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ABSTRACT. In this paper, we propose an algorithm with two inertial term extrapolation steps for solving
bilevel equilibrium problem in a real Hilbert space. The inertial term extrapolation step is introduced to speed up
the rate of convergence of the iteration process. Under some sufficient assumptions on the bifunctions involving
pseudomonotone and Lipschitz-type conditions, we obtain the strong convergence of the iterative sequence
generated by the proposed algorithm. A numerical experiment is performed to illustrate the numerical behavior
of the algorithm and also comparison with some other related algorithms in the literature.

1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Hilbert space H , and let f and g
be bifunctions from H ×H to R such that f(x, x) = 0 and g(x, x) = 0 for all x ∈ H . The
equilibrium problem associated with g and C is denoted by EP(C, g) : Find x∗ ∈ C such
that

(1.1) g(x∗, y) ≥ 0 for every y ∈ C,

is well known as the Ky Fan inequality early studied in [18, 39]. We denote the solution
set of problem (1.1) by Ω.

The equilibrium problem can be considered as a generalization of many mathematical
models such as the fixed point problem, the (generalized) Nash equilibrium problem in
game theory, the saddle point problem, the variational inequality problem, the optimiza-
tion problem and others (see, e.g., [4, 17, 27, 36]).

One of the most popular for solving equilibrium problems is the proximal point met-
hod. This method was first introduced by Martinet [32] for monotone variational inequa-
lity problems. After that, it was extended by many authors (see, for instant [26, 35, 42]). In
2008, Tran et al. [46] proposed the extragradient algorithm for solving the equilibrium pro-
blem by using the strongly convex minimization problem to solve at each iteration. Furt-
hermore, Hieu [20] introduced subgradient extragradient methods for pseudomonotone
equilibrium problem and the other methods (see the details in [1, 13, 21, 25, 28, 38, 48]).

In this paper, we consider the bilevel equilibrium problem, that is, the equilibrium
problem whose constraints are the solution sets of equilibrium problem: find x∗ ∈ Ω such
that

(1.2) f(x∗, y) ≥ 0 for every y ∈ Ω,
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where Ω is the solution of the equilibrium problem associated to g and C and denoted by
EP(C, g): find x∗ ∈ C such that

g(x∗, y) ≥ 0 for every y ∈ C.

The solution set of problem (1.2) is denoted by Ω∗.
The bilevel equilibrium problems were introduced by Chadli et al. [8] in 2000. This

kind of problems is a generalization class of problems including, for instance, the follo-
wing particular cases: optimization problems over equilibrium constraints, variational
inequality over equilibrium constraints, hierarchical minimization problems, and com-
plementarity problems. Furthermore, the particular case of the bilevel equilibrium can be
applied to a real word model such as the variational inequality over the fixed point set
of a firmly nonexpansive mapping applied to the power control problem of CDMA net-
works which were introduced by Iiduka [23]. For more details on the relation of bilevel
equilibrium with its particular cases, see [11, 24, 37].

Methods for solving bilevel equilibrium problems have been studied extensively by
many authors. In 2010, Moudafi [34] introduced a simple proximal method and proved
the weak convergence to a solution of problem (1.2). In 2018, Yuying et al. [49] proposed
a method for finding the solution for bilevel equilibrium problems where f is strongly
monotone and g is pseudomonotone and Lipschitz-type continuous. They obtained the
convergent sequence by combining an extragradient subgradient method with the Hal-
pern method. For more details and most recent works on the methods for solving bilevel
equilibrium problems, we refer the reader to [2, 9, 45].

On the other hand, an inertial-type algorithm was first proposed by Polyak [40] as an
acceleration process in solving a smooth convex minimization problem. An inertial-type
algorithm is a two-step iterative method in which the next iterate is defined by making
use of the previous two iterates. It is well known that incorporating an inertial term in an
algorithm accelerates the rate of convergence of the sequence generated by the algorithm.
Recently, there are growing interests in inertial-type algorithm for optimization and va-
riational inequality problems and monotone inclusions (see e.g. [5, 6, 14–16, 29] and the
references therein).

Motivated by the recent interest on inertial-type algorithms and the work of Yuying
et al. [49], we propose an algorithm which is a combination of extragradient algorithm
and inertial extrapolation steps for solving bilevel equilibrium problems in a real Hilbert
space. Under some sufficient assumptions on the bifunctions involving pseudomonotone
and Lipschitz-type conditions the strong convergence theorem of the proposed algorithm
is established. A clear advantage of our results over the result of Yuying et al. [49] is
that our algorithm involves two inertial extrapolation terms which are not present in [49].
The presence of these inertial extrapolation terms makes our proposed iterative algorithm
faster and more efficient than Yuying et al. [49], as confirmed by the given numerical
example in Sect. 4.

2. PRELIMINARIES

Throughout this paper, H is a real Hilbert space, C is a nonempty closed convex sub-
set of H . Denote that xn ⇀ x and xn → x are the weak convergence and the strong
convergence of a sequence {xn} to x, respectively.

We now recall the concept of proximity operator introduced by Moreau [33]. For a
proper, convex and lower semicontinuous function g : H → (−∞,∞] and γ > 0, the
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Moreau envelope of g of parameter γ is the convex function

γg(x) = inf
y∈H

{
g(y) +

1

2γ
‖y − x‖2

}
∀x ∈ H.

For all x ∈ H , the function y 7→ g(y) + 1
2γ ‖y − x‖

2 is proper, strongly convex and lowe
semicontinuous, thus the infimum is attained, i.e. γg : H → R.

The unique minimum of y 7→ g(y) + 1
2γ ‖y− x‖

2 is called proximal point of g at x and it
is denoted by proxg(x). The operator

proxg(x) : H → H

x 7→ arg min
y∈H

{
g(x) +

1

2γ
‖y − x‖2

}
is well-defined and is said to be the proximity operator of g. When g = iC (the indicator
function of the convex set C), one has

proxiC (x) = PC(x),

for all x ∈ H .
We also recall that the subdifferential of g : H → (−∞,∞] at x ∈ domg is defined as

the set of all subgradient of g at x

∂g(x) := {w ∈ H : g(y)− g(x) ≥ 〈w, y − x〉 ∀y ∈ H}.

The function g is called subdifferentiable at x if ∂g(x) 6= ∅, g is said to be subdifferen-
tiable on a subset C ⊂ H if it is subdifferentiable at each point x ∈ C, and it is said to be
subdifferentiable, if it is subdifferentiable at each point x ∈ H , i.e., if Dom(∂g) = H .

The normal cone of C at x ∈ C is defined by

NC(x) := {q ∈ H : 〈q, y − x〉 ≤ 0,∀y ∈ C}.

For every x ∈ H , there exists a unique element PCx defined by

PCx = argmin{‖x− y‖ : y ∈ C},

which can be found, e.g., in [7, 12].

Lemma 2.1 ([19]). The metric projection PC has the following basic properties:
(i) ‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2, ∀x ∈ H and y ∈ C;

(ii) 〈x− PCx, PCx− y〉 ≥ 0, ∀x ∈ H and y ∈ C;
(iii) ‖PC(x)− PC(y)‖ ≤ ‖x− y‖, ∀x, y ∈ H .

Definition 2.1 ([43, 44]). A bifunction ψ : H ×H → R is called:
(i) β-strongly monotone on C if there exists β > 0 such that

ψ(x, y) + ψ(y, x) ≤ −β‖x− y‖2, ∀x, y ∈ C;

(ii) monotone on C if
ψ(x, y) + ψ(y, x) ≤ 0, ∀x, y ∈ C;

(iii) pseudomonotone on C if

ψ(x, y) ≥ 0⇒ ψ(y, x) ≤ 0, ∀x, y ∈ C;

(iv) β-strongly pseudomonotone on C if there exists β > 0 such that

ψ(x, y) ≥ 0⇒ ψ(y, x) ≤ −β‖x− y‖2, ∀x, y ∈ C.
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It is easy to see from the aforementioned definitions that the following implications
hold,

(i)⇒ (ii)⇒ (iii) and (i)⇒ (iv)⇒ (iii).

The converses in general are not true.
In this paper, we consider the bifunctions f and g under the following conditions.

Condition A
(A1) f(x, ·) is convex, weakly lower semicontinuous and subdifferentiable on H for

every fixed x ∈ H .
(A2) f(·, y) is weakly upper semicontinuous on H for every fixed y ∈ H .
(A3) f is δ-strongly monotone on H ×H .
(A4) f is Lipschitz-type continuous, i.e., there are two positive constants c1, c2 such that

f(x, y) + f(y, z) ≥ f(x, z)− c1‖x− y‖2 − c2‖y − z‖2, ∀x, y, z ∈ H.

Condition B
(B1) g(x, ·) is convex, weakly lower semicontinuous and subdifferentiable on H for

every fixed x ∈ H .
(B2) g(·, y) is weakly upper semicontinuous on H for every fixed y ∈ H .
(B3) g is pseudomonotone on C with respect to Ω, i.e.,

g(x, x∗) ≤ 0, ∀x ∈ C, x∗ ∈ Ω.

(B4) g is Lipschitz-type continuous, i.e., there are two positive constants L1, L2 such
that

g(x, y) + g(y, z) ≥ g(x, z)− L1‖x− y‖2 − L2‖y − z‖2, ∀x, y, z ∈ H.

Example 2.1 ([49]). Let f, g : R × R → R be defined by f(x, y) = 5y2 − 7x2 + 2xy and
g(x, y) = 2y2 − 7x2 + 5xy. It follows that f and g satisfy Condition A and Condition B,
respectively.

Lemma 2.2 ([3], Propositions 3.1, 3.2). If the bifunction g satisfies Assumptions (B1), (B2), and
(B3), then the solution set Ω is closed and convex.

Remark 2.1. Let the bifunction f satisfy Condition A and the bifunction g satisfy Condi-
tion B. If Ω 6= ∅, then the bilevel equilibrium problem (1.2) has a unique solution, see the
details in [41].

Lemma 2.3 ([10]). Let φ : C → R be a convex, lower semicontinuous, and subdifferentiable
function on C. Then x∗ is a solution to the convex optimization problem

min{f(x) : x ∈ C}

if and only if
0 ∈ ∂φ(x∗) +NC(x∗).

The following lemmas will be used in the proof of the convergence result.

Lemma 2.4 ([31]). Assume ϕn ∈ [0,+∞) and %n ∈ [0,+∞) satisfy:
(i) ϕn+1 − ϕn ≤ θn(ϕn − ϕn−1) + %n;

(ii)
∑+∞
n=1 %n < +∞;

(iii) {θn} ⊂ [0, θ], where θ ∈ (0, 1).

Then the sequence {ϕn} is convergent with
∑+∞
n=1[ϕn+1−ϕn]+ < +∞, where [t]+ = max{t, 0}

(for any t ∈ R).
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Lemma 2.5 ([47]). Let {an} be a sequence of non-negative real numbers satisfying

an+1 ≤ (1− αn)an + αnξn + σn, ∀n ≥ 0,

where {αn} and σn satisfy the conditions:
(i) {αn} ⊂ (0, 1) for all n ∈ N;

(ii)
∑+∞
n=0 αn = +∞;

(iii) lim supn→∞ ξn ≤ 0;
(iv)

∑+∞
n=0 |σn| < +∞.

Then limn→∞ an = 0.

Lemma 2.6 ([30]). Let {an} be a sequence of real numbers that does not decrease at infinity, in
the sense that there exists a subsequence {anj

} of {an} such that

anj
< anj+1 for all j ≥ 0.

Also consider the sequence of integers {τ(n)}n≥n0 defined, for all n ≥ n0, by

τ(n) = max{k ≤ n | ak < ak+1}.
Then {τ(n)}n≥n0

is a nondecreasing sequence verifying

lim
n→∞

τ(n) =∞,

and, for all n ≥ n0, the following two estimates hold:

aτ(n) ≤ aτ(n)+1 and an ≤ aτ(n)+1.

3. MAIN RESULT

In this section, we propose the algorithm for finding the solution of a bilevel equili-
brium problem under the strong monotonicity and Lipschitztype continuous conditions
on f and the pseudomonotonicity and Lipschitztype continuous conditions on g.

Algorithm 3.1. Initialization: Choose x0, x1 ∈ H , c1 < δ, θ ∈ [0, 1), β ∈ [0, 1), the sequences
{βn} ⊂ (0, 1), {εn} ⊂ [0,+∞), {ρn} and {λn} are such that

0 < ρn ≤
1

2c2
,

βn < 2ρn(δ − c1),∑+∞

n=0
(2ρn(δ − L1)(1 + βn)− βn) = +∞,

0 < λ
−
≤ λn ≤ λ̄ < min

(
1

2L1
,

1

2L2

)
,∑+∞

n=0
εn < +∞.

Iterative steps: We have xn−1, xn ∈ C, do the following Steps.
Step 1. Choose θn such that 0 ≤ θn ≤ θ̄n, where

θn =

min

{
θ,

εn

max(‖xn − xn−1‖ , ‖xn − xn−1‖2)

}
if xn 6= xn−1,

θ otherwise.

Compute sn = xn + θn(xn − xn−1),

yn = arg min
y∈C

{
λng(sn, y) +

1

2
‖y − sn‖2

}
,
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if yn = sn go to Step 3. Otherwise, go to Step 2.
Step 2. Compute

zn = arg min
y∈C

{
λng(yn, y) +

1

2
‖y − sn‖2

}
,

Step 3. Choose βn such that 0 ≤ βn ≤ β̄n, where

βn =

min

{
β,

εn

‖zn − xn‖2

}
if zn 6= xn,

β otherwise.

Compute un = zn + βn(zn − xn),

(3.3) xn+1 = arg min
y∈C

{
ρnf(un, y) +

1

2
‖y − un‖2

}
.

Remark 3.2. We remark here that Step 1. and Step 3. in Algorithm 3.1 are easily im-
plemented in numerical computation since the value of ‖xn − xn−1‖ is a priori known
before choosing θn. Similarly, the value of ‖zn − xn‖ is a priori known before choo-
sing βn. Furthermore, observe that by the assumption that

∑+∞
n=0 εn < +∞, we have that∑+∞

n=0 θn‖xn−xn−1‖ < +∞,
∑+∞
n=0 θn‖xn−xn−1‖2 < +∞ and

∑+∞
n=0 βn‖zn−xn‖2 < +∞.

Lemma 3.7. Let bifunctions f and g satisfy Condition A and Condition B, respectively. Assume
that Ω 6= ∅. Then, the sequences {xn}, {zn}, {sn} and {yn} genertaed by Algorithm 3.1 satisfies
the following estimate

‖xn+1 − x∗‖2 ≤ αn(1 + βn)‖sn − x∗‖2 − αnβn‖xn − x∗‖2 + 2αnβn‖zn − xn‖2

− αn(1 + βn)(1− 2λnL1)‖sn − yn‖2 − αn(1 + βn)(1− 2λnL2)‖yn − un‖2,(3.4)

where αn = 1− 2ρn(δ − c1).

Proof. Under assumptions of two bifunctions f and g, we get the unique solution of the
bilevel equilibrium problem (1.2), denoted by x∗. From the definition of yn and Lemma
2.3 imply that

0 ∈ ∂
{
λng(sn, y) +

1

2
‖y − sn‖2

}
(yn) +NC(yn).

There are w ∈ ∂g(sn, ·)(yn) and w̄ ∈ NC(yn) such that

(3.5) λnw + yn − sn + w̄ = 0.

Since w̄ ∈ NC(yn), we have

(3.6) 〈w̄, y − yn〉 ≤ 0 for all y ∈ C.
By using (3.5) and (3.6), we obtain λn〈w, y − yn〉 ≥ 〈sn − yn, y − yn〉 for all y ∈ C. Since
zn ∈ C, we have

(3.7) λn〈w, zn − yn〉 ≥ 〈sn − yn, zn − yn〉.
It follows from w ∈ ∂g(sn, ·)(yn) that

(3.8) g(sn, y)− g(sn, yn) ≥ 〈w, y − yn〉 for all y ∈ H.
By using (3.7) and (3.8), we get

(3.9) λn{g(sn, zn)− g(sn, yn)} ≥ 〈sn − yn, zn − yn〉.
Similarly, the definition of zn implies that

0 ∈ ∂
{
λng(yn, y) +

1

2
‖y − sn‖2

}
(zn) +NC(zn).
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There are v ∈ ∂g(yn, ·)(zn) and v̄ ∈ NC(x) such that

(3.10) λnv + zn − sn + v̄ = 0.

Since v̄ ∈ NC(zn), we have

(3.11) 〈v̄, y − zn〉 ≤ 0 for all y ∈ C.
By using (3.10) and (3.11), we obtain λn〈v, y − zn〉 ≥ 〈sn − zn, y − zn〉 for all y ∈ C. Since
x∗ ∈ C, we have

(3.12) λn〈v, x∗ − zn〉 ≥ 〈sn − zn, x∗ − zn〉.
It follows from v ∈ ∂g(yn, ·)(zn) that

(3.13) g(yn, y)− g(yn, zn) ≥ 〈v, y − zn〉 for all y ∈ H.
By using (3.12) and (3.13), we get

λn{g(yn, x
∗)− g(yn, zn)} ≥ 〈sn − zn, x∗ − zn〉.

Since x∗ ∈ Ω, we have g(x∗, yn) ≥ 0. If follows from the pseudomonotonicity of g on C
with respect to Ω that g(yn, x

∗) ≤ 0. This implies that

(3.14) 〈sn − zn, zn − x∗〉 ≥ λng(yn, zn).

Since g is Lipschitz-type continuous, there exist two positive constants L1, L2 such that

(3.15) g(yn, zn) ≥ g(sn, zn)− g(sn, yn)− L1‖sn − yn‖2 − L2‖yn − zn‖2.
By using (3.14) and (3.15), we get

〈sn − zn, zn − x∗〉 ≥ λn{g(sn, zn)− g(sn, yn)} − λnL1‖sn − yn‖2 − λnL2‖yn − zn‖2.
From (3.9) and the above inequality, we obtain

(3.16) 2〈sn − zn, zn − x∗〉 ≥ 2〈sn − yn, zn − yn〉 − 2λnL1‖sn − yn‖2 − 2λnL2‖yn − zn‖2.
We know that

2〈sn − zn, zn − x∗〉 = ‖sn − x∗‖2 − ‖zn − sn‖2 − ‖zn − x∗‖2

2〈sn − yn, zn − yn〉 = ‖sn − yn‖2 + ‖zn − yn‖2 − ‖sn − zn‖2.

From (3.16), we can conclude that

(3.17) ‖zn − x∗‖2 ≤ ‖sn − x∗‖2 − (1− 2λnL1)‖sn − yn‖2 − (1− 2λnL2)‖yn − zn‖2.
On the other hand, from the definitions of the proximal mapping and xn+1, we can write

(3.18) xn+1 = arg min
y∈C

{
ρnf(un, y) +

1

2
‖y − un‖2

}
= arg min

y∈C
{fn(y)},

where fn(y)=ρnf(un, y)+ 1
2‖y−un‖

2. From relation (3.18) and using Lemma 2.3, we obtain
0∈fn(xn+1)+NC(xn+1). Thus, there exists w∗n ∈ fn(xn+1) such that −w∗n∈NC(xn+1), i.e.,

(3.19) 〈w∗n, y − xn+1〉 ≥ 0, for all y ∈ C.
Then, by the convexity of f(un, ·), the function fn is strongly convex on C with modulus
1, which implies

(3.20) fn(xn+1) + 〈wn, y − xn+1〉+
1

2
‖y − xn+1‖2 ≤ fn(y), for all y ∈ C,

where wn ∈ ∂fn(xn+1). Substituting wn = w∗n and y = x∗ into relation (3.20) and using
(3.19), we get

fn(xn+1) +
1

2
‖x∗ − xn+1‖2 ≤ fn(x∗),
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which together with the definition of fn, we have

(3.21) ‖xn+1 − x∗‖2 ≤ 2ρn[f(un, x
∗)− f(un, xn+1)] + ‖un − x∗‖2 − ‖xn+1 − un‖2.

Since f is strongly monotone on C with modulus δ,

f(un, x
∗) ≤ −f(x∗, un)− δ‖un − x∗‖2.

Substituting this inequality into (3.21), we have

(3.22) ‖xn+1−x∗‖2 ≤ (1−2ρnδ)‖un−x∗‖2+2ρn[−f(x∗, un)−f(xn+1, un)]−‖xn+1−un‖2.

Now, applying the Lipschitz-type condition of f , we obtain.

−f(un, xn+1)− f(x∗, un) ≤ −f(x∗, xn+1) + c1‖x∗ − un‖2 + c2‖un − xn+1‖2

= c1‖x∗ − un‖2 + c2‖un − xn+1‖2.(3.23)

The later inequality in (3.23) follows from f(x∗, xn+1) ≥ 0, since x∗ is the solution of the
bilevel equilibrium problem (1.2). Substituting into (3.22), we obtain

(3.24) ‖xn+1 − x∗‖2 ≤ [1− 2ρn(δ − c1)]‖un − x∗‖2 − (1− 2ρnc2)‖xn+1 − un‖2.

By the assumption 0 < ρn ≤ 1
2c2

, it follows from (3.24)

(3.25) ‖xn+1 − x∗‖2 ≤ [1− 2ρn(δ − c1)]‖un − x∗‖2.

By the definition of un, we have

‖un − x∗‖2 = ‖zn + βn(zn − xn)− x∗‖2

= ‖zn − x∗‖2 + 2βn〈zn − x∗, zn − xn〉+ β2
n‖zn − xn‖2.(3.26)

Observe that

(3.27) 2βn〈zn − x∗, zn − xn〉 = ‖zn − x∗‖2 − ‖xn − x∗‖2 + ‖zn − xn‖2.

Thus, from (3.26) and (3.27) and noting that β2
n ≤ βn

‖un − x∗‖2 = ‖zn − x∗‖2 + βn(‖zn − x∗‖2 − ‖xn − x∗‖2 + ‖zn − xn‖2) + β2
n‖zn − xn‖2

= ‖zn − x∗‖2 + βn(‖zn − x∗‖2 − ‖xn − x∗‖2) + (βn + β2
n)‖zn − xn‖2

≤ ‖zn − x∗‖2 + βn(‖zn − x∗‖2 − ‖xn − x∗‖2) + 2βn‖zn − xn‖2

= (1 + βn)‖zn − x∗‖2 − βn‖xn − x∗‖2 + 2βn‖zn − xn‖2.(3.28)

Hence, it follows from (3.25) and (3.28) that

(3.29) ‖xn+1 − x∗‖2 ≤ αn(1 + βn)‖zn − x∗‖2 − αnβn‖xn − x∗‖2 + 2αnβn‖zn − xn‖2,

where αn = 1− 2ρn(δ − c1). Combining (3.29) with (3.17), we obtain

‖xn+1 − x∗‖2 ≤ αn(1 + βn)‖sn − x∗‖2 − αnβn‖xn − x∗‖2 + 2αnβn‖zn − xn‖2

− αn(1 + βn)(1− 2λnL1)‖sn − yn‖2 − αn(1 + βn)(1− 2λnL2)‖yn − un‖2,

where αn = 1− 2ρn(δ − c1). This yields the desired conclusion. �

Theorem 3.2. Let bifunctions f and g satisfy Condition A and Condition B, respectively. Assume
that Ω 6= ∅. Then the sequence {xn} generated by Algorithm 3.1 converges strongly to the unique
solution of the bilevel equilibrium problem (1.2).
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Proof. We first show that {xn}, {sn}, {yn} and {zn} are bounded. Since 0 < λn < a, where
a = min

{
1

2L1
, 1
2L2

}
, we have

(1− 2λnL1) > 0 and (1− 2λnL2) > 0.

It follows from Lemma 3.7 and the above inequalities that

‖xn+1 − x∗‖2 ≤ αn(1 + βn)‖sn − x∗‖2 + 2αnβn‖zn − xn‖2 for all n ∈ N.

Since αn(1 + βn) ≤ 1 and αn < 1, we obtain that

(3.30) ‖xn+1 − x∗‖2 ≤ ‖sn − x∗‖2 + 2βn‖zn − xn‖2 for all n ∈ N.

By the definition of sn, we have

‖sn − x∗‖2 = ‖xn + θn(xn − xn−1)− x∗‖2

= ‖xn − x∗‖2 + 2θn〈xn − x∗, xn − xn−1〉+ θ2n‖xn − xn−1‖2.(3.31)

Observe that

(3.32) 2θn〈xn − x∗, xn − xn−1〉 = ‖xn − x∗‖2 − ‖xn−1 − x∗‖2 + ‖xn − xn−1‖2.
Thus, from (3.31) and (3.32) and noting that θ2n ≤ θn
‖sn − x∗‖2 =‖xn − x∗‖2+θn(‖xn − x∗‖2 − ‖xn−1− x∗‖2 +‖xn − xn−1‖2)+θ2n‖xn− xn−1‖2

= ‖xn − x∗‖2 + θn(‖xn − x∗‖2 − ‖xn−1 − x∗‖2) + (θn + θ2n)‖xn − xn−1‖2

≤ ‖xn − x∗‖2 + θn(‖xn − x∗‖2 − ‖xn−1 − x∗‖2) + 2θn‖xn − xn−1‖2.(3.33)

Hence, it follows from (3.30) and (3.32) that

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + θn(‖xn − x∗‖2 − ‖xn−1 − x∗‖2) + 2θn‖xn − xn−1‖2

+ 2βn‖zn − xn‖2.

Now, since
∑+∞
n=0 θn‖xn − xn−1‖2 < +∞ and

∑+∞
n=0 βn‖zn − xn‖2 < +∞, we deduce

from Lemma 2.4 that the sequence {‖xn− x∗‖} is convergent. Thus, {xn} is bounded and∑+∞
n=0[‖xn+1 − x∗‖2 − ‖xn − x∗‖2]+ < +∞. This implies that {sn} is also bounded. By

using (3.17), we have {zn} is bounded.
Next, we will show that the sequence {xn} converges strongly to x∗. Let us consider

two cases. Case 1: Assume that there exists n0 ≥ 0 such that for each n ≥ n0, {‖xn−x∗‖} ≥
{‖xn+1 − x∗‖}. In this case limn→∞ ‖xn − x∗‖ exists and

(3.34) lim
n→∞

(‖xn+1 − x∗‖ − ‖xn − x∗‖) = 0.

It follows from (3.4)

0 ≤ αn(1 + βn)(1− 2λnL1)‖sn − yn‖2 + αn(1 + βn)(1− 2λnL2)‖yn − zn‖2

≤ αn(1 + βn)‖sn − x∗‖2 − ‖xn+1 − x∗‖2 − αnβn‖xn − x∗‖2 + 2αnβn‖zn − xn‖2.

Since αn(1 + βn) ∈ (0, 1), αnβn > 0 and αn < 1, from the above inequality, we get

0 ≤ αn(1 + βn)(1− 2λnL1)‖sn − yn‖2 + αn(1 + βn)(1− 2λnL2)‖yn − zn‖2

≤ ‖sn − x∗‖2 − ‖xn+1 − x∗‖2 + 2βn‖zn − xn‖2.(3.35)

Besides, we obtain

‖sn − x∗‖2 = ‖xn + θn(xn − xn−1)− x∗‖2

≤ (‖xn − x∗‖+ θn‖xn − xn−1‖)2

= ‖xn − x∗‖2 + 2θn‖xn − x∗‖‖xn − xn−1‖+ θ2n‖xn − xn−1‖2
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≤ ‖xn − x∗‖2 + 2θn‖xn − x∗‖‖xn − xn−1‖+ θn‖xn − xn−1‖2

≤ ‖xn − x∗‖2 + 3M1θn‖xn − xn−1‖,(3.36)

where M1 = supn∈N{‖xn − x∗‖, ‖xn − xn−1‖}. Thus, from (3.35) and (3.36), we have

0 ≤ ‖sn − x∗‖2 − ‖xn+1 − x∗‖2 + 2βn‖zn − xn‖2

≤ ‖xn − x∗‖2 + 3M1θn‖xn − xn−1‖ − ‖xn+1 − x∗‖+ 2βn‖zn − xn‖2.

Since
∑+∞
n=0 θn‖xn−xn−1‖ < +∞ and

∑+∞
n=0 βn‖zn−xn‖2 < +∞ together with (3.34), we

get that limn→∞(‖sn − x∗‖2 − ‖xn+1 − x∗‖2 + 2βn‖zn − xn‖2) = 0. It follows from (3.35)
that limn→∞ ‖sn − yn‖ = 0 and limn→∞ ‖yn − zn‖ = 0. From the definition of sn, we have

lim
n→∞

‖xn − sn‖ = lim
n→∞

‖xn − xn − θn(xn − xn−1)‖

= lim
n→∞

θn‖xn − xn−1‖ = 0.(3.37)

We can write inequality (3.4) in the following form

‖xn+1 − x∗‖ ≤ αn(1 + βn)‖sn − x∗‖2 − αn(1 + βn)(1− 2λnL1)‖sn − yn‖2

− αn(1 + βn)(1− 2λnL2)‖yn − zn‖2 + 2βn‖zn − xn‖2

≤ αn(1 + βn)
[
‖xn − x∗‖2 + 3M1θn‖xn − xn−1‖

]
− αn(1 + βn)(1− 2λnL1)‖sn − yn‖2 − αn(1 + βn)(1− 2λnL2)‖yn − zn‖2

+ 2βn‖zn − xn‖2

≤ αn(1 + βn)‖xn − x∗‖2 + 3M1θn‖xn − xn−1‖ − αn(1 + βn)(1− 2λnL1)×
‖sn − yn‖2 − αn(1 + βn)(1− 2λnL2)‖yn − zn‖2 + 2βn‖zn − xn‖2

≤ (1− γn)(1 + βn)‖xn − x∗‖2 − (1− γn)(1 + βn)[(1− 2λnL1)‖sn − yn‖2

+ (1− 2λnL2)‖yn − zn‖2] + 3M1θn‖xn − xn−1‖+ 2βn‖zn − xn‖2

≤ (1− (γn + γnβn − βn))‖xn − x∗‖2 + (γn + γnβn − βn)[(1− 2λnL1)×
‖sn − yn‖2] + (1− 2λnL2)‖yn − zn‖2] + 3M1θn‖xn − xn−1‖
+ 2βn‖zn − xn‖2,(3.38)

where γn := 2ρn(δ−c1). Since βn < γn and 0 < γn < 1, so we have that βn < γn(βn+1) <

βn + 1 this means that γn + γnβn − βn ∈ (0, 1) and
∑+∞
n=0(γn + γnβn − βn) = +∞, we can

apply Lemma 2.5, we can conclude that limn→∞ ‖xn − x∗‖ = 0.
Case 2. Assume that there exists a subsequence {xnj} of {xn} such that ‖xnj − x∗‖ ≤

‖xnj+1 − x∗‖ for all j ∈ N. By Lemma 2.6, there exists a nondecreasing sequence {τ(n)}
of N such that limn→∞ τ(n) =∞ and for each sufficiently large n ∈ N, we have

‖xτ(n) − x∗‖ ≤ ‖xτ(n)+1 − x∗‖ and ‖xn − x∗‖ ≤ ‖xτ(n)+1 − x∗‖.

Similarly from the Case 1, we obtain that

0 ≤ ‖sτ(n) − x∗‖2 − ‖xτ(n)+1 − x∗‖2 + 2βτ(n)‖zτ(n) − xτ(n)‖2

≤ ‖xτ(n) − x∗‖2 + 3M1θn‖xτ(n) − xτ(n)−1‖ − ‖xτ(n)+1 − x∗‖
+ 2βτ(n)‖zτ(n) − xτ(n)‖2.(3.39)

Since ‖xτ(n) − x∗‖ ≤ ‖xτ(n)+1 − x∗‖, we get

0 = ‖sτ(n) − x∗‖2 − ‖xτ(n)+1 − x∗‖2 + 2βτ(n)‖zτ(n) − xτ(n)‖2

≤ ‖xτ(n)+1 − x∗‖2 + 3M1θn‖xτ(n) − xτ(n)−1‖ − ‖xτ(n)+1 − x∗‖
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+ 2βτ(n)‖zτ(n) − xτ(n)‖2.(3.40)

Since
∑+∞
n=0 θτ(n)‖xτ(n) − xτ(n)−1‖ < +∞ and

∑+∞
n=0 βτ(n)‖zτ(n) − xτ(n)‖2 < +∞, we get

that limn→∞(‖sτ(n)−x∗‖2−‖xτ(n)+1−x∗‖2+2βτ(n)‖zτ(n)−xτ(n)‖2) = 0. Thus, we obtain
that limn→∞ ‖sτ(n)−yτ(n)‖ = 0, limn→∞ ‖yτ(n)− zτ(n)‖ = 0 and limn→∞ ‖xτ(n)− sτ(n)‖ =
0. We can write inequality (3.4) in the following form

‖xτ(n)+1 − x∗‖ ≤ ατ(n)(1 + βτ(n))‖sτ(n) − x∗‖2 − ατ(n)(1 + βτ(n))(1− 2λτ(n)L1)×
‖sτ(n) − yτ(n)‖2 − ατ(n)(1 + βτ(n))(1− 2λτ(n)L2)‖yτ(n) − zτ(n)‖2

+ 2βτ(n)‖zτ(n) − xτ(n)‖2

≤ ατ(n)(1 + βτ(n))
[
‖xτ(n) − x∗‖2 + 3M1θτ(n)‖xτ(n) − xτ(n)−1‖

]
− ατ(n)(1 + βτ(n))(1− 2λτ(n)L1)‖sτ(n) − yτ(n)‖2

− ατ(n)(1 + βτ(n))(1− 2λτ(n)L2)‖yτ(n) − zτ(n)‖2 + 2βτ(n)‖zτ(n) − xτ(n)‖2

≤ ατ(n)(1 + βτ(n))‖xτ(n) − x∗‖2 + 3M1θτ(n)‖xτ(n) − xτ(n)−1‖
− ατ(n)(1 + βτ(n))(1− 2λτ(n)L1)‖sτ(n) − yτ(n)‖2

− ατ(n)(1 + βτ(n))(1− 2λτ(n)L2)‖yτ(n) − zτ(n)‖2 + 2βτ(n)‖zτ(n) − xτ(n)‖2

≤ (1− γτ(n))(1 + βτ(n))‖xτ(n) − x∗‖2 − (1− γτ(n))(1 + βτ(n))×
[(1− 2λτ(n)L1)‖sτ(n) − yτ(n)‖2 + (1− 2λτ(n)L2)‖yτ(n) − zτ(n)‖2]

+ 3M1θτ(n)‖xτ(n) − xτ(n)−1‖+ 2βτ(n)‖zτ(n) − xτ(n)‖2

≤ (1− (γτ(n) + γτ(n)βτ(n) − βτ(n)))‖xτ(n) − x∗‖2

+ (γτ(n) + γτ(n)βτ(n) − βτ(n))[(1− 2λτ(n)L1)‖sτ(n) − yτ(n)‖2

+ (1− 2λτ(n)L2)‖yτ(n) − zτ(n)‖2] + 3M1θτ(n)‖xτ(n) − xτ(n)−1‖
+ 2βτ(n)‖zτ(n) − xτ(n)‖2.(3.41)

Where γτ(n) := 2ρτ(n)(δ − c1). Since βτ(n) < γτ(n) and 0 < γτ(n) < 1, so we have that
βτ(n) < γτ(n)(βτ(n) + 1) < βτ(n) + 1 this means that γτ(n) + γτ(n)βτ(n) − βτ(n) ∈ (0, 1) and∑+∞
τ(n)=0(γτ(n) + γτ(n)βτ(n) − βτ(n)) = +∞. By using Lemma 2.5, we can conclude that

limn→∞ ‖xτ(n) − x∗‖ = 0. By above inequality, we have limn→∞ ‖xτ(n)+1 − x∗‖ = 0. By
using ‖xn − x∗‖ ≤ ‖xτ(n)+1 − x∗‖, we get that limn→∞ ‖xn − x∗‖ = 0. Hence xn → x∗ as
n→∞. This completes the proof. �

4. NUMERICAL EXPERIMENT

In this section, we provide a numerical example to test our algorithm. All Matlab codes
were performed on a computer with CPU Intel Core i7-7500U, up to 3.5GHz, 4GB of RAM
under version MATLAB R2015b. In the following example, we use the standard Euclidean
norm and inner product.

Example 4.2. We compare our algorithm with Algorithm 1 proposed in Yuying et al.
[49]. Let us consider a problem when H = Rn and C = {x ∈ Rn : −5 ≤ xi ≤ 5,∀i ∈
{1, 2, ..., n}}. Let the bifunction g : Rn × Rn → R be defined by

g(x, y) = 〈Px+Qy, y − x〉 for all x, y ∈ Rn,
where matrices P and Q are generated randomly such that Q is symmetric positive semi-
definite and Q− P is negative semidefinite. Then g is pseudomonotone on Rn. In fact, let
g(x, y) ≥ 0 for every x, y ∈ Rn, we have

g(y, x) ≤ g(x, y) + g(y, x) = 〈Px+Qy, y − x〉+ 〈Py +Qx, x− y〉
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= 〈(Q− P )(x− y), x− y〉 ≤ 0.

Next, we obtain that g is Lipschitz-type continuous with L1 = L2 = 1
2‖P − Q‖. Indeed,

for each x, y, z ∈ Rn,

g(x, y) + g(y, z)− g(x, z)

= 〈Px+Qy, y − x〉+ 〈Py +Qz, z − y〉+ 〈Px+Qz, z − x〉
= 〈Px, y − x− (z − x)〉+ 〈Qz, z − y − (z − x)〉+ 〈Qy, y − x〉+ 〈Py, z − y〉
= 〈Px, y − z)〉+ 〈Qz, x− y〉+ 〈Qy, y − x〉+ 〈Py, z − y〉
= 〈P (y − x), z − y)〉+ 〈Q(z − y), x− y〉
= 〈P (y − x), z − y)〉+ 〈QT (x− y), z − y〉
= 〈P (y − x), z − y)〉+ 〈Q(x− y), z − y〉 since Q = QT

= 〈(P −Q)(y − x), z − y)〉

≥ −2
‖P −Q‖

2
‖x− y‖‖y − z‖

≥ −‖P −Q‖
2

‖y − x‖2 − ‖P −Q‖
2

‖z − y‖2,

where ‖P − Q‖ is the spectral norm of the matrix ‖P − Q‖, that is, the square root of the
largest eigenvalue of the positive semidefinite matrix (P −Q)T (P −Q). Furthermore, we
define the bifunction f : Rn × Rn → R as

f(x, y) = 〈Ax+By, y − x〉 for all x, y ∈ Rn,
with A and B being positive definite matices defined by

(4.42) B = NTN + nIn and A = B +MTM + nIn,

where M,N are randomly n× n matrices and In is the identity matrix. Then we have f is
n-strongly monotone on Rn. Indeed, let x, y ∈ Rn, we get

f(x, y) + f(y, x) = 〈Ax+By, y − x〉+ 〈Ay +Bx, x− y〉
= −〈(A−B)(x− y), x− y〉
= −〈MTM + nIn(x+ y), x− y〉
= −〈MTM(x+ y), x− y〉 − 〈nIn(x+ y), x− y〉
= −‖M(x− y)‖2 − n‖x− y‖2

≤ −n‖x− y‖2.
Thus, we take δ = n. Next, we obtain that f is Lipschitz-type continuous with c1 = n− 1

and c2 = ‖A−B‖2
4(n−1) . Indeed, let x, y, z ∈ Rn, we have

f(x, y) + f(y, z)− f(x, z)

= 〈Ax+By, y − x〉+ 〈Ay +Bz, z − y〉+ 〈Ax+Bz, z − x〉
= 〈Ax, y − x− (z − x)〉+ 〈Bz, z − y − (z − x)〉+ 〈By, y − x〉+ 〈Ay, z − y〉
= 〈Ax, y − z)〉+ 〈Bz, x− y〉+ 〈By, y − x〉+ 〈Ay, z − y〉
= 〈A(y − x), z − y)〉+ 〈B(z − y), x− y〉
= 〈A(y − x), z − y)〉+ 〈BT (x− y), z − y〉
= 〈A(y − x), z − y)〉+ 〈B(x− y), z − y〉 since B = BT

= 〈(A−B)(y − x), z − y)〉,
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from which it follows that

f(x, y) + f(y, z)− f(x, z) = 〈(A−B)(y − x), z − y)〉

≥ −2
(√
n− 1‖y − x‖

)(‖A−B‖
2
√
n− 1

‖z − y‖
)

≥ −(n− 1)‖y − x‖2 − ‖A−B‖
2

4(n− 1)
‖z − y‖2.

Moreover, ∂f(x, ·)(x) = {(A + B)x} and ‖(A + B)x − (A + B)y‖ ≤ ‖A + B‖‖x − y‖
for all x, y ∈ Rn. Thus the mapping x → ∂f(x, ·)(x) is bounded and ‖A + B‖-Lipschitz
continuous on every bounded subset of H .

It is easy to see that all the conditions of Theorem 3.2 and of Theorem 3.1 in [49] are
satisfied. Now, we compare the performance of our algorithm and algorithm of Yuying et

al. [49], we take λk =
1

k + 5
, αk =

1

k + 4
, ηk =

k + 1

3(k + 4)
, µ =

2

‖A+B‖2
for the algorithm

of Yuying et al. [49]. We take ρk =
1.6(n− 1)

‖A−B‖2
for our algorithm, take the starting points

x0 = x1 ∈ {x ∈ Rn : xi = 3,∀i ∈ {1, 2, ..., n}} for both algorithms. For Algorithm 3.1,

we choose εk =
1

k1.1
, θ ∈ [0, 1) and θk such that 0 ≤ θk ≤ θ̄k, β ∈ [0, 1) and βk such that

0 ≤ βk ≤ β̄k, where

θk =

min

{
θ,

1

k1.1 max(‖xk − xk−1‖ , ‖xk − xk−1‖2)

}
if xk 6= xk−1,

θ otherwise.

and

βk =

min

{
β,

1

k1.1 ‖zk − xk‖2

}
if zk 6= xk,

β otherwise.

To terminate the algorithm, we used the stopping criteria ‖xk+1−xk‖ < εwith ε = 10−3

is a tolerance. From the result reported in the Table 1, we can see that the number of
iterations (No. of Iter.) by Algorithm 3.1 with parameters θ = 0.7 and β = 0.1 is less
than that of Yuying et al. Algorithm [49]. Moreover, Figure 1, Figure 2 and Figure 3
illustrate the numerical behavior of both algorithms. In these figures, the values of the
errors ‖xk+1 − xk‖ are represented by the y-axis, number of iterations are represented by
the x-axis.

TABLE 1. Comparison: proposed Algorithm 3.1 and Yuying et al. [49]
with x0 = x1 ∈ {x ∈ Rn : xi = 3, ∀i = 1, 2, ..., n}, θ = 0.7, β = 0.1.

n Algorithm 3.1 Yuying et al. Algorithm

No. of Iter. CPU (Time) No. of Iter. CPU (Time)
5 20 0.1845 29 0.2069

10 33 0.3353 161 1.2337
50 42 0.6066 309 3.1672
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FIGURE 1. Comparison of proposed Algorithm 3.1 and Yuying et al. [49]
with x0 = (3, 3, 3, 3, 3)T
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FIGURE 2. Comparison of proposed Algorithm 3.1 and Yuying et al. [49]
with x0 = (3, 3, 3, 3, 3, 3, 3, 3, 3, 3)T
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FIGURE 3. Comparison of proposed Algorithm 3.1 and Yuying et al. [49]
with x0 = (3, 3, ..., 3)T where n = 50

5. CONCLUSIONS

The paper has proposed an algorithms with two inertial term extrapolation steps for
solving bilevel equilibrium problem in a real Hilbert space. The algorithm is a combina-
tion of the extragradient technique and inertial effects. Under some sufficient assumptions
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on the bifunctions involving pseudomonotone and Lipschitz-type conditions, we obtain
the strong convergence of the iterative sequence generated by the proposed algorithm.
A numerical results has been reported to illustrate the computational performance of the
algorithm in comparison with Yuying et al. Algorithm [49] This numerical results has also
confirmed that the algorithm with the inertial effects seems to work better than without
inertial effects.
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