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Approximation of zeros of m-accretive mappings, with
applications to Hammerstein integral equations
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ADAMU1

ABSTRACT. An algorithm for approximating zeros of m-accretive operators is constructed in a uniformly
smooth real Banach space. The sequence generated by the algorithm is proved to converge strongly to a zero of
an m-accretive operator. In the case of a real Hilbert space, our theorem complements the celebrated proximal
point algorithm of Martinet and Rockafellar for approximating zeros of maximal monotone operators. Further-
more, the convergence theorem proved is applied to approximate a solution of a Hammerstein integral equation.
Finally, numerical experiments are presented to illustrate the convergence of our algorithm.

1. INTRODUCTION

Let E be a real normed space with dual space E∗. A mapping A : E → 2E is called
accretive if for each x, y ∈ E, η ∈ Ax, ν ∈ Ay, there exists j(x− y) ∈ J(x− y) such that〈

η − ν, j(x− y)
〉
≥ 0,

where J : E → 2E
∗

defined by Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖} is
the normalized duality map on E. The mapping A is said to be maximal accretive if A is
accretive and its graph is not included in the graph of any other accretive mapping. Also,
the mapping A is said to be m-accretive if A is accretive and the following range condition
holds: R(I + λA) = E, for all λ > 0.

Interest in the study of accretive mappings stems from their usefulness in several areas
such as in economics, differential equations, calculus of variation, and so on (see e.g.,
Berinde, [2], Browder, [5], Zeildler, [47]).

Consider, for example, the differential equation

du

dt
+Au = 0,(1.1)

where A is an accretive mapping on E. In several applications, equation (1.1) describes
the evolution of physical phenomena which generate energy over time. At equilibrium
state, dudt = 0 and equation (1.1) reduces to

Au = 0,(1.2)

whose solutions then correspond to the equilibrium state of the system described by equa-
tion (1.1). Such equilibrium states are very desirable in many applications, for example,
in ecology, economics, physics and so on.
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In general, a fundamental problem in the study of accretive operators in Banach spaces is
the following:

find u ∈ E such that 0 ∈ Au.(1.3)

Several existence theorems for equation (1.2) have been proved (see e.g., Browder [5]).
Also, methods of approximating solutions of the inclusion 0 ∈ Au have been studied
extensively. One of the classical methods for approximating solutions of inclusion in (1.3)
where A is a maximal monotone operator on a real Hilbert space is the celebrated proximal
point algorithm introduced by Martinet [34] and studied extensively by Rockafellar [41]
and numerous other authors. The algorithm is given by: x0 ∈ H ,

xn+1 =
(
I +

1

λn
A
)−1

xn + en, n ≥ 0,(1.4)

where λn > 0 is a regularizing parameter. Rockafellar [41] proved that if the sequence
{λn}∞n=1 is bounded from above, then the resulting sequence {xn}∞n=1 of the proximal
point iterates converges weakly to a solution of (1.2), provided that a solution exists (see
also Bruck and Reich [9]). Rockafellar [41] then posed the following question.

Question 1. Does the proximal point algorithm always converge strongly?

This question was resolved in the negative by Güler [27] who produced a proper closed
convex function in the infinite dimensional Hilbert space l2 for which the proximal point
algorithm converges weakly but not strongly, (see also Bauschke et al. [3]). This naturally
raised the following questions.

Question 2. Can the proximal point algorithm be modified to guarantee strong convergence?

Question 3. Can another iterative algorithm be developed to approximate a solution of (1.2),
assuming existence, such that the sequence of the algorithm converges strongly to a solution of
(1.2)?

In connection with Question 2, Solodov and Svaiter [44] proposed a modification of the
proximal point algorithm which guarantees strong convergence in a real Hilbert space.
Their algorithm is as follows.

Choose any x0 ∈ H and σ ∈ [0, 1). At iteration k, having xk, choose µk > 0, and find
(yk, vk), an inexact solution of 0 ∈ Tx+ µk(x− xk), with tolerance σ. Define

Ck = {z ∈ H :
〈
z − yk, vk

〉
≤ 0}, Qk = {z ∈ H :

〈
z − xk, x0 − xk

〉
≤ 0}.

Take xk+1 = PCk∩Qk
x0, k ≥ 1.

The authors themselves noted ([44], p. 195) that “. . . at each iteration, there are two sub-
problems to be solved. . . ” : (i) find an inexact solution of the proximal point algorithm,
and (ii) find the projection of x0 onto Ck ∩ Qk. They also acknowledged that these two
subproblems constitute a serious drawback in using their algorithm.

Kamimura and Takahashi [28] extended this work of Solodov and Svaiter [44] to the fra-
mework of Banach spaces that are both uniformly convex and uniformly smooth, where
the operatorA is maximal monotone. Reich and Sabach [40] extended this result to reflex-
ive Banach spaces.

Lehdili and Moudafi [32] considered the technique of the proximal map and the Tikho-
nov regularization to introduce the so-called Prox-Tikhonov method which generates the
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sequence {xn} by the algorithm:

x0 ∈ H, xn+1 = JAn

λn
xn, n ≥ 0,(1.5)

where An := µnI + A, µn > 0 and JAn

λn
:=
(
I + 1

λn
An)−1. Using the notion of variational

distance, Lehdili and Moudafi [32] proved strong convergence theorems for this algorithm
and its perturbed version, under appropriate conditions on the sequences {λn} and {µn}.

Xu [45] also studied the recurrence relation (1.5) in a real Hilbert space. He used the
technique of nonexpansive mappings to get convergence theorems for the perturbed ver-
sion of the algorithm (1.5), under much relaxed conditions on the sequences {λn} and
{µn}.

With respect to Question 3, Bruck [8] considered an iteration process of the Mann-type
[33] and proved that the sequence of the process converges strongly to a solution of (1.2)
in a real Hilbert space, where A is a maximal monotone map, provided the initial vector
is chosen in a neighbourhood of a solution of (1.2). Chidume [13] extended this result to Lp
spaces, p ≥ 2 (see also Reich [37, 38, 39]). These results of Bruck [8] and Chidume [13]
are not easy to use in any possible application because the neighborhood of a solution in
which the initial vector must be chosen is not known precisely.

Still in response to Question 3, Chidume [12] recently proved the following theorem.

Theorem 1.1 (Chidume [12]). Let E be a uniformly smooth real Banach space with modulus
of smoothness ρE , and let A : E → 2E be a multi-valued bounded m-accretive operator with
D(A) = E such that the inclusion 0 ∈ Au has a solution. For arbitrary u1 ∈ E, define a sequence
{un} iteratively by,

un+1 = un − λnηn − λnθn(xn − u1)
)
, ηn ∈ Axn, n ≥ 1,(1.6)

where {λn} and {θn} are sequences in (0, 1) satisfying certain conditions. There exists a constant
γ0 > 0 such that ρE(λn)

λn
≤ γ0θn. Then the sequence {un} converges strongly to a zero of A.

Remark 1.1. This result of Chidume [12] resolves Question 3 in the affirmative but only
for m-accretive operators that bounded. Consequently, the following question is of interest.

Question 4. Can the requirement that A be bounded imposed in Theorem 1.1 be dispensed with?

In this paper, we give an affirmative answer to this question thereby giving a complete
solution to Question 3. This is achieved by means of a new important result concerning
accretive operators, which was recently proved by Chidume et al. [14]. Furthermore,
the convergence theorem proved is applied to approximate a solution of a Hammerstein
integral equation. Finally, some numerical examples are presented to illustrate the strong
convergence of the sequence of our algorithm.

2. PRELIMINARIES

We shall use the following lemmas in the sequel.

Lemma 2.1 (Xu and Roach, [46]). Let E be a uniformly smooth real Banach space. Then, there
exist constants D and C such that for all x, y ∈ E, j(x) ∈ J(x), the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x)〉+Dmax
{
‖x‖+ ‖y‖, 1

2
C
}
ρE(‖y‖),

where ρE denotes the modulus of smoothness of E.
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Lemma 2.2 (see e.g., Chidume, [11]). Let E be a normed real linear space. Then, the following
inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, ∀ j(x+ y) ∈ J(x+ y), ∀ x, y ∈ E.(2.7)

Lemma 2.3 (Fitzpatrick, Hess and Kato, [26]). Let E be a real reflexive Banach space, A :
D(A) ⊂ E → E be an accretive mapping. Then, A is locally bounded at any interior point of
D(A).

Lemma 2.4 (Chidume and Idu, [18]). Let q > 1 and let X, Y be real uniformly smooth spaces.
Let E = X × Y with the norm ‖z‖E = (‖u‖qX + ‖v‖qY )

1
q , for arbitrary z = [u, v] ∈ E. Let

E∗ = X∗ × Y ∗ denote the dual space of E. For arbitrary x = [x1, x2] ∈ E, define the mapping
jEq : E → E∗ by

jEq (x) = jEq [x1, x2] := [jXq (x1), jYq (x2)],

so that for arbitrary z1 = [u1, v1], z2 = [u2, v2] in E, the duality pairing 〈·, ·〉 is given by

〈z1, j
E
q 〉 := 〈u1, j

X
q (u2)〉+ 〈v1, j

Y
q (v2)〉.

Then,
(a) E is uniformly smooth,
(b) jEq is single-valued duality mapping on E.

Lemma 2.5 (Chidume et al., [14]). Let E be a smooth and reflexive real Banach space and A :
E → 2E be an accretive map with 0 ∈ intD(A). Then, for any M > 0, there is exists C > 0 such
that:

(i) (y, v) ∈ G(A);
(ii) 〈v, j(x)− j(x− y)〉 ≤M(2‖x‖+ ‖y‖);

(iii) ‖y‖ ≤M, ‖x‖ ≤M ; imply ‖v‖ ≤ C.

In this lemma, intD(A) denotes the interior of the domain of A and G(A) denotes the
graph of A.

Since this lemma is yet to appear, for completeness, we give its proof here.

Proof. By Lemma 2.3,A is locally bounded at 0. This implies that there exist r > 0, M∗ > 0
such that BE(0, r) := {x ∈ E : ‖x‖ ≤ r} ⊂ int D(A) and

‖u‖ ≤M∗, ∀ x ∈ BE(0, r), u ∈ Ax.

Let M > 0, x ∈ BE(0, r) and y ∈ D(A). Assume that ‖y‖ ≤M and v ∈ Ay such that

〈v, Jx− J(x− y)〉 ≤M(2‖x‖+ ‖y‖).

By the accretivity of A, 〈v − u, J(y − x)〉 ≥ 0, ∀u ∈ Ax. This implies that

〈v, J(x− y)〉 ≤ 〈u, J(x− y)〉 ≤M∗(‖y‖+ r).

Furthermore,

〈v, Jx〉 = 〈v, J(x− y)〉+ 〈v, Jx− J(x− y)〉
≤M∗(‖y‖+ r) +M(2‖x‖+ ‖y‖)
≤M∗(M + r) +M(2r +M).

This implies that

|〈v, Jx〉| ≤M∗(M + r) +M(2r +M), ∀x ∈ BE(0, r).
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For f ∈ BE∗(0, 1), by the reflexivity and smoothness of E, there exists x ∈ BE(0, r) such
that Jx = rf . So,

|〈v, f〉| = 1

r
|〈v, Jx〉| ≤ 1

r

(
M∗(M + r) +M(2r +M)

)
.

Therefore,

sup
‖f‖E∗≤1

|〈v, f〉| ≤ 1

r

(
M∗(M + r) +M(2r +M)

)
.

This completes proof of Lemma 2.5. �

3. MAIN RESULTS

In Theorem 3.2 below, {λn} and {θn} are real sequences in (0, 1) satisfying the following
conditions:

(i) lim
n→∞

θn = 0, {θn} is decreasing;

(ii) lim
n→∞

[ θn−1

θn
− 1

λnθn

]
= 0, and λnθn < 1; (iii)

ρE(M0λn)

M0λn
≤ γ0θn,

for some constants γ0 > 0 and M0 > 0; where ρE is the modulus of smoothness of E.

Prototypes for {λn} and {θn} are: λn =
1

(n+ 1)a
and θn =

1

(n+ 1)b
, where a+ b < 1 and

0 < b < a (see e.g., Chidume and Idu, [18]).

We now prove the following theorem.

Theorem 3.2. Let E be a uniformly smooth real Banach space and A : E → 2E be a multi-valued
m-accretive operator with D(A) = E such that the inclusion 0 ∈ Au has a solution. For arbitrary
x1 ∈ E, define a sequence {xn} by

xn+1 = xn − λnun − λnθn(xn − x1), un ∈ Axn, n ≥ 1.(3.8)

Then, the sequence {xn} converges strongly to a solution of the inclusion 0 ∈ Au.

Proof. First, we show that {xn} is bounded. Let x∗ be a solution of the inclusion 0 ∈ Au.
Then, there exists r > 0 such that x1 ∈ B(x∗, r2 ) := {x ∈ E : ‖x − x∗‖ ≤ r

2}. Define
B = B(x∗, r). Then, for any x ∈ B, we have that ‖x‖ ≤ r + ‖x∗‖.

Let x, y ∈ E and uy ∈ Ay be arbitrary. Since A is locally bounded at 0 ∈ E = int(D(A)),
there exist δ > 0, K > 0 such that ‖uy‖ ≤ K, for all y ∈ B(0, δ). Therefore, we obtain

〈uy, j(x)− j(x− y)〉 ≤ ‖uy‖‖j(x)− j(x− y)‖
≤ K‖j(x)− j(x− y)‖, for y ∈ B(0, δ)

≤ K(2‖x‖+ ‖y‖), for ‖y‖ ≤ δ.
Define

M := max{r+‖x∗‖, δ,K}. So, ‖y‖ ≤M, ‖x‖ ≤M and 〈uy, j(x)−j(x−y)〉 ≤M(2‖x‖+‖y‖),
which implies, by Lemma 2.5, that there exists L > 0 such that ‖uy‖ ≤ L.

Now, define the following constants:

M0 := sup{‖ux + θ(x− x1)‖ : x ∈ B, ux ∈ Ax; 0 < θ < 1}+ 1.

M1 := sup
{
Dmax

{
‖x− x∗‖+ λM0,

C

2

}
: x ∈ B, λ ∈ (0, 1)

}
.
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γ0 :=
1

2
min

{
1,

r2

4M1M0

}
,

where D and C are the constants in Lemma 2.1.

Claim: xn ∈ B, ∀ n ≥ 1.

We prove this by induction. By construction, x1 ∈ B. Assume xn ∈ B for some n ≥ 1.
We prove xn+1 ∈ B. Using the recursion formula (3.8), Lemma 2.1, condition (iii), and
denoting 0 ∈ Ax∗ by 0∗, we compute as follows:

‖xn+1 − x∗‖2 = ‖xn − x∗ − λn(un + θn(xn − x1))‖2

≤ ‖xn − x∗‖2 − 2λn〈un + θn(xn − x1), j(xn − x∗)〉

+Dmax
{
‖xn − x∗‖+ λn‖un + θn(xn − x1)‖, C

2

}
×

ρE(λn‖un + θn(xn − x1)‖)
≤ ‖xn − x∗‖2 − 2λn〈un − 0∗, j(xn − x∗)〉 − 2λnθn〈xn − x1, j(xn − x∗)〉

+M1ρE(λn‖un + θn(xn − x1)‖)
≤ ‖xn − x∗‖2 − 2λnθn‖xn − x∗‖2 + λnθn(‖x∗ − x1‖2 + ‖xn − x∗‖2)

+M1ρE(λn‖un + θn(xn − x1)‖)

≤ (1− λnθn)‖xn − x∗‖2 + λnθn‖x∗ − x1‖2 +M1
ρE(λnM0)

λnM0
λnM0

≤ (1− λnθn)‖xn − x∗‖2 + λnθn‖x∗ − x1‖2 +M1γ0λnθnM0

≤
(

1− 1

2
λnθn

)
r2 ≤ r2.

Hence, xn ∈ B, ∀ n ≥ 1, and so {xn} is bounded. The rest of the proof of the strong con-
vergence of {xn} to a zero of A now follows the same method as in the proof of Theorem
3.2 in [12]. �

4. APPLICATIONS TO HAMMERSTEIN INTEGRAL EQUATIONS

Definition 4.1. Let Ω ⊂ Rn be bounded. Let k : Ω×Ω→ R and f : Ω×R→ R be measu-
rable real-valued functions. An integral equation (generally nonlinear) of Hammerstein-
type has the form

(4.9) u(x) +

∫
Ω

k(x, y)f(y, u(y))dy = w(x),

where the unknown function u and inhomogeneous function w lie in a Banach space E of
measurable real-valued functions.

If we define an operator K by K(v) :=

∫
Ω

κ(x, y)v(y)dy; x ∈ Ω, and the so-called super

position or Nemytskii operator by Fu(y) := f(y, u), then, equation (4.9) can put in the form

(4.10) u+KFu = 0.

Without loss of generality, we have taken w ≡ 0. Interest in Hammerstein integral equa-
tions stems mainly from the fact that several problems that arise in differential equations,
for instance, elliptic boundary value problems whose linear part posses Green’s function
can, as a rule, be transformed into the form of equation (4.9) (see e.g., Pascali and Sburian
[36], Chapter IV). Equations of Hammerstein-type also play a special role in the theory of
optimal control systems and in automation and network theory (see e.g., Dolezale [24]).
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Several existence and uniqueness theorems have been proved for equations of Hammer-
stein type (see, e.g., Brezis and Browder [4], Browder and Gupta [7], Browder et al. [6]
Chepanovich [10], De Figueiredo and Gupta [23]).

Iterative methods for approximating solutions of problem (4.10) have been studied (see
e.g., Brezis and Browder [4], Chidume and Zegeye [15, 16], Chidume and Djitte [17],
Ofoedu and Onyi [35], Shehu [43], Chidume and Idu [18], Djitte and Sene [25], Chidume
and Bello [19], Chidume et al. [21, 22] and the references therein).

In this section, we shall apply Theorem 3.2 to approximate a solution of equation (4.10).
The following definition and lemmas will be needed in what follows.

Definition 4.2. Let C be a nonempty subset of a real normed space, X . A mapping T :
C → X is said to be pseudocontractive if there exists j(x− y) ∈ J(x− y) such that

(4.11) 〈Tx− Ty, j(x− y)〉 ≤ ||x− y||2, ∀ x, y ∈ C,
where J : X → 2X

∗
is the normalized duality map.

The class of pseudocontractive mappings is easily seen to include the nonexpansive map-
pings. Interest in the study of pseudocontractive mappings stems from the fact that a
mapping T is pseudocontractive if and only if (I − T ) is accretive (see, e.g., Kato, [29]).

Definition 4.3. Let C be a nonempty subset of a real normed space, X . The set C is said
to have the fixed point property for nonexpansive self-mappings if every nonexpansive
mapping, T : C → C has a fixed point.

This is the case, for instance, if C is weakly compact, convex and has normal structure
(see, e.g., Kirk, [30]).

Lemma 4.6 (Barbu, [1]). Let E be a real Banach space, A be an m-accretive set of E ×E and let
B : E → E be a continuous, m-accretive operator with D(B) = E. Then, A+B is m-accretive.

Lemma 4.7 (Chidume and Idu, [18]). Let E be a uniformly smooth real Banach space and
X = E × E. Let F,K : E → E be m-accretive mappings. Let A : X → X be defined by
A[u, v] = [Fu− v,Kv + u]. Then, A is m-accretive.

Remark 4.2. We remark that for A defined in Lemma 4.7, [u∗, v∗] is a zero of A if and only
if u∗ solves equation (4.10), with v∗ = Fu∗.

For pseudocontractive mappings, we have the following theorem.

Theorem 4.3 (Kirk, [31]). Let X be a real Banach space, and let C be a nonempty, closed and
convex subset of X which possesses the fixed point property for nonexpansive self-mappings. Let
T : C → C be a Lipschitz pseudocontractive mapping. Then, T has a fixed point.

We now prove the following existence theorem.

Theorem 4.4. Let X be a real Banach space, and let C be a nonempty, closed and convex subset of
X which possesses the fixed point property for nonexpansive self-mappings. Let F,K : C → C be
m-accretive and Lipschitz mappings with D(K) = D(F ) = C. Let E := C ×C and A : E → E
be defined by A[u, v] := [Fu− v, u+Kv]. Then, the equation u+KFu = 0 has a solution in C.

Proof. Define S,Q : E → E by

S[u, v] := [Fu,Kv] Q[u, v] := [−v, u].

Then, A = S + Q. Moreover, S is m-accretive, Q is m-accretive and continuous. By
Lemma 4.6, A is m-accretive. By Kato [29], T := I −A is pseudocontractive. Furthermore,
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T is Lipschitz. By Lemma 4.3, T has a fixed point in C. This fixed point is a solution of
u+KFu = 0. �

We now prove the following theorem.

Theorem 4.5. LetX be a uniformly smooth real Banach space. Let F, K : X → X bem-accretive
mappings. Let E := X × X and A : E → E be defined by A[u, v] := [Fu − v,Kv + u]. For
arbitrary x1, z1 ∈ E, define the sequence {zn} in E by

(4.12) zn+1 = zn − λnAzn − λnθn(zn − x1), n ≥ 1.

Assume that the equation u + KFu = 0 has a solution. Then, the sequence {zn}∞n=1 converges
strongly to a solution of u+KFu = 0.

Proof. By Lemma 2.4, E is uniformly smooth, and by Lemma 4.7, A ism-accretive. Hence,
the conclusion follows from Theorem 3.2 and Remark 4.2. �

Theorem 4.5 can also be stated as follows.

Theorem 4.6. Let X be a uniformly smooth real Banach space and let F, K : X → X be m-
accretive mappings. For (x1, y1), (u1, v1) ∈ X × X , define the sequences {un} and {vn} in E,
by

un+1 = un − λn(Fun − vn)− λnθn(un − x1), n ≥ 1,

vn+1 = vn − λn(Kvn + un)− λnθn(vn − y1), n ≥ 1.

Assume that the equation u + KFu = 0 has a solution. Then, the sequences {un}∞n=1 and
{vn}∞n=1 converge strongly to u∗ and v∗, respectively, where u∗ is the solution of u + KFu = 0
with v∗ = Fu∗.

5. NUMERICAL EXPERIMENT

In this section, we shall numerically demonstrate the convergence of the sequence gene-
rated by the algorithm proposed in this paper. We shall also compare the convergence of
our algorithm with that of the proximal point algorithm and some of its modifications.

Example 5.1. Let E = R and Ax = 4x. Then, A is accretive and 0 ∈ A−1(0). Taking
λn = 1

(n+1)0.2 , and θn = 1
(n+1)0.25 we obtain the following table and graph of |xn| against

number of iterations, where {xn} is the sequence generated algorithm for approximating
solutions of Au = 0, assuming existence.

No of iterations Initial Points |xn| Time (s)
189 2 0.12506344 0.1206655502319336
198 2 0.1247684 0.1018977165222168
600 0.5 0.02405017 0.10132288932800293
944 -0.5 0.02157754 0.09952473640441895
1999 1.5 0.05406199 0.12050509452819824
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Example 5.2. Let u =

[
u1

u2

]
and v =

[
v1

v2

]
. Let F =

[
3 1
−1 8

]
and K =

[
7 −2
2 5

]
. Taking

λn = 1
(n+1)0.2 , and θn = 1

(n+1)0.25 , and the initial points u =

[
2
5

]
and v =

[
2
1

]
, we obtain the

following graph of |un| against number of iterations, where {un} is the sequence genera-
ted by Algorithm (4.12) for approximating solutions of u+KFu = 0, assuming existence.
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ďinformatique et de Recherche Opérationnelle, 4 (1970), 154–158
[35] Ofoedu, E. U. and Onyi, C. E., New implicit and explicit approximation methods for solutions of integral equations

of Hammerstein type, Appl. Math. Comput., 246 (2014), 628–637
[36] Pascali, D. and Sburian, S., Nonlinear mappings of monotone type, Editura Academia Bucureşti, România, 1978
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