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ABSTRACT. A probabilistic version of the Meir-Keeler type fixed point theorem, which characterizes com-
pleteness of the metric space is established. In addition to it, a fixed point theorem for non-expansive map-
pings satisfying (ε− δ) type condition in Menger probabilistic metric space (Menger PM-space) is proved. As a
byproduct we find an affirmative answer to the open question on the existence of contractive mappings which
admit discontinuity at the fixed point (see Rhoades, B. E., Contractive definitions and continuity, Contemporary
Mathematics 72 (1988), 233–245, p. 242) in the setting of Menger PM-space.

1. INTRODUCTION

In a seminal work, Menger [10] introduced the notion of a statistical metric space as an
extension of a metric space (X, d), in which the distance d(x, y) (x, y ∈ X) was replaced
by a distributive function Fx,y : X × X → R, where Fx,y(t) represents the probability
that the distance between x and y is less than t. Following Menger, Schweizer and Sklar
[21, 22] gave detailed study of various properties, namely, topology, convergence of se-
quences, continuity of mappings, completeness, etc., of these spaces. In 1972, Sehgal and
Bharucha–Reid [23] proved the first fixed point result in probabilistic metric space, which
was the probabilistic metric version of the classical Banach contraction mapping princi-
ple. Since then the study of fixed point theorems in probabilistic metric space (PM-space)
has emerged as an active area of research.

In 1971, Ćirić [5] introduced the notion of orbital continuity. If f is a self-mapping of
a metric space (X, d) then the set Of (x) = {fnx | n = 0, 1, 2, . . .} is called the orbit of f
at x and f is called orbitally continuous if u = limi f

mix implies fu = limi ff
mix. Every

continuous self-mapping is orbitally continuous but not conversely. In a recent work Pant
and Pant [13] introduced the notion of k−continuity. A self-mapping f of a metric space
X is called k-continuous, k = 1, 2, 3, . . . , if fkxn → ft whenever {xn}n∈N is a sequence in
X such that fk−1xn → t. It may be observed that 1-continuity is equivalent to continuity
and continuity implies 2-continuity, 2-continuity implies 3-continuity and so on but not
conversely.

More recently Pant et al. [14] introduced the notion of weak orbital continuity.

Definition 1.1. A self-mapping f of a metric space (X, d) is called weakly orbitally con-
tinuous [14] if the set {y ∈ X : limif

miy = u implies limiff
miy = fu} is nonempty,

whenever the set {x ∈ X : limif
mix = u} is nonempty.

Definition 1.2. Let (X, d) be a metric space and f : X → X . A mapping H : X → R is
said to be f -orbitally lower semi-continuous [7] at a point z ∈ X if {xn} is a sequence in
Of (x) for some x ∈ X , limn→+∞ xn = z implies H(z) ≤ lim infn→+∞H(xn).
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Example 1.1. Let X = [0, 2] and d be the usual metric. Define f : X → X by

fx =
(1 + x)

2
if 0 ≤ x < 1, fx = 0 if 1 ≤ x < 2, f2 = 2.

Then [14]:

(i) f is not orbitally continuous. Since fn0→ 1 and f(fn0)→ 1 6= f1.

(ii) f is weakly orbitally continuous. If we take x = 2 then fn2→ 2 and f(fn2)→ 2 =
f2.

(iii) f is not k−continuous. If we consider the sequence {fn0}, then for any integer≥ 1,
we have fk−1(fn0)→ 1 and fk(fn0)→ 1 6= f1.

Example 1.2. Let X = [0,+∞) equipped with usual metric and let f : X → X be defined
by

fx = 1 if 0 ≤ x ≤ 1, fx =
x

5
if x > 1.

Then f is orbitally continuous. Let k ≥ 1 be any integer. Consider the sequence {xn}
given by xn = 5k−1 + 1

n . Then fk−1xn = 1 + 1
n5k−1 , f

kxn = 1
5 + 1

n5k
. This implies

fk−1xn → 1, fkxn → 1
5 6= f1 as n→ +∞. Hence f is not k−continuous.

The above examples show that orbital continuity implies weak orbital continuity but
the converse need not be true. Also, every k-continuous mapping is orbitally continuous,
but the converse is not true. In [12] the author has shown that the f -orbital lower semi-
continuity of x→ d(x, fx) is weaker than orbital continuity.

The question of continuity of contractive definitions at their fixed point was studied by
Rhoades [20] (see also, Hicks and Rhoades [6]). All the contractive definitions studied by
them forced the mappings to be continuous at the fixed point. Rhoades [20] also listed
the question of the existence of a contractive condition that intromits discontinuity at the
fixed point as an open problem. Pant [15] gave the first affirmative answer to this problem
in the setting of metric space. Various other distinct answers to this problem and their
possible applications to neural networks having discontinuities in activation functions
can be found in (Bisht and Pant [3], Bisht and Rakočević [4], Pant and Pant [13], Pant et al.
[14, 16, 17, 18], Tas and Özgür [26]).

In general, a self-mapping f satisfying some contractive condition on a complete
Menger PM-space X ensures existence of a Cauchy sequence of successive iterates
{fnx}n∈N for each x in X , which converges to some point, say z ∈ X, and the limit-
ing point z of the sequence of iterates is known as a fixed point of f. However, there may
exist contractive definitions that ensure the existence of the Cauchy sequence of iterates,
which converges to some limit point, but the limit point may not be a fixed point. There-
fore, to ensure the existence of a fixed point under such contractive definitions, one needs
to assume some additional hypotheses. In this paper, we assume the notions of weak
orbital continuity and lower semicontinuity which may imply discontinuity at the fixed
point but characterize completeness of the space.

2. PRELIMINARIES

First we recall some standard definitions and notations used in probabilistic metric
spaces.
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Let D+ be the set of all distribution functions F : R → [0, 1] such that F is a non-
decreasing, left-continuous mapping satisfying F (0) = 0 and supx∈R F (x) = 1. The space
D+ is partially ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and
only if F (t) ≤ G(t) for all t ∈ R. The maximal element for D+ in this order is the distribu-
tion function given by

ε0(t) =

{
0, t ≤ 0,
1, t > 0.

Definition 2.3. [22] A binary operation T : [0, 1]× [0, 1]→ [0, 1] is continuous t-norm if T
satisfies the following conditions:

(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, 1) = a for all a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d), whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Some of the simple examples of t-norm are T (a, b) = max{a+b−1, 0}, T (a, b) = min{a, b},
T (a, b) = ab and

T (a, b) =

{
ab

a+b−ab , ab 6= 0,

0, ab = 0.

The t-norms are defined recursively by T 1 = T and

Tn(x1, . . . , xn+1) = T (Tn−1(x1, . . . , xn), xn+1),

for n ≥ 2 and xi ∈ [0, 1] for all i ∈ {1, . . . , n+ 1}.

Definition 2.4. A Menger probabilistic metric space (briefly, Menger PM-space) is a triple
(X,F , T ) where X is a non-void set, T is a continuous t-norm, and F is a mapping from
X×X intoD+ such that, if Fx,y denotes the value ofF at the pair (x, y), then the following
conditions hold:

(PM1) Fx,y(t) = ε0(t) if and only if x = y;
(PM2) Fx,y(t) = Fy,x(t);
(PM3) Fx,z(t+ s) ≥ T (Fx,y(t), Fy,z(s)) for all x, y, z ∈ X and s, t ≥ 0.

Remark 2.1. [23] Every metric space is a PM-space. Let (X, d) be a metric space and
T (a, b) = min{a, b} is a continuous t-norm. Define Fx,y(t) = ε0(t− d(x, y)) for all x, y ∈ X
and t > 0. The triple (X,F , T ) is a PM-space induced by the metric d.

Definition 2.5. Let (X,F , T ) be a Menger PM-space.
(1) A sequence {xn}n=1,2,... in X is said to be convergent to x in X if, for every ε > 0

and λ > 0 there exists positive integer N such that Fxn,x(ε) > 1− λ whenever n ≥ N.
(2) A sequence {xn}n=1,2,... inX is called Cauchy sequence if, for every ε > 0 and λ > 0

there exists positive integer N such that Fxn,xm
(ε) > 1− λ whenever n,m ≥ N.

(3) A Menger PM-space is said to be complete if every Cauchy sequence in X is con-
vergent to a point in X.

The following lemma was given in [21, 22].

Lemma 2.1. [22] Let (X,F , T ) be a Menger PM-space. Then the function F is lower semi-
continuous for every fixed t > 0, i.e., for every fixed t > 0 and every two convergent sequences
{xn}, {yn} ⊆ X such that xn → x, yn → y it follows that

lim inf
n→+∞

Fxn,yn
(t) = Fx,y(t).
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3. MAIN RESULTS

3.1. Fixed points of Meir-Keeler type mappings in Menger PM-space. The Meir-Keeler
[9] (see also, [8, 11, 27]) type contractive condition employed in the next proposition en-
sures the convergence of sequence of iterates but does not ensure the existence of a fixed
point.

Proposition 3.1. Let (X,F , T ) be a complete Menger PM-space, and let f be self-mapping of X
satisfying the condition

(i) for every ε ∈ (0, 1) there exists δ ∈ (0, ε] such that

ε− δ ≤ min
{
Fx,fx(t), Fy,fy(t)

}
< ε implies Ffx,fy(t) > ε,

for all x, y ∈ X. Then for any x in X the sequence of iterates {fnx}n=1,2,... is a Cauchy sequence
and there exists a point z in X such that lim

n→+∞
fnx = z for each x in X.

Proof. It is obvious that f satisfies the following contractive condition:

(3.1) Ffx,fy(t) > min
{
Fx,fx(t), Fy,fy(t)

}
.

Let x0 be any point in X. Define a sequence {xn} in X recursively by xn = fxn−1, n =
1, 2, . . .. If xp = xp+1 for some p ∈ N, then xp is a fixed point of f. Suppose xn 6= xn+1 for
all n ≥ 0. Then using (3.1) we have

Fxn,xn+1(t) = Ffxn−1,fxn(t) > min
{
Fxn−1,fxn−1(t), Fxn,fxn

(t)
}
=

= min
{
Fxn−1,xn(t), Fxn,xn+1(t)

}
=

= Fxn−1,xn
(t).

Thus {Fxn,xn+1(t)} is a strictly increasing sequence of positive real numbers in [0, 1] and,
hence, tends to a limit r ≤ 1. Suppose r < 1. Then there exists a positive integer N with
n ≥ N such that

(3.2) r − δ(r) < Fxn,xn+1(t) < r.

This further implies

r − δ(r) < min
{
Fxn,xn+1

(t), Fxn+1,xn+2
(t)
}
< r,

that is,
r − δ(r) < min

{
Fxn,fxn

(t), Fxn+1,fxn+1
(t)
}
< r.

By virtue of (i), this yields Ffxn,fxn+1
(t) = Fxn+1,xn+2

(t) > r. This contradicts (3.2). Hence
lim inf
n→+∞

Fxn,xn+1(t) = 1. Further, if q is any positive integer then for each t > 0, we have

Fxn,xn+q
(t) = Ffxn−1,fxn+q−1

(t) >

> min
{
Fxn−1,fxn−1

(t), Fxn+q−1,fxn+q−1
(t)
}
=

= min
{
Fxn−1,xn

(t), Fxn+q−1,xn+q
(t)
}
.

Since lim inf
n→+∞

Fxn,xn+1(t) = 1, making limit as n→ +∞, the above inequality yields

lim inf
n→+∞

Fxn,xn+q
(t) = 1.

Therefore, {xn} is a Cauchy sequence. Since X is complete, there exists a point z in X
such that lim

n→+∞
xn = lim

n→+∞
fnx0 = z. Moreover, if y0 is any other point in X and yn =

fyn−1 = fny0, then (3.1) yields

Fxn,yn
(t) = Ffxn−1,fyn−1

(t) > min
{
Fxn−1,fxn−1

(t), Fyn−1,fyn−1
(t)
}
=

= min
{
Fxn−1,xn

(t), Fyn−1,yn
(t)
}
.
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Letting n → +∞, we get lim inf
n→+∞

Fz,yn
(t) = 1 for each t > 0. Therefore, lim

n→+∞
yn =

lim
n→+∞

fny0 = z. �

The triple (X,F , Tmin) is a complete Menger PM-space, for X ⊆ R (Remark 2.1). Thus,
the mapping in the next example validates all the condition of Lemma 3.1, but f is fixed
point free [14].

Example 3.3. Let X = [0, 2]. Mapping f : X 7→ X defined by

fx =


1 + x

2
, if 0 ≤ x < 1,

0, if 1 ≤ x < 2.

Then f satisfies the contractive condition (i) with δ(ε) = 1 − ε for ε < 1 and δ(ε) = ε, for
ε ≥ 1, but does not possess a fixed point. It can be easily verified that for each x in X, the
sequence of iterates {fnx}n=1,2,... is a Cauchy sequence and fnx→ 1.

In order to ensure the existence of a fixed point under Meir-Keeler type conditions, we
need some additional conditions. In the next theorem, we assume f to be weakly orbitally
continuous which may not imply continuity at the fixed point.

Theorem 3.1. Let (X,F , T ) be a complete Menger PM-space, and let f be a self-mapping of X
satisfying the condition

(i) for every ε ∈ (0, 1) there exists δ ∈ (0, ε] such that

ε− δ ≤ min
{
Fx,fx(t), Fy,fy(t)

}
< ε implies Ffx,fy(t) > ε,

for all x, y ∈ X. Then f has a unique fixed point if and only if f is weakly orbitally continuous.

Proof. Let x0 be any point in X. Define a sequence {xn} in X recursively by xn = fxn−1,
n = 1, 2, . . .. Then by virtue of Proposition 3.1, it follows that {xn}n=1,2,... is a Cauchy
sequence. Since (X,F , T ) is complete, there exists a point z in X such that lim

n→+∞
xn =

lim
n→+∞

fxn = z.

Suppose that f is weakly orbitally continuous. Since fnx0 → z for each x0, by virtue
of weak orbital continuity of f we get, fny0 → z and fn+1y0 → fz for some y0 ∈ X . This
implies that z = fz since fn+1y0 → z. Therefore z is a fixed point of f .

Conversely, suppose that the mapping f has a fixed point, say z. Then {fnz = z} is
a constant sequence such that limn f

nz = z and limn f
n+1z = z = fz. Hence, f is weak

orbitally continuous. Uniqueness of the fixed point follows from (i). �

The following corollary is an easy consequence of Theorem 3.1:

Corollary 3.1. Let (X,F , T ) be a complete Menger PM-space, and let f be a self-mapping of X
satisfying the condition

(i) for every ε ∈ (0, 1) there exists δ ∈ (0, ε] such that

ε− δ ≤ min
{
Fx,fx(t), Fy,fy(t)

}
< ε implies Ffx,fy(t) > ε,

for all x, y ∈ X. If f is k-continuous or fk is continuous or f is orbitally continuous then f has a
unique fixed point.

The following example illustrates Theorem 3.1.

Example 3.4. Let X = [0, 2] equipped with the Euclidean metric. Define f : X 7→ X by

fx =

{
1, if 0 ≤ x ≤ 1,

x− 1, if 1 < x ≤ 2.
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Then f satisfies all the conditions of Theorem 3.1 and has a unique fixed point x = 1 at
which f is discontinuous. The mapping f satisfies condition (i) with δ(ε) = 1− ε, if ε < 1,
and δ(ε) = ε, for ε ≥ 1. It is also easy to see that the mapping f is orbitally continuous
and, hence, weak orbitally continuous [14].

We now replace the notion of weak orbital continuity assumed in Theorem 3.1 by a
weaker continuity notion, i.e., f -orbitally lower semi-continuity.

Theorem 3.2. Let (X,F , T ) be a complete Menger PM-space, and let f be a self-mapping of X
satisfying condition (i) of Theorem 3.1. Then f has a unique fixed point provided that the function
x→ d(x, fx) is lower semi continuous.

Proof. Let x0 be any point inX.Define a sequence {xn} inX recursively by xn = fxn−1, n =
1, 2, . . .. Then by virtue of Proposition 3.1, it follows that {xn} is a Cauchy sequence. Since
(X,F , T ) is complete, there exists a point z in X such that lim

n→+∞
xn = lim

n→+∞
fxn = z.

Since lim
n→+∞

d(xn, fxn) = 0 and x→ d(x, fx) is lower semi continuous,

0 ≤ d(z, fz) ≤ lim inf
n→+∞

d(xn, fxn) = 0.

This is a contradiction. Hence, f has a fixed point. Uniqueness of the fixed point follows
easily.

�

In the next result, we show that Theorem 3.1 characterizes metric completeness of X .
Fixed point theorems that characterize completeness of the underlying space are impor-
tant in mathematical analysis and various workers have analyzed fixed point theorems
that characterize metric completeness [1, 2, 17, 19, 24, 25]. However, there is a substantive
difference between the next theorem and similar theorems (e. g., Subrahmanyam [24],
Suzuki [25]) giving characterization of completeness in terms of fixed point property for
contractive type mappings [17]. Subrahmanyam [24] and Suzuki [25] have shown that
the contractive condition implies continuity at the fixed point; and completeness of the
metric space X is equivalent to the existence of fixed point. In the next theorem, we prove
that completeness of the space is equivalent to fixed point property for a large class of
mappings including continuous as well as discontinuous mappings.

In what follows we use the notation a� b (or a� b) to show that the positive number
a is much greater (smaller) than the positive number b.

Theorem 3.3. Let (X,F , T ) be a Menger PM-space. If every weakly orbitally continuous self-
mappings of X satisfying the condition (i) of Theorem 3.1 has a fixed point, then X is complete.

Proof. Suppose that every weakly orbitally continuous self-mapping of X satisfying con-
dition (i) of Theorem 3.1 possesses a fixed point. We will prove that X is complete. If
possible, suppose X is not complete. Then there exists a Cauchy sequence in X, say
M = {u1, u2, u3, . . .}, consisting of distinct points which does not converge. Let x ∈ X
be given. Then, since x is not a limit point of the Cauchy sequence M, there exists a least
positive integer N(x) such that x 6= uN(x) and for each m ≥ N(x) and t > 0 we have

(3.3) 1− Fx,uN(x)
(t)� 1− FuN(x),um(t).

Consider a mapping f : X 7→ X by f(x) = uN(x). Then, f(x) 6= x for each x and, using
(3.3), for any x, y in X and t > 0 we get

1− Ffx,fy(t) = 1− FuN(x),uN(y)
(t)� 1− Fx,uN(x)

(t) = 1− Fx,fx(t)
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if N(x) ≤ N(y), or

1− Ffx,fy(t) = 1− FuN(x),uN(y)
(t)� 1− Fy,uN(y)

(t) = 1− Fy,fy(t)

if N(x) > N(y).
This implies that

(3.4) Ffx,fy(t) > min
{
Fx,fx(t), Fy,fy(t)

}
.

In other words, given ε > 0 we can select δ(ε) = ε such that

(3.5) ε− δ ≤ min
{
Fx,fx(t), Fy,fy(t)

}
< ε implies Ffx,fy(t) > ε.

It is clear from (3.4) and (3.5) that the mapping f satisfies condition (i) of Theorem 3.1.
Moreover, f is a fixed point free mapping whose range is contained in the non-convergent
Cauchy sequence M = {un}n∈N. Hence, there exists no sequence {xn}n∈N in X for which
{fxn}n∈N converges, that is, there exists no sequence {xn}n∈N in X for which the con-
dition fxn → t implies f2xn → ft is violated. Therefore, f is a 2-continuous mapping,
hence, weak orbitally continuous mapping. Thus, we have a self-mapping f of X which
satisfies all the conditions of Theorems 3.1 but does not possess a fixed point. This contra-
dicts the hypothesis of the theorem. Hence X is complete. �

3.2. Fixed points of non-expansive mappings in Menger PM-space. We now prove a
fixed point theorem for a non-expansive mapping satisfying (ε− δ) condition.

Theorem 3.4. Let (X,F , T ) be a complete Menger PM-space, and let f be continuous self-
mapping of X satisfying the conditions

(i) for every ε ∈ (0, 1) there exists δ ∈ (0, ε] such that

ε− δ < min
{
Fx,fx(t), Fy,fy(t)

}
< ε implies Ffx,fy(t) ≥ ε,

(ii)
Ffx,fy(t) ≥ min

{
Fx,fx(t), Fy,fy(t)

}
.

for all x, y ∈ X. Then f has a fixed point.

Proof. Let x0 be any point inX.Define a sequence {xn} inX recursively by xn=fxn−1, n=
1, 2, . . .. Then following the lines of Proposition 3.1, it can be shown that {xn} is a Cauchy
sequence. Continuity of f now implies that fz = z and z is a fixed point of f .

�

Remark 3.2. Theorem 3.1 provides a new answer to the once open question (see Rhoades
[20], p. 242) on the existence of contractive mappings which admit discontinuity at the
fixed point.

4. CONCLUSIONS AND FURTHER STUDY

A probabilistic version of the Meir-Keeler type fixed point theorem which characterizes
completeness of the metric space has been proved. A Meir–Keeler type solution to the
Rhoades problem on the existence of contractive mappings that intromit discontinuity at
the fixed point in the setting of Menger PM-space has been given. Using (ε − δ) type
condition, fixed point of non-expansive mapping has been established. New answers
of the Rhoades problem using various other families of contractive definitions will be
studied in our future work.
Acknowledgment. The author is thankful to the referees for their valuable suggestions
for the improvement of the paper.
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