 classes.

Iris dataset [6] This dataset contains 3 classes of 50 instances where each class
refers to a type of iris plant. The aim is to separate each type of iris plant (iris
setosa, iris versicolour and iris virginica) from sepal and petal length.

Abalone dataset [6] This dataset aim to predict the age of abalone from physical
measurements by counting the number of rings through a microscope and classi-
fication into 3 classes.

Table 2 show information about the datasets, number of attributes and number of sam-

ples for training (around 70% of data) and testing (remainder 30% of data) sets.
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. Samples
Dataset # Attributes FTean | # Test
Binary Classes Datasets
Parkinsons 23 135 60
Heart Disease UCI 14 213 90

Multiple Classes Datasets

Iris 4 105 45
Abalone 8 2924 1253

TABLE 2. Information about the datasets.

Setting all controls (A, ap, By, 05) as in section 4.1, activation function is sigmoid, and
the suitable number of hidden nodes M is selected, see Table 3. Given a training set for
each dataset as mentioned in Table 2. We use our proposed learning algorithm with three
difference iterative methods (PISFBA, nAGA, FISTA) to estimate the optimal weight 8 and
then the output data O of training and testing sets are obtained by O = Hj. Compared
with the target data, an accuracy of output data is computed by

# correct predicted data

# all data
Table 3 shows the performance in term of the accuracy of each methods compared with
the original ELM. However, the performance depend on the number of hidden nodes M.
A huge number M may lead the prediction model to overfitting. In our experimental
results, we pick the number M in the different way depend on each dataset. A suitable
number M is selected when the absolutely difference of accuracy of training and accuracy
of testing is small (less than 5% for this case), however, the optimal process to selected the
number M remains open and dose not discussed in this paper.

x 100.

accuracy =

Regularized ELM
Original ELM

Dataset PISFBA | nAGA | FISTA
Binary Classes Datasets
Parkinsons (M = 37) 66.67 75 75 48.33
Heart Disease UCI (M = 106) 55.56 70 68.89 | 65.56
Multiple Classes Datasets
Iris (M = 12) 97.78 100 95.56 | 86.67
Abalone (M = 100) 66.32 63.61 62.09 | 60.02

TABLE 3. Performance comparison using difference methods.

From the results in Table 3, we conclude that the proposed learning algorithm under
selection with the identical number of hidden nodes M has a high performance in term
of the accuracy. The weight computed by PISFBA converges faster to the optimal weight
and performs accuracy better than those computed by nAGA and FISTA.
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