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Existence and approximation of a fixed point of a
fundamentally nonexpansive mapping in hyperbolic spaces

HAFIZ FUKHAR-UD-DIN

ABSTRACT. We prove that a fundamentally nonexpansive mapping on a compact and convex subset of a
hyperbolic space, has a fixed point. We also show that one−step iterative algorithm of two mappings is vital for
the approximation of a common fixed point of two fundamentally nonexpansive mappings in a strictly convex
hyperbolic space. Our results are new in metric fixed point theory and generalize several existing results.

1. INTRODUCTION AND PRELIMINARIES

A nonlinear structure for the iterative construction of a fixed point of certain classes
of nonlinear mappings is a metric space embedded with a convex structure. Different
notions of convexity in metric spaces exist in the literature (see, for example, Kohlenbach
[13], Menger [15], Reich and Shafrir [18] etc).

A metric space X is a convex metric space in the sense of Menger [15] if any two points
x, y in X are endpoints of a unique metric segment [x, y], an isometric image of [0, d(x, y)]
and the unique point z = tx⊕ (1− t)y on [x, y] satisfies

d(x, z) = (1− t)d(x, y) and d(z, y) = td(x, y) for t ∈ [0, 1] .

From the definition of convex metric space, we have that
(i) 0x⊕ 1y = y (ii) 1x⊕ 0y = x (iii) tx⊕ (1− t)x = x.

A convex metric space X is hyperbolic if

d (tx⊕ (1− t)y, tz ⊕ (1− t)w) ≤ td (x, z) + (1− t) d (y, w)

for all x, y, z, w ∈ X and t ∈ [0, 1] .
If z = w in the hyperbolic inequality, it becomes

(1.1) d (tx⊕ (1− t)y, z) ≤ td (x, z) + (1− t) d (y, z) .

If tx⊕ (1− t)y ∈ C for all x, y ∈ C and t ∈ [0, 1] , then C is regarded as a convex subset
of X. An important example of a nonlinear hyperbolic space [12] is the CAT(0) space X
which is geodesically connected and every geodesic triangle in X is at least as thin as its
comparison triangle in the Euclidean plane.

For fixed a ∈ X, r > 0 and ε > 0, set

δ(r, ε) = inf
d(a,x)≤r,d(a,y)≤r,

d(x,y)≥rε

(
1− 1

r
d

(
a,

1

2
x⊕ 1

2
y

))
, x, y ∈ X.
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The space X is uniformly convex [23] if δ(r, ε) > 0 and strictly convex [5] whenever
d (z, x) = d(z, tx⊕ (1− t) y) = d (z, y) for x, y, z ∈ X, t ∈ (0, 1) ,we must have that x = y.

From these definitions, it is easy to verify that a uniformly convex metric space X is
strictly convex but the converse is not true in general. There exist strictly convex metric
spaces which are not uniformly convex metric spaces.

Let T be a self-mapping on a subset C of a metric space X. A point x ∈ C is a fixed
point of T if Tx = x. Denote by F (T ), the set of all fixed points of T. The mapping
T is (i) nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C (ii) condition (C) mapping

[25] if
1

2
d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C (iii) fundamen-

tally nonexpansive[6] if d(T 2x, Ty) ≤ d(Tx, y) for all x, y ∈ C (iv) quasi-nonexpansive if
d(Tx, y) ≤ d(x, y) for all x ∈ C, y ∈ F (T ).

For the above mappings, we have the following implications:
Nonexpansive mapping =⇒ condition(C) mapping =⇒ fundamentally nonexpansive

mapping =⇒ quasi-nonexpansive mapping.
In 2014, Ghoncheh and Razani[6] introduced fundamentally nonexpansive mappings

and they showed that these mappings are weaker than condition(C) mappings and stron-
ger than quasi-nonexpansive mappings. In general, fundamentally nonexpansive map-
pings are discontinuous.

In the following example, we give one nonexpansive mapping and two fundamentally
nonexpansive mappings with a common fixed point. Also the example clarify the above
facts about fundamentally nonexpansive mappings.

Example 1.1. Take C = [0, 1] ⊂ R with usual metric. Define R,S, T, U : C → C by

Rx = 1− x,

Sx =


1

2
if x 6= 1

3

4
if x = 1,

Tx =


1

2
if x 6= 1

18

25
if x = 1

and

Ux =

{
0 if x 6= 1

1 if x = 1.

We observe that
(i) R is nonexpansive, S and T are fundamentally nonexpansive with F (R) = F (S) =

F (T ) =

{
1

2

}
but S and T are not condition(C) mappings (ii) U is quasi-nonexpansive

but it is not fundamentally nonexpansive mapping.

Let C be a convex subset of a hyperbolic space X and T1, T2 : C → C nonlinear map-
pings.

(i) Mann’s iterative algorithm[14]:

(1.2) x1 ∈ C, xn+1 = snT1xn ⊕ (1− sn)xn
where {sn} is a sequence in the interval (0, 1).
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(ii) One−step iterative algorithm for two mappings [3]:

(1.3)

x1 ∈ C,
xn+1 = snT1xn ⊕ (1− sn) yn
yn =

tn
1− sn

T2xn ⊕
(
1− tn

1− sn

)
xn

where {sn} and {tn} are sequences in the interval (α, 1 − α) for some α ∈ (0, 1) and
sn + tn < 1.
(iii) Ishikawa’s iterative algorithm[8]:

(1.4)
x1 ∈ C,
xn+1 = snT1yn ⊕ (1− sn)xn
yn = tnT2xn ⊕ (1− tn)xn

where {sn} and {tn} are sequences in the interval (α, 1− α) for some α ∈ (0, 1) .
When T2 = I(the identity mapping), both (1.3) and (1.4) reduce to Mann’s iterative

algorithm (1.2).
For some properties of fixed point set of fundamentally nonexpansive mappings in

Banach spaces, CAT(0) spaces and hyperbolic spaces, we refer the reader to [16, 20, 26].
The interested reader in the study of common fixed points of nonlinear mappings may
consult the references [1, 7, 22].

Keeping in mind the relationship between a strictly convex metric space and a uni-
formly convex metric space, we obtain an analogue of Schu’s Lemma[21] in strictly convex
metric spaces and apply it to study two algorithms in strictly convex metric spaces. The
algorithm (1.3) approximates common fixed point of two fundamentally nonexpansive
mappings in a strictly convex hyperbolic space which cannot be acheived through algo-
rithm (1.4). However, algorithm (1.4) is useful to approximate the common fixed point of
a nonexpansive mapping and a fundamentally nonexpansive mapping in the same setting
of a strictly convex hyperbolic space.

For our main section, we shall need the following lemmas.

Lemma 1.1. [25] A fundamentally nonexpansive mapping T on a subset C of a metric space X,
is quasi-nonexpansive and

d (x, Ty) ≤ 3d (Tx, x) + d (x, y)

for all x, y ∈ C.

Lemma 1.2. [11] Let {xn} and {yn} be sequences in a hyperbolic space X converging, respecti-
vely, to x and y, and {sn} a sequence in [0, 1] converging to s.Then snxn⊕ (1− sn) yn converges
to sx⊕ (1− s) y.

The following is an analogue of Lemma 2.2 [24] whose proof carries over in the setting
of a hyperbolic space without any change.

Lemma 1.3. Let {un} and {vn} be bounded sequences in a hyperbolic space X and {tn} a se-
quence in [0, 1] with 0 < lim infn→∞ tn ≤ lim supn→∞ tn < 1. If un+1 = tnvn ⊕ (1− tn)un
for all n ≥ 1 and lim supn→∞ [d (vn+1, vn)− d (un+1, un)] ≤ 0, then limn→∞ d (un, vn) = 0.

2. FIXED POINT THEOREMS

We start with the following fixed point theorem.

Theorem 2.1. Let C be a nonempty, compact and convex subset of a hyperbolic space X. If T :
C → C is a fundamentally nonexpansive mapping, then T has a fixed point.
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Proof. Define a sequence {Tun} in C by:

u1 ∈ C, Tun+1 =
1

2
T 2un ⊕

1

2
Tun.

Since T is fundamentally nonexpansive, therefore

d
(
T 2un+1, T

2un
)
≤ d (Tun+1, Tun) for all n ≥ 1.

With the help of Lemma 1.3, we see that

(2.5) lim
n→∞

d
(
T 2un, Tun

)
= 0.

Since C is compact, there is a subsequence {Tuni
} of {Tun} such that Tuni

→ u ∈ C.
The inequality

d
(
T 2uni

, u
)
≤ d

(
T 2uni

, Tuni

)
+ d (Tuni

, u)

together with (2.5) implies that

(2.6) lim
i→∞

d
(
T 2uni

, u
)
= 0.

Finally the inequality

d (Tu, u) ≤ d
(
Tu, T 2uni

)
+ d

(
T 2uni , Tuni

)
+ d (Tuni , u)

≤ d
(
T 2uni , Tuni

)
+ 2d (Tuni , u) ,

together with (2.5)-(2.6) provides that Tu = u. �

Since every nonexpansive mapping is fundamentally nonexpansive, we have the follo-
wing result as a consequence of Theorem 2.1.

Corollary 2.1. Let C be a nonempty, compact and convex subset of a hyperbolic space X. If
T : C → C is a nonexpansive mapping, then T has a fixed point.

In case, Lemma 1.3 is unknown to us, we employ Banach contraction principle (BCP)
to obtain the following fixed point theorem.

Theorem 2.2. Let C be a nonempty, compact and convex subset of a complete hyperbolic space
X. If T : C → C is a nonexpansive mapping, then T has a fixed point.

Proof. Set Trx =
1

r
x0 ⊕

(
1− 1

r

)
Tx for a fixed x0 ∈ C and r ≥ 1. Then

d (Trx, Try) = d

(
1

r
x0 ⊕

(
1− 1

r

)
Tx,

1

r
x0 ⊕

(
1− 1

r

)
Ty

)
≤

(
1− 1

r

)
d (Tx, Ty)

≤
(
1− 1

r

)
d (x, y) .

This gives that Tr is a contraction for each r ≥ 1. Therefore by (BCP), each Tr has a unique
fixed point zr in C. That is, Trzr = zr. Since C is compact, there exists a subsequence {zri}
of {zr} such that zri → z.

Since C is bounded and

d (zr, T zr) = d

(
1

r
x0 ⊕

(
1− 1

r

)
Tzr, T zr

)
≤ 1

r
d (x0, T zr)→ 0,
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therefore
d (zr, T zr)→ 0.

Finally we have

d (z, Tz) ≤ d (z, zri) + d (Tzri , T z)

≤ d (z, zri) + d (zri , z)

≤ 2d (z, zri)→ 0,

providing that Tz = z. �

The following theorem is an interesting generalization of BCP obtained by Prešić [17]:

Theorem 2.3. Let X be a complete metric space, n a positive integer,s1, s2, s3, ..., sn ∈ R+,∑n
i=1 si = s < 1 and f : Xn → X a mapping satisfying

d (f (x0, x1, ..., xn−1) , f (x1, x2, ..., xn)) ≤
n∑

i=1

si+1d (xi, xi+1)

for all x0, x1, ..., xn ∈ X. Then f has a unique fixed point y, that is, there exists a unique y ∈ X
such that f (y, y, ..., y) = y and the sequence defined by

xr+1 = f (xr−n+1, ..., xr) , r = n− 1, n, n+ 1, ...

converges to y for any x0, x1, ..., xn−1 ∈ X.

We note that Theorem 2.3 becomes historical BCP when n = 1.
Some generalizations of Theorem 2.3 has been obtained in [2, 19].
Let X be a metric space, n a positive integer, s1, s2, s3, ..., sk ∈ R+,

∑n
i=1 si = s ≤ 1.

A mapping f : Xn → X satisfying

d (f (x0, x1, ..., xn−1) , f (x1, x2, ..., xn)) ≤
n∑

i=1

si+1d (xi, xi+1)

for all x0, x1, ..., xn ∈ X, is called a Prešić nonexpansive mapping [4].
Here we state and prove a fixed point theorem for Prešić nonexpansive mappings on

the product of hyperbolic spaces.

Theorem 2.4. Let C be a nonempty, compact and convex subset of a hyperbolic space X, n a
positive integer, and let f : Xn → X a Prešić nonexpansive mapping. Then f has a fixed point,
that is, there exists y ∈ X such that f (y, y, ..., y) = y.

Proof. Define T : C → C by

T (x) = f (x, x, ..., x) , x ∈ C.
For any w, z ∈ C, we have

d (T (w) , T (z)) = d (f (w,w, ..., w) , f (z, z, ..., z))

≤ d (f (w,w, ..., w) , f (w, ..., w, z))

+d (f (w, ..., w, z) , f (w, ..., w, z, z))

+...+ d (f (w, z, ..., z) , f (z, z, ..., z))

≤ snd (w, z) + sn−1d (w, z) + ...+ s1d (w, z)

=

n∑
i=1

sid (w, z)

= sd (w, z)

≤ d (w, z) .
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This shows that T is nonexpansive. By Theorem 2.1, there exists y ∈ C such that
T (y) = f (y, y, ..., y) = y. �

3. CONVERGENCE THEOREMS

Khan et al. [10] established an analogue of Lemma 1.3 of Schu [21] in uniformly con-
vex hyperbolic spaces which is of crucial importance in the fixed point approximation of
certain nonlinear mappings. Below, we obtain a version of Lemma 1.3 [21] in a strictly
convex hyperbolic space.

Lemma 3.4. Let C be a nonempty, compact and convex subset of a strictly convex hyperbo-
lic space X. Let q ∈ C and {an} be a sequence in [α, β] for some α, β ∈ (0, 1). If {un} and
{vn} are sequences in C such that lim supn−→∞ d(un, q) ≤ c, lim supn−→∞ d(vn, q) ≤ c and
limn−→∞ d(anun ⊕ (1− an) vn, q) = c for some c ≥ 0, then limn→∞ d(un, vn) = 0.

Proof. Suppose on the contrary that lim supn−→∞ d(un, vn) 6= 0. Since C and [α, β] are
compact, there exists subsequences {unk

} of {un}, {vnk
} of {vn} and {ank

} of {an} such
that unk

→ u ∈ C, vnk
→ v ∈ C with u 6= v and ank

→ a ∈ [α, β].
With the help of Lemma 1.2, we have that

c = lim
n−→∞

d(anun ⊕ (1− an) vn, q)

= lim
k−→∞

d(ank
unk
⊕ (1− ank

) vnk
, q)

= d(au⊕ (1− a) v, q).

Moreover,

d (u, q) = lim sup
k−→∞

d(unk
, q) = lim sup

n−→∞
d(un, q) ≤ c

and

d (v, q) = lim sup
k−→∞

d(vnk
, q) = lim sup

n−→∞
d(vn, q) ≤ c.

If

d (u, q) < c,

then

c = d(au⊕ (1− a) v, q)
≤ ad (u, q) + (1− a) d (v, q) < c,

a contradiction. Therefore d (u, q) = c. Similarly d (v, q) = c.
That is,

d (u, q) = d (v, q) = d(au⊕ (1− a) v, q) = c.

By the strict convexity of X, we have u=v, a contradiction. Hence, limn→∞ d(un, vn) =
0. �

Now we state and prove our convergence theorems.

Theorem 3.5. Let C be a nonempty compact and convex subset of a strictly convex hyperbolic
space X. Let T1, T2 : C → C be fundamentally nonexpansive mappings such that F (T1) ∩
F (T2) 6= φ, then the iterative algorithm{xn} defined in (1.3), converges strongly to a common
fixed point of T1 and T2.
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Proof. Let x ∈ F (T1) ∩ F (T2) . Then

d (xn+1, x) = d (snT1xn ⊕ (1− sn) yn, x)

≤ snd (T1xn, x) + (1− sn) d
(

tn
1− sn

T2xn ⊕
(
1− tn

1− sn

)
xn, x

)
≤ snd (xn, x) + tnd (T2xn, x) + (1− sn − tn) d (xn, x)
≤ snd (xn, x) + tnd (xn, x) + (1− sn − tn) d (xn, x)
= d (xn, x) .

That is, limn→∞ d (xn, x) exists. Assume that limn→∞ d (xn, x) = c. If c = 0, the theorem is
finished. Suppose that c > 0. Since lim supn−→∞ d (T1xn, x) ≤ c, lim supn−→∞ d (yn, x) ≤ c
and limn→∞ d (snT1xn ⊕ (1− sn) yn, x) = c, therefore by Lemma 3.4 (with un = T1xn, vn =
xn, q = x, an = sn ), we get that

(3.7) lim
n→∞

d (T1xn, yn) = 0.

Now the estimate

d (xn+1, T1xn) = d (snT1xn ⊕ (1− sn) yn, T1xn)
≤ (1− sn) d (yn, T1xn)
≤ (1− α) d (yn, T1xn)

together with (3.7) implies that

(3.8) lim
n→∞

d (xn+1, T1xn) = 0.

By the triangle inequality, we have

d (xn+1, x) ≤ d (xn+1, T1xn) + d (T1xn, yn) + d (yn, x) .

Taking lim inf on both sides in the above inequality, we have

c ≤ lim inf
n→∞

d (yn, x) ≤ lim sup
n→∞

d (yn, x) ≤ c.

That is,

lim
n→∞

d

(
tn

1− sn
T2xn ⊕

(
1− tn

1− sn

)
xn, x

)
= c.

Again by Lemma 3.4 (with un = T2xn, vn = xn, q = x, an = tn
1−sn ), we have

(3.9) lim
n→∞

d (xn, T2xn) = 0.

Further note that

d (xn+1, xn) ≤ d (xn+1, T1xn) + d (T1xn, yn) + d (yn, xn)

≤ d (xn+1, T1xn) + d (T1xn, yn) +
tn

1− sn
d (T2xn, xn)

< d (xn+1, T1xn) + d (T1xn, yn) + d (T2xn, xn) .

Letting n→∞ in the above inequality, we obtain that

(3.10) lim
n→∞

d (xn+1, xn) = 0.

As a direct use of (3.8),(3.10) in the inequality

d (xn, T1xn) ≤ d (xn, xn+1) + d (xn+1, T1xn) ,

we get that

(3.11) lim
n→∞

d (xn, T1xn) = 0.
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Since C is compact, there exists a subsequence {xni
} of {xn} such that xni

→ w ∈ C. Next
we show that w is a common fixed point of T1 and T2.

Choosing x = xni
, y = w, T = Tj (j = 1, 2) in Lemma 1.1 and applying (3.9) and (3.11),

we have that
d (xni , Tjw) ≤ 3d (Tjxni , xni) + d (xni , w)→ 0.

That is, xni
→ Tjw. Therefore T1w = w = T2w. Since limn→∞ d (xn, w) exists and xni

→ w,
therefore xn → w. �

Theorem 3.6. Let C be a nonempty compact and convex subset of a strictly convex hyperbolic
space X. Let T1, T2 : C → C be nonexpansive and fundamentally nonexpansive mappings, re-
spectively, such that F (T1)∩F (T2) 6= φ, then the Ishikawa’s iterative algorithm {xn} defined in
(1.4) converges strongly to a common fixed point of T1 and T2.

Proof. Let x ∈ F (T1) ∩ F (T2) . Then

d (xn+1, x) = d (snT1yn ⊕ (1− sn)xn, x)
≤ snd (T1yn, x) + (1− sn) d (xn, x)
≤ snd (yn, x) + (1− sn) d (xn, x)
= snd (tnT2xn ⊕ (1− tn)xn, x) + (1− sn) d (xn, x)
≤ sn [tnd (T2xn, x) + (1− tn) d (xn, x)]

+ (1− sn) d (xn, x) .
≤ sn [tnd (xn, x) + (1− tn) d (xn, x)]

+ (1− sn) d (xn, x)
= d (xn, x) .

Hence limn→∞ d (xn, p) exists. Assume that limn→∞ d (xn, x) = c. If c = 0, we have done.
Suppose that c>0. Since lim supn−→∞ d (T1yn, x)≤c and limn→∞ d (snT1yn⊕(1−sn)xn, x)
=c, therefore by Lemma 3.4 (with un = T1yn, vn = xn, q = x, an = sn), we get that

(3.12) lim
n→∞

d (xn, T1yn) = 0.

Next
d (xn, x) ≤ d (xn, T1yn) + d (T1yn, x) ≤ d (xn, T1yn) + d (yn, x)

gives that
c ≤ lim inf

n→∞
d (yn, x) ≤ lim sup

n→∞
d (yn, x) ≤ c.

That is,
lim
n→∞

d (yn, x) = c

which is expressible as

lim
n→∞

d (tnT2xn ⊕ (1− tn)xn, x) = c.

Moreover,
lim sup
n→∞

d (xn, x) = c and lim sup
n→∞

d (T2xn, x) ≤ c.

So again by Lemma 3.4 (with un = T2xn, vn = xn, q = x, an = tn), we have

(3.13) lim
n→∞

d (xn, T2xn) = 0.
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Now observe that

d (xn, T1xn) ≤ d (xn, T1yn) + d (T1yn, T1xn)

≤ d (xn, T1yn) + d (yn, xn)

= d (xn, T1yn) + d (tnT2xn ⊕ (1− tn)xn, xn)
≤ d (xn, T1yn) + tnd (T2xn, xn)

≤ d (xn, T1yn) + (1− α) d (T2xn, xn) .

Taking lim supn→∞ on both sides in the above inequality and using (3.12)-(3.13), we achieve
that

lim sup
n→∞

d (xn, T1xn) = 0.

That is,

(3.14) lim
n→∞

d (xn, T1xn) = 0.

By the compactness of C, we have a subsequence {xni
} of {xn} such that xni

→ w ∈ C.
Since T1 is nonexpansive and (3.14) holds, therefore

d (T1w,w) ≤ d (T1w, T1xni
) + d (T1xni

, xni
) + d (xni

, w)

≤ 2d (xni
, w) + d (T1xni

, xni
)→ 0.

That is, T1w = w. To get T2w = w, we use Lemma 1.1 with x = xni , y = w, T = T2. As
limn→∞ d (xn, w) exists and xni → w, therefore xn → w. �

As a direct consequence of Theorem 3.6, we have the following result.

Theorem 3.7. Let C be a nonempty compact and convex subset of a strictly convex hyperbolic
space X. Let f : Cn → C be a Prešić nonexpansive mapping and T : C → C a fundamentally
nonexpansive mapping such that F (f) ∩ F (T ) 6= φ. Define {xn} as under:

x1 ∈ C,

xn+1 = snf (yn, yn, ..., yn)⊕ (1− sn)xn
yn = tnTxn ⊕ (1− tn)xn

where sn, tn ∈ [α, β] for some α, β ∈ (0, 1). Then {xn} converges strongly to a common fixed
point of f and T.

Remark 3.1. We observe that:
(1) Our results are new in strictly convex hyperbolic spaces which also include uniformly
convex hyperbolic spaces, CAT (0) spaces, Hilbert spaces and uniformly(strictly) convex
Banach spaces, simultaneously.
(2) The iterative algorithm(1.3) is better than the iterative algorithm(1.4) in the sense that
(1.3) approximates a common fixed point of two discontinuous mappings, namely, funda-
mentally nonexpansive mappings while (1.4) requires one mapping to be nonexpansive
which is continuous.
(3) Lemma 3.4 sets an analogue of Lemma 2.5 [10], Theorem 3.5 generalizes Theorem 2.5[3]
for two fundamentally nonexpansive mappings and Theorem 3.6 improves Theorem 2[9]
and Theorems 4.2-4.3 [27] in the setting of strictly convex hyperbolic spaces.

Remark 3.2. The essentials of hypotheses in our Theorems 3.5-3.6 are natural in view of
mappings R,S, T in Example 1.1 with sn = 2−n, tn = 3−n.
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