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A class of parabolic evolutionary quasivariational
inequalities in contact mechanics
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ABSTRACT. In this paper, we obtain an existence and uniqueness of the solution for a class of parabolic
evolutionary quasivariational inequalities in contact mechanics under some mild conditions. We also study
an error estimate for the parabolic evolutionary quasivariational inequality by employing the forward Euler
difference scheme and the element-free Galerkin spatial approximation.

1. INTRODUCTION

Let V be a Hilbert space endowed with the inner product (·, ·)V and the associated
norm ‖ · ‖V . For any given T > 0, we use C([0, T ];V ) (resp., C1([0, T ]);V )) to denote
the space of all V -valued continuous functions (resp., V -valued continuous differentiable
functions) on [0, T ] with norm ‖u‖C([0,T ];V ) = maxt∈[0,T ] ‖u(t)‖V (resp., ‖u‖C1([0,T ];V ) =
maxt∈[0,T ] ‖u(t)‖V + maxt∈[0,T ] ‖ut(t)‖V ), where ut denotes the derivative of u(t) with
respect to the time variable. In the sequel, let H1([0, T ];V ) := W 1,2([0, T ];V ).

In 2001, Han and Sofonea [11] showed that a number of quasistatic frictional contact
problems for viscoelastic materials can be formulated as the following parabolic evolutio-
nary quasivariational inequality: find a displacement field u ∈ C1([0, T ];V ) such that, for
any t ∈ [0, T ],{

(Aut, v − ut)V + (Bu, v − ut)V + j(ut, v)− j(ut, ut) ≥ (f, v − ut)V , ∀v ∈ V,
u(x, 0) = u0(x),

(1.1)

where A, B : V → V are two operators related to the viscoelastic constitutive law, the
functional j : V × V → R is determined by contact conditions and f : [0, T ] → V
is a mapping. Various examples have been given in the literature [10, 15, 17, 18, 19] to
motivate the study of parabolic evolutionary (quasi)variational inequalities. Some related
results concerned with evolutionary (quasi)variational inequalities can be found in [6, 8,
9, 21, 22, 23, 24, 25, 26] and the references therein.

We notice that Han and Sofonea [11] proved the existence and uniqueness for (1.1) un-
der the strong monotonicity and Lipschitz continuity. They also proposed a semi-discrete
and fully-discrete scheme and derived error estimates which indicates that the conver-
gence order is 1 with respect to the time. However, the strong monotonicity and Lipschitz
continuity are quite strong and may not be satisfied in some practical situations. Thus,
it would be important and necessary to relax these conditions. The first purpose of this
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paper is to show the existence and uniqueness of the solution for (1.1) under some mild
conditions.

On the other hand, Jonhson [14] proposed a fully discrete scheme for solving (1.1) with
j(u, v) ≡ j(v) and used the finite element method to obtain the numerical solutions. Chen
et al. [6] proposed a fully discrete for solving (1.1) and showed that the convergence order
is 1. Achdou et al. [1] adopt Euler implicit time schemes combined with finite element
spatial discretization for the special case of (1.1) and obtained the error estimates. We
would like to mention that the finite element method usually needs the mesh in the dom-
ain, while the element-free Galerkin method [3] requires only nodal data in the domain.
Thus, the element-free Galerkin method provides an efficient numerical tool for solving
evolutionary variational inequalities. Recently, Ding et al. [9] provided the error estimate
of the element-free Galerkin method for a class of parabolic evolutionary variational in-
equalities arising from the heat-servo control problem. Very recently, Chen and Xiao [7]
extended the main result of Ding et al. [9] and obtained a more efficiency error estimate
for the parabolic evolutionary variational inequality. However, we have never seen the
study of error estimates of the element-free Galerkin method for solving (1.1). Therefore,
it would be important and interesting to employ the element-free Galerkin method for
solving (1.1). The second purpose of this paper is to make an attempt to propose an er-
ror estimate of the element-free Galerkin method for solving (1.1). Compared with the
work due to Ding et al. [9], in this paper, we consider a more general problem called par-
abolic evolu-tionary quasivariational inequality. Especially, we get rid of the symmetry
properties for operators A and B.

The rest of this is organized as follows. The next section presents some necessary preli-
minaries. A new existence and uniqueness of the solution is obtained in section 3 for (1.1)
under some mild conditions. The fully discrete scheme is proposed in section 4 by using
both the forward Euler finite difference scheme to approximate the time derivative and
the element-free Galerkin method to discretize spatial variable. Finally, the error estimates
for the fully discrete scheme is given in section 5.

2. PRELIMINARIES

In order to show a new existence and uniqueness result for the parabolic evolutionary
quasivariational inequality (1.1), we employ the following assumptions.

(i) There exist two functions ϕA, ψA : [0,+∞)→ [0,+∞) such that{
(a) (Au−Av, u− v)V ≥ ϕA(‖u− v‖V )‖u− v‖2V , ∀u, v ∈ V,
(b) ‖Au−Av‖V ≤ ψA(‖u− v‖V )‖u− v‖V , ∀u, v ∈ V.

(2.2)

When ϕA(t) = M and ψA(t) = LA for all t ≥ 0, where M,LA > 0 are two con-
stants, then (2.2) reduces to the following conditions{

(a) (Au−Av, u− v)V ≥M‖u− v‖2V , ∀u, v ∈ V,
(b) ‖Au−Av‖V ≤ LA‖u− v‖V , ∀u, v ∈ V.

(2.3)

which was adopted in Han and Sofonea [11].
(ii) There exists a function ψB : [0,+∞)→ [0,+∞) such that

(2.4) ‖B(u1)−B(u2)‖V ≤ ψB(‖u1 − u2‖V )‖u1 − u2‖V , ∀u1, u2 ∈ V.
When ψB(t) = LB for all t ≥ 0, where LB > 0 is a constant, then (2.4) reduces to
the following condition There exists a constant LB > 0 such that

(2.5) ‖B(u1)−B(u2)‖V ≤ LB‖u1 − u2‖V , ∀u1, u2 ∈ V,
which was adopted in Han and Sofonea [11].
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(iii) j : V × V → R is a functional such that j(u, ·) is convex and lower semicontinous
on V for all u ∈ V and there is a function ψj : [0,+∞)→ [0,+∞) such that

(2.6)
j(g1, v2)+j(g2, v1)−j(g1, v1)−j(g2, v2) ≤ ψj(‖g1−g2‖V )‖g1−g2‖V ‖v1−v2‖V ,∀g1, g2, v1, v2∈ V.

When ψj(t) = Lj for all t ≥ 0, where Lj > 0 is a constant, then (2.6) reduces to the
following condition

(2.7) j(g1, v2)+j(g2, v1)−j(g1, v1)−j(g2, v2) ≤ Lj‖g1−g2‖V ‖v1−v2‖V ,∀g1, g2, v1, v2 ∈ V,
which was adopted in Han and Sofonea [11].

(iv) f : [0, T ]→ V and u0(x) satisfy

f ∈ C((0, T );V ), u0(x) ∈ V.(2.8)

We also need the following fixed point theorem for nonlinear mappings.

Lemma 2.1. ([4]) Suppose that (X, ‖ · ‖) is a Banach space and that T : X → X is a mapping
such that ‖Tx−Ty‖ ≤ ψ(‖x−y‖) for all x, y ∈ X , where ψ : [0,∞)→ [0,∞) satisfies ψ(t) < t
for all t > 0. Then T has a unique fixed point.

3. EXISTENCE AND UNIQUENESS

In this section, we investigate the existence and uniqueness of the solution for (1.1)
under the conditions (2.2), (2.4), (2.6) and (2.8).

For any given u ∈ V , it is well-known that the subdifferential ∂j(u, ·) of a convex,
proper and lower-semicontinous function j(u, ·) : V → R

⋃
{+∞} is a maximal monotone

operator ([5]). Therefore, we can define the following operator

Jj(u) = (I + ρ∂j(u, ·))−1 := (I + ∂j(u))−1, ρ > 0.

Clearly, the parabolic evolutionary quasivariational inequality (1.1) is equivalent to the
following problem: find a displacement field u ∈ C1([0, T ];V ) such that, for any t ∈ [0, T ],

ut = Jj(ut)(ut + ρf − ρAut − ρBu), ρ > 0, u(x, 0) = u0(x).(3.9)

Using the definition of Jj(u), we have the following lemma.

Lemma 3.2. If the condition (2.6) holds, then

(3.10) ‖Jj(v)(u)− Jj(v)(w)‖V ≤ ‖u− w‖V , ∀u, v, w ∈ V,

(3.11) ‖Jj(u)(v)− Jj(w)(v)‖V ≤ ρψj(‖u− w‖V )‖u− w‖V , ∀u, v, w ∈ V.

Proof. For any given u, v, w ∈ V , let uv := Jj(v)(u) and wv := Jj(v)(w). Then the definition
of operator Jj(v) yields

(3.12) (u− uv, l − uv) ≤ ρj(v, l)− ρj(v, uv), ∀l ∈ V
and

(3.13) (w − wv, l − wv) ≤ ρj(v, l)− ρj(v, wv), ∀l ∈ V.
Taking l = wv and l = uv in (3.12) and (3.13) respectively, one has

(3.14) (u− uv, wv − uv) ≤ ρj(v, wv)− ρj(v, uv) ∀l ∈ V
and

(3.15) (w − wv, uv − wv) ≤ ρj(v, uv)− ρj(v, wv), ∀l ∈ V.
Summing up (3.14) and (3.15), we have ‖uv −wv‖2V ≤ (u−w, uv −wv) and so ‖Jj(v)(u)−
Jj(v)(w)‖V ≤ ‖u− w‖V . This ends the proof of inequality (3.10).
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Similarly, for any given u, v, w ∈ V , we have

(3.16) (v − vu, l − vu) ≤ ρj(u, l)− ρj(u, vu), ∀l ∈ V,

(3.17) (v − vw, l − vw) ≤ ρj(w, l)− ρj(w, vw), ∀l ∈ V,

where vu := Jj(u)(v) and vw := Jj(w)(v). Taking l = vw and l = vu in (3.16) and (3.17)
respectively and summing them up, it follows from (2.6) that

‖vu − vw‖2V ≤ ρ‖vu − vw‖V ‖u− w‖V ψj(‖u− w‖V )

and so
‖Jj(u)(v)− Jj(w)(v)‖V ≤ ρψj(‖u− w‖V )‖u− w‖V .

This ends the proof of inequality (3.11). �

Now, we turn to show the existence and uniqueness of the solution for the problem
(3.9). The proof can be divided into three steps. In the first step, we consider an auxiliary
problem: for any η, g ∈ C([0, T ];V ), find a unique uηg ∈ C([0, T ];V ) such that

(3.18) uηg = Jj(η)(uηg + ρf − ρAuηg − ρg).

Lemma 3.3. Assume that the conditions (2.2), (2.6) and (2.8) hold. For any η, g ∈ C([0, T ];V ),
if ψA is non-decreasing and ϕA is non-increasing and there exists a real number ρ > 0 such that

ρψ2
A(s) < 2ϕA(s), ∀s ∈ [0,∞),(3.19)

then we can find a unique uηg ∈ C([0, T ];V ) such that (3.18) holds.

Proof. We only need to prove that the mapping S(u) := Jj(η)(u + ρf − ρAu − g) has a
unique fixed point in C([0, T ], V ). It follows from Lemma 3.2 that

‖S(u1(t))− S(u2(t))‖2V
≤ ‖u1(t)− u2(t) + ρAu1(t)− ρAu2(t)‖2V
= ‖u1(t)− u2(t)‖2V − 2(u1(t)− u2(t), ρAu1(t)− ρAu2(t)) + ρ2‖Au1(t)−Au2(t)‖2V
≤ ‖u1(t)− u2(t)‖2V − 2ρϕA(‖u1(t)− u2(t)‖V )‖u1(t)− u2(t)‖2V

+ ρ2ψ2
A(‖u1(t)− u2(t)‖V )‖u1(t)− u2(t)‖2V

≤
[
1− 2ρϕA(‖u1(t)− u2(t)‖V ) + ρ2ψ2

A(‖u1(t)− u2(t)‖V )
]
‖u1(t)− u2(t)‖2V

for all t ∈ [0, T ]. Since ψA is non-decreasing and ϕA is non-increasing, one has

‖S(u1)− S(u2)‖C([0,T ];V )(3.20)

≤
√[

1− 2ρϕA(‖u1 − u2‖C([0,T ];V )) + ρ2ψ2
A(‖u1 − u2‖C([0,T ];V ))

]
‖u1 − u2‖C([0,T ];V ).

Thus, by (3.19), (3.20) and Lemma 2.1, we know that S has a unique fixed point
uηg ∈ C([0, T ];V ) and so uηg is a unique solution of (3.18). �

Example 3.1. Assume that

ϕA(t) =
1

2
e−2t +

1

2
, ψA(t) = −1

2
e−t +

3

2
, ∀t ∈ [0,∞).

Clearly, ϕA is non-increasing and ψA is non-decreasing. Moreover, for any 0 < ρ < 2
9 , it is

easy to check that (3.19) holds.
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Lemma 3.4. Let the conditions (2.2), (2.6) and (2.8) be satisfied. Assume that ψA and ψj are
non-decreasing and ϕA is non-increasing. For any g ∈ C([0, T ];V ), if there exists a real number
ρ > 0 such that

ρψ2
A(s) < 2ϕA(s), 2ψj(s) < 2ϕA(s)− ρψ2

A(s)(3.21)

for all s ∈ [0,∞), then we can find a unique ug ∈ C([0, T ];V ) such that

(3.22) ug = Jj(ug)(ug + ρf − ρAug − ρg).

Proof. We only need to prove that the mapping η 7→ uηg has a unique fixed point in
C([0, T ], V ), where uηg is defined by (3.18). It follows form Lemmas 3.2 and 3.3 that

‖uη1g(t)− uη2g(t)‖V
≤ ‖Jj(η1(t))(uη1g(t) + ρf(t)− ρAuη1g(t)− ρg(t))

− Jj(η2(t))(uη1g(t) + ρf(t)− ρAuη1g(t)− ρg(t))‖
+
∥∥Jj(η2(t))(uη1g(t) + ρf(t)− ρAuη1g(t)− ρg(t))

−Jj(η2)(t)(uη2g(t) + ρf(t)− ρAuη2g(t)− ρg(t))
∥∥

≤
√

1−2ρϕA(‖uη1g(t)−uη2g(t)‖V )+ρ2ψ2
A(‖uη1g(t)−uη2g(t)‖V )‖uη1g(t)−uη2g(t)‖V

+ρψj(‖η1(t)− η2(t)‖V )‖η1(t)− η2(t)‖V .

Since ψA and ψj are non-decreasing and ϕA is non-increasing, one has

‖uη1g − uη2g‖C([0,T ];V )

≤
√

1− 2ρϕA(‖uη1g−uη2g‖C([0,T ];V ))+ρ2ψ2
A(‖uη1g−uη2g‖C([0,T ];V ))‖uη1g−uη2g‖C([0,T ];V )

+ρψj(‖η1 − η2‖C([0,T ];V ))‖η1 − η2‖C([0,T ];V ).

Because of the basic inequality
√

1 + x ≤ 1 + x
2 for all x ∈ (−1, 1), we have

2ϕA(‖uη1g − uη2g‖C([0,T ];V ))− ρψ2
A(‖uη1g − uη2g‖C([0,T ];V ))

2
‖uη1g − uη2g‖C([0,T ];V )

≤ ψj(‖η1 − η2‖C([0,T ];V ))‖η1 − η2‖C([0,T ];V )

and so

‖uη1g − uη2g‖C([0,T ];V )(3.23)

≤
2ψj(‖η1 − η2‖C([0,T ];V ))

2ϕA(‖η1 − η2‖C([0,T ];V ))− ρψ2
A(‖η1 − η2‖C([0,T ];V ))

‖η1 − η2‖C([0,T ];V ).

Thus, it follows from (3.24), (3.23) and Lemma 2.1 that there is a unique ug ∈ C([0, T ];V )
such that (3.22) holds. �

Theorem 3.1. Let the conditions (2.2), (2.4), (2.6) and (2.8) be satisfied. Assume that ψA and ψj
are non-decreasing and ϕA is non-increasing. If there exist two constants ρ > 0 and λ > 0 such
that

ρψ2
A(s) < 2ϕA(s), 2ψj(s) < 2ϕA(s)− ρψ2

A(s), min
l∈[0,∞)

(ϕA(l)− ψj(l)) ≥ λψB(s)(3.24)

for all s ∈ [0,∞), then we can find a unique function u ∈ C1([0, T ];V ) such that

(3.25) ut = Jj(ut)(ut + ρf − ρAut −Bu), ∀t ∈ [0, T ].
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Proof. Define a mapping Q : C([0, T ];V )→ C([0, T ];V ) by setting

Q(g) = u0 +

∫ t

0

ug(s)ds, ∀g ∈ C([0, T ];V ).

We only need to prove that the mapping BQ has a unique fixed point in C([0, T ];V ),
where ug(t) is defined in (3.22). By the proof of Lemma 3.4, we know that

‖ug1(t)− ug2(t)‖V ≤
‖g1(t)− g2(t)‖V

ϕA(‖ug1(t)− ug2(t)‖V )− ψj(‖ug1(t)− ug2(t)‖V )
, ∀t ∈ [0, T ].

Now we define an equivalent norm C([0, T ];V ) as ‖v‖∗C([0,T ];V ) = maxt∈[0,T ] e
−βt‖v(t)‖V

with β > λ−1. According to the definition of Q and the conditions (2.4) and (3.24), one
has

e−βt‖BQ(g1)(t)−BQ(g2)(t)‖V

≤ e−βtψB

(∥∥∥∥∫ t

0

(ug1(s)− ug2(s))ds

∥∥∥∥
V

)∫ t

0

‖(ug1(s)− ug2(s))‖V ds

≤ ψB

(∥∥∥∥∫ t

0

(ug1(s)− ug2(s))ds

∥∥∥∥
V

)
e−βt

×
∫ t

0

‖g1(s)− g2(s)‖V
ϕA(‖ug1(s)− ug2(s)‖V )− ψj(‖ug1(s)− ug2(s)‖)

ds

≤ 1

λβ
‖g1 − g2‖∗C([0,T ];V ).

This shows that

‖BQ(g1)−BQ(g2)‖∗C([0,T ];V ) ≤
1

λβ
‖g1 − g2‖∗C([0,T ];V ).

By the Banach fixed point theorem, we can see that BQ has a unique fixed point in
C([0, T ];V ). �

The following example shows that the condition (3.24) can be satisfied.

Example 3.2. Let

ϕA(t) = e−t + 1, ψA(t) = 3 +
2 arctan(t)

π
, ψB(t) = ψj(t) = e−t, ∀t ∈ [0,∞).

Then ϕA is non-increasing, ψA, ψB(t) and ψj(t) are non-decreasing. Moreover, for 0 <
ρ < 1

16 and λ = 1, it is easy to see that

ψA(t) > ϕA(t), min
l∈[0,∞)

(ϕA(l)− φj(l)) > ψB(t), ∀t ∈ [0,∞)

and so the condition (3.24) holds.

Remark 3.1. We would like to mention that Theorem 3.1 is a generalization of Theorem
2.1 of [11]. In fact, under the assumptions (2.3), (2.5), (2.7) and (2.8), it is easy to check that
all the conditions of Theorem 3.1 are satisfied.

4. FULLY DISCRETE SCHEME

In this section, we introduce the fully discrete scheme to discretize the parabolic evo-
lutionary quasivariational inequality (1.1). To this end, we utilize the finite dimensional
moving least-squares approximation method [16] to approximate the function u of V as
follows.
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For convenience, we omit the subscript V in the symbol of inner product. Let Ω ⊂ RN

be a convex subset. Given h > 0 and Xh = {ξ1, ξ2, · · · , ξn}, which is a set of points in Ω,
let uj = u(ξj) with 1 ≤ j ≤ n and 0 ≤ wj(x) ≤ 1 be a weighted function such that

supp(wj) ⊂ Bh(ξj) = {z ∈ RN : ‖z − ξj‖ ≤ h},

where h is the support radius. Let {p0, · · · , pm} be a basis of the polynomial space Pm
(for example, p0 = 1, p1 = x, · · · , pm = xm in R1) with m � n. For each x ∈ Ω, the
approximation uh(x) of a function u(x) has the following form: uh(x) = P ∗(x, x) =∑m
k=0 pk(x)αk(x), where αk(x) is chosen such that

Jx(α) =

n∑
j=1

wj(x)

(
uj −

m∑
k=0

pk(ξj)αk(x)

)2

is minimized. The minimization leads uh(x) ∈ V h with V h = span{Φk : 1 ≤ k ≤ M},
where Φk(x) is the moving least-squares shapes function (see also in [9]), which can be
written as

(4.26) Φk(x) = [P (x)TA(x)−1B(x)]k, A(x) = W (x)P (x)(P (x))T , B(x) = W (x)P (x)

with

(4.27) W (x) = diag(w1(x), ..., wn(x)), P (x) = [p(x1), ..., p(xn)]T .

For more details on the moving least-squares approximation, we refer the reader to
[2, 27, 28].

Next we turn to discretize the time. The time interval [0, T ] is divided into N equal
parts {tn}Nn=1 and let tn − tn−1 = k = T/N for n = 1, 2, · · · , N . Similar to [11], for a
continuous function w(t), we use the following notations

wn = w(tn), ∆wn = wn − wn−1, δwn = ∆wn/k.

Thus, the fully discrete scheme of the parabolic evolutionary quasivariational inequa-
lity (1.1) can be described as follows:

Find {δuhkn }Nn=1 ⊂ V h such that, for n = 1, · · · , N and any vh ∈ V h,

{
(Aδuhkn , vh − δuhkn ) + (Buhkn , vh − δuhkn ) + j(δuhkn , vh)− j(δuhkn , δuhkn ) ≥ (fn, v

h − δuhkn ),

uhk0 = uh0 ,

(4.28)

where uh0 is the moving least-squares approximation of u0. To simplify the notation, we
use whkn as the substitute of δuhkn for n = 1, · · · , N . It follows that

(4.29) uhkn =

n∑
j=1

whkj + uh0

and so we can rewrite (4.28) as follows: find whkn ∈ V h such that, for all vh ∈ V h,(
Awhkn +B

(∑
1≤j≤n

whkj + uh0

)
, vh − whkn

)
+ j(whkn , vh)− j(whkn , whkn )(4.30)

≥ (fn, v
h − whkn ).

Let Fn = fn − Buhkn−1. If B is linear, then it is easy to see that (4.30) is equivalent to the
following problem:

Problem Phk: find whkn ∈ V h such that, for any vh ∈ V h,

((A+B)whkn , vh − whkn ) + j(whkn , vh)− j(whkn , whkn ) ≥ (Fn, v
h − whkn ).(4.31)
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Employing the auxiliary principle ([11, 13]), we prove the existence and uniqueness of
solutions for Problem Phk.

Theorem 4.2. Let (2.3), (2.5) and (2.7) hold. If B is linear, M > Lj and LB < M − Lj , then
there exists a unique solution uh ∈ V h to Problem Phk.

Proof. Let η ∈ V h and g ∈ V h be given. Firstly, we consider the following variational
inequality of finding uηg ∈ V h such that

(4.32) (Auηg + η, vh − uηg) + j(g, vh)− j(g, uηg) ≥ (Fn, v
h − uηg), ∀vh ∈ V h.

For any given η, g ∈ V , we note that (4.32) is the well-known Hartman-Stampacchia
variational inequality and so (4.32) has a unique solution uηg by the classical result of [12].
Consider the operator Γη : V h → V h defined by Γηg = uηg. Let g1, g2 ∈ V and η ∈ V . One
has {

(AΓηg2 + η, vh − Γηg1) + j(g1, v
h)− j(g1,Γηg1) ≥ (Fn, v

h − Γηg1),

(AΓηg2 + η, vh − Γηg2) + j(g2, v
h)− j(g2,Γηg2) ≥ (Fn, v

h − Γηg2).
(4.33)

Taking vh = g2 and vh = g1 in the first and second inequality of (4.33), respectively. We
can derive the relation from (4.33) by adding them together that

j(g1,Γηg2) + j(g2,Γηg1)− j(g1,Γηg1)− j(g2,Γηg2) ≥ (A(Γηg1 − Γηg2),Γηg1 − Γηg2).

Form the conditions (2.3)(a) and (2.7)(b), we have

Lj‖g1 − g2‖‖Γηg1 − Γηg2‖ ≥M‖Γηg1 − Γηg2)‖2.

If M > Lj , then the operator Γη has a unique fixed point gη ∈ V h from the Banach fixed
point theorem. Let uη ∈ V h be defined by uη = uηgη . Then uη = gη . Taking g = gη in
(4.32), we have

(4.34) (Auη + η, vh − uη) + j(uη, v
h)− j(uη, uη) ≥ (Fn, v

h − uη), ∀vh ∈ V h.

Similarly, we have

j(uη1 , uη2) + j(uη2 , uη1)− j(uη1 , uη1)− j(uη1 , uη1) + (η1 − η2, uη2 − uη1)

≥ (A(uη1 − uη2), uη1 − uη2).

Thus, form the conditions (2.3)(a) and (2.7)(b), we have

Lj‖uη1 − uη1‖2 + ‖η1 − η2‖‖uη1 − uη2‖ ≥M‖uη1 − uη1‖2

and so 1
M−Lj ‖η1 − η2‖ ≥ ‖uη1 − uη1‖. Taking Λη = Buη , we know that

‖Λη1 − Λη1‖ ≤ LB‖uη1 − uη1‖ ≤
LB

M − Lj
‖η1 − η2‖

Therefore, if LB < M − Lj , the operator Λ has a unique fixed point η∗. Apparently, uη∗ is
the unique solution of (4.35), which means that

(4.35) (Auη∗ +Buη∗ , v
h − uη∗) + j(uη∗ , v

h)− j(uη∗ , uη∗) ≥ (Fn, v
h − uη∗), ∀vh ∈ V h.

That ends our proof. �

Remark 4.2. If we replace Buhkn by Buhkn−1 in (4.28), then Problem Phk considered in this
paper reduces to Problem Phk of [11].
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5. ERROR ESTIMATES FOR THE FULLY DISCRETE SCHEME

In this section, we discus the error estimates for the fully discrete scheme. To this end,
we set

hI = max
x∈∂BhI (xI)

{‖x− xI‖}, Ω ⊂ ∪NI=1BhI (xI),

whereBhI
(xI) is the open ball with the radius hI and the center xI. Let xhI(xI)={x1, x2,..., xl}

denote a set of nodes in ball BhI (xI) and card{xhI (xI)} represents the number of nodes
in BhI (xI).

In order to get the error estimates, we assume the nodes distribution in the element-free
Galerkin method satisfies the following conditions (see [2, 9]):

H1: For a given node x ∈ Ω, there exists at least m + 1 nodes which satisfies xj ∈
xh(x) ∩Bh/2(x).

H2: There exists a constant c0 such that the weight function ω(x) ≥ c0.
H3: There exists a constant c∗ > 0 such that card{xh(x) ∩B2h(x)} ≤ c∗ for all x ∈ Ω.
H4: Weight function ω ⊆ Cm(Bh(0)) ∩Wm,∞(R).
H5: There exists a constant cp such that hσ ≤ cp, where σ = mini 6=k ‖xi− xk‖, xi and xk

are the ones of the m+ 1 nodes in xh(x) ∩Bh/2(x) mentioned in condition H1.
Now define an index set

ST (x) := {j : ωj(x) 6= 0} , ∀x ∈ Ω.

We note that, for any node x ∈ Ω satisfying ST (x) = {j1, j2, · · · , jk}, one has

h = h(ST (x)) := max{hj1, hj2, · · · , hjk}.

Thus, for any u ∈ Hm+1((Ω)), the semi-norm |u|m+1 is denoted by

(5.36) |u|m+1 =
(∑

m+1
‖Dµu(x)‖2L2(Ω)

)1/2

, x ∈ Ω.

Lemma 5.5. ([2, 27, 28]) Assume the conditions H1 - H5 are satisfied and uh is the moving least-
squares approximation of u. For u ∈ Hm+1(Ω) with 0 ≤ |µ| ≤ m, where m ≥ 1 is the number of
the basis functions used to approximate u in the moving least-squares approximation, there exists
a constant C, which is independent on h, such that

(5.37) ‖Dµu−Dµuh‖L∞(Ω) ≤ Chm+1−|µ||u|m+1,

(5.38) ‖Dµu−Dµuh‖L2(Ω) ≤ Chm+1−|µ||u|m+1,

(5.39) ‖Dµu−Dµuh‖H1(Ω) ≤ Chm−|µ||u|m+1.

We also need the following lemma.

Lemma 5.6. [10, Lemma 7.25] Assume that {gn}Nn=1 and {en}Nn=1 are two sequences of non-
negative numbers satisfying en ≤ cgn + c

∑n
j=1 kjej . Then en ≤ c

(
gn +

∑n
j=1 kjej

)
and

max
1≤n≤N

en ≤ c max
1≤n≤N

gn.

Now we can give an error analysis of the element-free Galerkin method to (1.1). To
complete the proof of Theorem 5.3, we also need the following assumption

(5.40) ∃L∗j > 0 such that |j(g, v1)− j(g, v2)| ≤ L∗j‖g‖‖v1 − v2‖, ∀g, v1, v2 ∈ V.

Theorem 5.3. Assume u and uhkn are the solutions of (1.1) and (4.30), respectively, and utt ∈
L2([0, T ], V ). If B is linear, then the following error estimate holds:

max
1≤n≤N

‖wn−whkn ‖ ≤ C
(
hm+1 + k + h

m+1
2

)
, max

1≤n≤N
‖un−uhkn ‖ ≤ C̃

(
hm+1 + k + h

m+1
2

)
,
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where C and C̃ are constants depending on ‖utt‖L2([0,T ],V ) and M,LA, LB , Lj and L∗j . Here
M,LA, LB , Lj and L∗j are defined by (2.3), (2.5), (2.7) and (5.40), respectively.

Proof. Because whkn ∈ V h ⊂ V , we can take v = whkn in (1.1) at t = tn, where whkn = δuhkn
and δuhkn is defined in (4.28). To simplify the equation, we denote u(tn) = un, ut(tn) = wn
and f(tn) = fn at t = tn. Therefore, (1.1) can be transformed as follows:

(5.41) (Awn, w
hk
n − wn) + (Bun, w

hk
n − wn) + j(wn, w

hk
n )− j(wn, wn) ≥ (fn, w

hk
n − wn)

Adding (4.30) and (5.41), we have

(Awn −Awhkn , wn − whkn )(5.42)

≤ (Awn, v
h − wn) + (Buhkn , vh − whkn ) + (Bun, w

hk
n − wn) + j(wn, w

hk
n )

+ j(whkn , vh)− j(whkn , whkn )− j(wn, wn)− (fn, v
h − wn)

= (Awhkn −Awn, vh − wn) + (Buhkn −Bun, vh − whkn )

+ j(wn, w
hk
n ) + j(whkn , vh)− j(whkn , whkn )− j(wn, vh)− (fn, v

h − wn)

+ (Awn, v
h − wn) + (Bun, v

h − wn) + j(wn, v
h)− j(wn, wn)

= (Awhkn −Awn, vh − wn) + (Buhkn −Bun, wn − whkn )

+ j(wn, w
hk
n ) + j(whkn , wn)− j(whkn , whkn )− j(wn, wn)− (fn, v

h − wn)

+ (Awn, v
h − wn) + (Bun, v

h − wn) + j(wn, v
h)− j(wn, wn)

+ (Buhkn −Bun, vh − wn).

According to the conditions (2.3), (2.5) and (2.7) and the Cauthy-Schwartz inequality, it
follows from (5.42) that

M‖wn − whkn ‖2(5.43)

≤ LA‖wn − whkn ‖‖vh − wn‖+ LB‖uhkn − un‖‖vh − wn‖
+ Lj‖whkn − wn‖‖wn − vh‖+ ‖fn‖‖vh − wn‖+ LA‖wn‖‖vh − wn‖
+ LB‖un‖‖vh − wn‖+ L∗j‖wn‖‖wn − vh‖+ LB‖uhkn − un‖‖wn − whkn ‖.

Using the basic inequality

ab ≤ a2

2ε2
+
b2ε2

2
, ∀a, b ≥ 0 ∀ε 6= 0

to (5.43), one has

(M − Lj)‖wn − whkn ‖2

≤ ε2
1LA
2
‖wn − whkn ‖2 +

LA
2ε2

1

‖vh − wn‖2 +
ε2

2LB
2
‖un − uhkn ‖2 +

LB
2ε2

2

‖vh − wn‖2

+
ε2

3LB
2
‖un − uhkn ‖2 +

LB
2ε2

3

‖wn − whkn ‖2 +
ε2

4LB
2
‖wn − whkn ‖2 +

LB
2ε2

4

‖wn − vh‖2

+ (‖fn‖+ LA‖wn‖+ LB‖un‖)‖vh − wn‖+ L∗j‖wn‖‖wn − vh‖.

This shows that(
M − Lj −

ε2
1LA
2
− LB

2ε2
3

− ε2
4LB
2

)
‖wn − whkn ‖2(5.44)

≤
(
LA
2ε2

1

+
LB
2ε2

2

)
‖vh − wn‖2 +

(
ε2

2LB
2

+
ε2

3LB+

2
+
LB
2ε2

4

)
‖un − uhkn ‖2

+ (‖fn‖+ LA‖wn‖+ L∗j‖wn‖+ LB‖un‖)‖vh − wn‖.
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Choose ε1, ε3 and ε4 such that
(
M − Lj − ε21LA

2 − LB
ε232

)
> 0. Since f ∈ C([0, T ];V ) and

utt ∈ L2([0, T ], V ), it follows from (5.44) that there exists a constant c′ > 0 such that

‖wn − whkn ‖2 ≤ c′
(
‖vh − wn‖2 + ‖un − uhkn ‖2 + ‖vh − wn‖

)
and so

‖wn − whkn ‖ ≤ c
(
‖wn − vh‖+ ‖uhkn − un‖+

√
‖vh − wn‖

)
,(5.45)

where the constant c depends on M,LA, LB , Lj , L
∗
j and ‖utt‖L2([0,T ],V ).

Now we turn to estimate the term ‖uhkn − un‖. From (4.29) and the fact un − u0 =∫ tn
0
w(s)ds, we have

uhkn − un =
∑n

j=1
(whkj − wj)k + uh0 − u0 +

∑n

j=1

(∫ tj

tj−1

wj − w(s)ds

)
and so

‖uhkn − un‖ ≤
n∑
j=1

‖whkj − wj‖k +

n∑
j=1

∫ tj

tj−1

‖wj − w(s)‖ds+ ‖uhk0 − u0‖.(5.46)

Thus, by (5.45) and (5.46), we have

‖wn − whkn ‖(5.47)

≤ c

(
‖wn − vh‖+

∑n

j=1
‖whkj − wj‖k +

∑n

j=1

∫ tj

tj−1

‖wj − w(s)‖ds

+‖uhk0 − u0‖+
√
‖vh − wn‖

)
.

Since wj − w(s) =
∫ tj
s
uttdt, one has

‖wj − w(s)‖ ≤
∫ tj

s

‖utt‖dt ≤ c∗(s− tj) ≤ c∗(tj − tj−1) ≤ c∗k,

where c∗ is a constant depending on ‖utt‖L2([0,T ],V ). Thus, it follows from (5.47) that

‖wn − whkn ‖(5.48)

≤ c

(
‖wn − vh‖+

∑n

j=1
‖whkj − wj‖k + c∗Tk + ‖uhk0 − u0‖+

√
‖vh − wn‖

)
.

Let vh be the moving least-squares approximation of wn. Taking |µ| = 0 in Lemma 5.5,
one has

‖wn − vh‖ ≤ C1h
m+1|wn|m+1, ‖uhk0 − u0‖ ≤ C1h

m+1|u0|m+1,

where C1 is a constant appeared in Lemma 5.5. Letting Ĉ = C1|wn|m+1, we have

‖wn − whkn ‖ ≤ c
(
Ĉhm+1 + c∗Tk +

√
Ĉhm+1 +

∑n

j=1
‖whkj − wj‖k

)
.(5.49)

Thus, it follows from (5.49) and Lemma 5.6 that

max
1≤n≤N

‖wn − whkn ‖ ≤ C
(
hm+1 + k + h

m+1
2

)
,(5.50)

where the constant C depends on M,LA, LB , Lj , L
∗
j , T and ‖utt‖L2([0,T ],V ).

Next we show the second conclusion. Similar to the proof of (5.46), we can show that

‖uhkn − un‖ ≤
n∑
j=1

‖whkj − wj‖k + ‖uhk0 − u0‖+

n∑
j=1

∫ tj

tj−1

‖wj − w(s)‖ds.(5.51)
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As the proof process of (5.48), it follows from (5.51) that

‖uhkn − un‖ ≤
∑n

j=1
‖whkj − wj‖k + ‖uhk0 − u0‖+ c∗Tk.(5.52)

From (5.52) and Lemma 5.6, we obtain

max
1≤n≤N

‖uhkn − un‖ ≤
∑n

j=1
‖whkj − wj‖k + ‖uhk0 − u0‖+ c∗Tk

≤ T max
1≤n≤N

‖whkj − wj‖+ Ĉhm+1 + c∗Tk

≤ C̃
(
hm+1 + k + h

m+1
2

)
,

where the constant C̃ depends on M,LA, LB , Lj , L
∗
j , T and ‖utt‖L2([0,T ],V ). �

Remark 5.3. If A is linear and j(u, v) = IK(v) =

{
0, v ∈ K;
+∞, v /∈ K, then Theorem 5.3

degenerates to Theorem 4.1 of [7].

Remark 5.4. We would like to point out that Theorem 5.3 improves Theorem 3.4 of Ding
et al. [9] in the following aspects: (i) the parabolic evolutionary variational inequality is
extended to the parabolic evolutionary quasivariational inequality; (ii) The linearity of the
operator A is dropped; (iii) The error estimates are more reasonable. In fact, we give the
error estimates of max1≤n≤N‖wn−whkn ‖ and max1≤n≤N‖uhkn − un‖ in Theorem 5.3 of this
paper, while Theorem 3.4 of Ding [9] obtained the error estimate of

max1≤n≤N

(
‖un − uhkn ‖+

∑
0≤n≤N−1

‖un+1 − un + uhkn − uhkn+1‖
)
.

6. A CONCLUDING REMARK

This paper focuses on the study of a class of parabolic evolutionary quasivariational
inequalities in real Hilbert spaces. The existence and uniqueness of the solution for the
parabolic evolutionary quasivariational inequality is proved under some mild conditi-
ons. The error estimate for the parabolic evolutionary quasivariational inequality is also
investigated by using the forward Euler difference scheme and the element-free Galerkin
spatial approximation.

It is well known that variational-hemivariational inequality problems arise in the study
of various nonlinear boundary value problems which can be used to describe many mat-
hematical models in Physics, Mechanics and Engineering Sciences [20, 22]. Thus, it would
be important and interesting to discritize variational-hemivariational inequalities by em-
ploying the element-free Galerkin method in the future work.
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