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operators in Banach spaces with applications
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ABSTRACT. An algorithm is constructed to approximate a zero of a maximal monotone operator in a uni-
formly convex and uniformly smooth real Banach space. The sequence of the algorithm is proved to converge
strongly to a zero of the maximal monotone map. In the case where the Banach space is a real Hilbert space, our
theorem complements the celebrated proximal point algorithm of Martinet and Rockafellar. Furthermore, our
convergence theorem is applied to approximate a solution of a Hammerstein integral equation in our general
setting. Finally, numerical experiments are presented to illustrate the convergence of our algorithm.

1. INTRODUCTION

Throughout this paper, we assume H is a real Hilbert space, and E is an arbitrary real
Banach space with dual space E∗, unless otherwise stated. A mapping A : E → 2E

∗
is

called monotone if for each x, y ∈ E, the following inequality holds:〈
η − ν, x− y

〉
≥ 0, ∀ η ∈ Ax, ν ∈ Ay.(1.1)

A is said to be maximal monotone if, in addition, its graph is not included in the graph
of any other monotone mapping. Monotone operators were first introduced by Minty
[43] to aid in the abstract study of electrical networks and later studied by Browder [3]
and his school in the setting of partial differential equations. Later, Zarantonello [59],
Minty [45], Kačurovskii [39] and a host of other authors studied this class of mappings in
Hilbert spaces. Interest in such mappings stems mainly from their usefulness in several
areas of mathematics such as optimization, evolution equations, differential equations,
Hammerstein equations, variational inequality problems, calculus of variation, and so
on.

As an example of applications of monotone mappings, consider the following: Let f :

E → R ∪ {∞} be a proper convex function. The subdifferential of f , ∂f : E → 2E
∗

is
defined by

∂f(x) =
{
x∗ ∈ E∗ : f(y)− f(x) ≥

〈
y − x, x∗

〉
, ∀ y ∈ E

}
.

It is well known that ∂f : E → 2E
∗

is a monotone operator on E, and that 0 ∈ ∂f(x∗)
if and only if x∗ is a minimizer of f . Setting ∂f ≡ A, it follows that solving the inclusion
0 ∈ Ax, in this case, is equivalent to solving for a minimizer of f .

In general, a fundamental problem in the study of monotone operators in Banach spaces
is the following:

Find u ∈ E such that 0 ∈ Au.(1.2)
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This problem has been investigated in Hilbert spaces by numerous researchers.

The proximal point algorithm introduced by Martinet [44] and studied extensively by Rock-
afellar [54] and numerous authors is concerned with an iterative method for approximat-
ing a solution of the inclusion 0 ∈ Au, whereA is a maximal monotone operator. Specifically,
given xn ∈ H , the proximal point algorithm generates the next iterate xn+1 by solving the
following equation:

xn+1 =
(
I + λnA

)−1
xn + en,(1.3)

where λn > 0 is a regularizing parameter. Rockafellar [54] proved that if the sequence
{λn}∞n=1 is bounded from above, then the resulting sequence {xn}∞n=1 of proximal point
iterates converges weakly to a solution of (1.2), when E = H , provided that a solution
exists (see also Bruck and Reich [12]). Rockafellar [54] then posed the following question.

Question 1. Does the proximal point algorithm always converge strongly?

The question was resolved in the negative by Güler [38] who produced a proper closed
convex function g in the infinite dimensional Hilbert space l2 for which the proximal point
algorithm converges weakly but not strongly, (see also Bauschke et al. [2]). This naturally
raised the following questions.

Question 2. Can the proximal point algorithm be modified to guarantee strong convergence?

Question 3. Can another iterative algorithm be developed to approximate a solution of (1.2),
assuming existence, such that the sequence of the algorithm converges strongly to a solution of
(1.2)?

In connection with Question 3, Bruck [11] considered an iteration process of the Mann-
type and proved that the sequence of the process converges strongly to a solution of (1.2)
in a real Hilbert space where A is a maximal monotone map, provided the initial vector is
chosen in a neighborhood of a solution of (1.2). Chidume [34] extended this result to Lp
spaces, p ≥ 2 (see also Reich [50, 51, 52]). These results of Bruck [11] and Chidume [34]
are not easy to use in any possible application because the neighborhood of a solution in
which the initial vector must be chosen is not known precisely.

In connection with Question 2, Solodov and Svaiter [57] proposed a modification of the
proximal point algorithm which guarantees strong convergence in a real Hilbert space.
Their algorithm is as follows.

Choose any x0 ∈ H and σ ∈ [0, 1). At iteration k, having xk, choose µk > 0, and find
(yk, vk), an inexact solution of 0 ∈ Tx+ µk(x− xk), with tolerance σ. Define

Ck = {z ∈ H :
〈
z − yk, vk

〉
≤ 0}, Qk = {z ∈ H :

〈
z − xk, x0 − xk

〉
≤ 0}.

Take xk+1 = PCk∩Qk
x0, k ≥ 1.

The authors themselves noted ([57], p. 195) that “. . . at each iteration, there are two sub-
problems to be solved. . . ” : (i) find an inexact solution of the proximal point algorithm,
and (ii) find the projection of x0 onto Ck ∩ Qk. They also acknowledged that these two
subproblems constitute a serious drawback in using their algorithm.

Kamimura and Takahashi [40] extended this work of Solodov and Svaiter [57] to the
framework of Banach spaces that are both uniformly convex and uniformly smooth. Reich
and Sabach [53] extended this result to reflexive Banach spaces.
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Xu [58] noted that ”...Solodov and Svaiter’s algorithm, though strongly convergent, does
need more computing time due to the projection in the second subproblem...”. He then
proposed and studied the following algorithm:

xn+1 = αnx0 + (1− αn)
(
I + cnA

)−1
xn + en, n ≥ 0.(1.4)

He proved that the sequence {xn} generated by algorithm (1.4) converges strongly to
a solution of 0 ∈ Au provided that the sequences {αn} and {cn} of real numbers and
the sequence {en} of errors are chosen appropriately. We note here, however, that the
occurrence of errors is random and so the sequence {en} cannot actually be chosen.

Lehdili and Moudafi [41] considered the technique of the proximal map and the Tikhonov
regularization to introduce the so-called Prox-Tikhonov method which generates the se-
quence {xn} by the algorithm:

xn+1 = JAn

λn
xn, n ≥ 0,(1.5)

where An := µnA+A, µn > 0 and JAn

λn
:=
(
I + λnAn)−1. Using the notion of variational

distance, Lehdili and Moudafi [41] proved strong convergence theorems for this algorithm
and its perturbed version, under appropriate conditions on the sequences {λn} and {µn}.

Some recent results connected with the proximal point algorithm can be found in the
following papers: Matsushita and Xu [42], Bot and Csetnek [13].

In response to Question 3, Chidume et al. [16] recently proved the following theorem,
where J is the normalized duality map on E.

Theorem 1.1 (Chidume et al. [16]). Let E be a uniformly convex and uniformly smooth real
Banach space and let E∗ be its dual. Let A : E → 2E

∗
be a maximal monotone and bounded

mapping with A−1(0) 6= ∅. For arbitrary u1 ∈ E, define a sequence {un} iteratively by:

un+1 = J−1
(
Jun − λnηn − λnθn(Jxn − Ju1)

)
, ηn ∈ Axn, n ≥ 1,(1.6)

where {λn} and {θn} are sequences in (0, 1) satisfying certain conditions. Then, the sequence
{un} converges strongly to a solution of 0 ∈ Au.

Remark 1.1. This result of Chidume et al. [16] answers Question 3 for the restricted class
of maximal monotone operators that are bounded. Hence, the following question is of
interest.

Question 4. Can the requirement that A be bounded imposed in Theorem 1.1 be dispensed with?

It is our purpose in this paper to first give an affirmative answer to this question. Sec-
ondly, we apply the convergence theorem proved to approximate a solution of a Ham-
merstein integral equation. Finally, a numerical example is presented to illustrate the
convergence of the sequence of our algorithm.

2. PRELIMINARIES

In the sequel, we shall need the following definitions and results. Let E be a smooth real
Banach space with dual E∗. The Lyapounov functional φ : E × E → R introduced in
Alber and Ryazantseva [1], is defined by:

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, for x, y ∈ E,(2.7)
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where J is the normalized duality mapping from E into E∗. It is obvious from the definition
of the function φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2 for x, y ∈ E.(2.8)

Define a mapping V : E × E∗ → R by

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2, for x ∈ E, x∗ ∈ E∗.(2.9)

Then, it is easy to see that

V (x, x∗) = φ(x, J−1(x∗)), ∀x ∈ E, x∗ ∈ E∗.(2.10)

We shall use the following lemmas in the sequel where Int D(A) denotes the interior of
the domain of A.

Lemma 2.1 (Pascali and Sburian [48] Lemma 3.6, Ch. III ). Let X be a real normed space and
A : X → 2X

∗
be a monotone mapping with 0 ∈ IntD(A). Then, A is quasi-bounded, i.e., for any

M > 0, there is exists C > 0 such that:

(i) (y, v) ∈ G(A); (ii) 〈v, y〉 ≤M‖y‖; and (iii) ‖y‖ ≤M, imply ‖v‖ ≤ C.

Lemma 2.2 (Alber and Ryazantseva [1]). Let X be a reflexive strictly convex and smooth Ba-
nach space with X∗ as its dual. Then,

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗)(2.11)

for all x ∈ X and x∗, y∗ ∈ X∗.

Lemma 2.3 (Alber and Ryazantseva [1], p.50). Let X be a reflexive strictly convex and smooth
Banach space with X∗ as its dual. Let W : X × X → R1 be defined by W (x, y) = 1

2φ(y, x).
Then,

W (x, y)−W (z, y) ≥ 〈Jx− Jz, z − y〉,

i.e., φ(y, x)− φ(y, z) ≥ 2〈Jx− Jz, z − y〉,

and also W (x, y) ≤ 〈Jx− Jy, x− y〉,

for all x, y, z ∈ X.

Lemma 2.4 (Alber and Ryazantseva [1], p.45). Let X be a uniformly convex Banach space.
Then, for any R > 0 and any x, y ∈ X such that ‖x‖ ≤ R, ‖y‖ ≤ R, the following inequality
holds: 〈Jx− Jy, x− y〉 ≥ (2L)−1δX(c−1

2 ‖x− y‖), where c2 = 2max{1, R}, 1 < L < 1.7.

Define

(2.12) K := 4RLsup{‖Jx− Jy‖ : ‖x‖ ≤ R, ‖y‖ ≤ R}+ 1.

Lemma 2.5 (Alber and Ryazantseva [1], p.46). Let X be a uniformly smooth and strictly con-
vex Banach space. Then for anyR > 0 and any x, y ∈ X such that ‖x‖ ≤ R, ‖y‖ ≤ R the follow-
ing inequality holds: 〈Jx− Jy, x− y〉 ≥ (2L)−1δX∗(c−1

2 ‖Jx− Jy‖), where c2 = 2max{1, R},
1 < L < 1.7, and δX is the modulus of convexity of X .
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3. MAIN RESULTS

In Theorem 3.2 below, λn and θn are real sequences in (0, 1) satisfying the following con-
ditions:

(i)
∑∞
n=1 λnθn =∞; (ii) λnM

∗
0 ≤ γ0θn; δ−1

E (λnM
∗
0 ) ≤ γ0θn,

(iii) lim
n→∞

δ−1
E

(
θn−1−θn

θn
K
)

λnθn
=
δ−1
E∗

(
θn−1−θn

θn
K
)

λnθn
= 0, (iv)

1

2

(
θn−1−θn

θn
K
)
∈ (0, 1),

for some constants M∗0 > 0, and γ0 > 0; where δE : (0,∞) → (0,∞) is the modulus of
convexity of E and K > 0 is as defined in 2.12.

Example 3.1. The prototypes for λn and θn in Theorem 3.2 below are the following: λn =
1

(n+1)a , θn = 1
(n+1)b

, where 0 < b < min{ar ,
1
K }, a+ b < 1/r, where K > 0 is as defined in

2.12, r = max{p, q}, p, q > 1 and 1
p + 1

q = 1.

The verification that λn and θn defined above satisfy conditions (i) − (iv) is given in
Chidume and Idu [18]. We now prove the following theorem.

Theorem 3.2. Let E be a uniformly convex and uniformly smooth real Banach space and letE∗ be
its dual. Let A : E → 2E

∗
be a maximal monotone mapping. Assume A−1(0) 6= ∅. For arbitrary

u ∈ E, define a sequence {xn} iteratively by: x1 ∈ E,

xn+1 = J−1
(
Jxn − λnηn − λnθn(Jxn − Ju)

)
, n ≥ 1,(3.13)

where ηn ∈ Axn, n ≥ 1. Then, the sequence {xn} converges strongly to a zero of A.

Proof. First, we show that {xn} is bounded. SinceA−1(0) 6= ∅, let x∗ ∈ A−1(0). Then, there
exists r > 0 such that max{φ(x∗, u), φ(x∗, x1)} ≤ r

8
and 0 ∈ B := {x ∈ E : φ(x∗, x) < r}.

Observe that for any x ∈ B, we have that ‖x‖ ≤
√
r + ‖x∗‖. Since A is locally bounded at

0, there exist h0 > 0, m0 > 0 such that ||ηx|| ≤ m0, ηx ∈ Ax, ∀ x ∈ Bh0
(0) ⊂ B. Let y ∈ B

be arbitrary. By monotonicity of A, we have that:

〈ηy, y〉 ≥ 〈ηx, y − x〉+ 〈ηy, x〉, ηy ∈ Ay
〈ηy,−y〉 ≤ 〈ηx, x− y〉+ 〈ηy,−x〉

Set v = −y, we have that:

〈ηy, v〉 ≤ 〈ηx, x+ v〉+ 〈ηy,−x〉
≤ ||ηx|| (||x||+ ||v||) + ||ηy|| ||x||

sup
||v||≤

√
r+‖x∗‖

|〈ηy, v〉| ≤ m0

(
h0 + ||x∗||+

√
r
)

+ ||ηy||h0

(
√
r + ||x∗||)||ηy|| = sup

||v||≤1

|〈ηy, v〉| ≤ m0

(
h0 + ||x∗||+

√
r
)

+ ||ηy||h0

||ηy|| ≤
m0 (h0 + ||x∗||+

√
r)

||x∗||+
√
r − h0

:= M∗, ∀ y ∈ B.

Define M∗0 := max{M∗, ||x∗||+
√
r}. This implies that

〈ηy, y〉 ≤M∗0 ||y|| and ||y|| ≤M∗0 .
By Lemma 2.1 there exists c > 0 such that ‖ηy‖ ≤ c, ηy ∈ Ay. SinceE is uniformly smooth,
J is uniformly continuous on bounded sets and so maps bounded sets to bounded sets.
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Now, define

M0 := sup{‖η + θ(Jx− Ju)‖ : θ ∈ (0, 1), x ∈ B, η ∈ Ax}+ 1.

M1 := sup{‖Jx− Ju‖ : x ∈ B}+ 1.

M2 := sup
{∥∥∥J−1

(
Jx− λη − λnθn(Jx− Ju)

)
− x
∥∥∥ : λ, θ ∈ (0, 1), x ∈ B, η ∈ Tx

}
+ 1.

Let M := max{M2M0, c2M0, c2M1}, and γ0 := min
{

1,
r

16M

}
, where c2 is the constant in

Lemma 2.4.

Claim: φ(x∗, xn) ≤ r, for all n ≥ 1.

We proceed by induction. By construction, φ(x∗, x1) ≤ r. Suppose φ(x∗, xn) ≤ r, for some
n ≥ 1. We show φ(x∗, xn+1) ≤ r. Suppose this is not the case, then φ(x∗, xn+1) > r. From
Lemma 2.4 and the recurrence relation (3.13), we have that

(2L)−1δE(c−1
2 ‖xn+1 − xn‖) ≤ 〈Jxn+1 − Jxn, xn+1 − xn〉

≤ ‖Jxn+1 − Jxn‖‖xn+1 − xn‖
≤ λnM0‖xn+1 − xn‖.(3.14)

We hence obtain that

(3.15) ‖xn+1 − xn‖ ≤ c2δ−1
E (λnM

∗
0 ), for some M∗0 > 0.

Using inequality (2.11) with y∗ = λnηn+λnθn(Jxn−Ju), we obtain, using also inequality
(3.15) and the monotonicity of A that:

φ(x∗, xn+1) = V (x∗, Jxn − λnηn − λnθn(Jxn − Ju))

≤ V (x∗, Jxn)− 2λn〈xn+1 − xn, ηn + θn(Jxn − Ju)〉
−2λn〈xn − x∗, ηn + θn(Jxn − Ju)〉

≤ φ(x∗, xn)− 2λn〈xn − x∗, ηn + θn(Jxn − Ju)〉
+2λn‖xn+1 − xn‖‖ηn + θn(Jxn − Ju)‖

≤ φ(x∗, xn)− 2λnθn〈xn − x∗, Jxn − Ju〉+ 2λnM0c2δ
−1
E (λnM

∗
0 )

≤ φ(x∗, xn)− 2λnθn〈xn − xn+1, Jxn − Ju〉
−2λnθn〈xn+1 − x∗, Jxn − Jxn+1〉
−2λnθn〈xn+1 − x∗, Jxn+1 − Ju〉+ 2λnM0c2δ

−1
E (λnM

∗
0 ).

We have from Lemma 2.3 that,

−2λnθn〈xn+1 − x∗, Jxn+1 − Ju〉 ≤ λnθnφ(x∗, u)− λnθnφ(x∗, xn+1).
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Substituting this in inequality (3.16), we obtain that:

r < φ(x∗, xn+1)

≤ φ(x∗, xn)− λnθnφ(x∗, xn+1) + λnθnφ(x∗, u) + 2λnθnM1c2δ
−1
E (λnM

∗
0 )

+2λnθnM2(λnM0) + 2λnM0c2δ
−1
E (λnM

∗
0 )

≤ φ(x∗, xn)− λnθnφ(x∗, xn+1) + λnθnφ(x∗, u) + 2λnθnγ0M1c2

+2λnθnγ0M2M0 + 2λnθnγ0M0c2

≤ φ(x∗, xn)− λnθnφ(x∗, xn+1) + 4λnθn
r

8

≤ r − λnθnr +
λnθnr

2
= r − λnθnr

2
< r.

This is a contradiction. Hence, {xn}∞n=1 is bounded. The rest of the argument to establish
that {xn} converges strongly to a zero ofA now follows exactly as in the proof of Theorem
3.2 in [16]. �

4. APPLICATION TO HAMMERSTEIN INTEGRAL EQUATIONS

In this section, we apply Theorem 3.2 to approximate a solution of a Hammerstein integral
equation.

Definition 4.1. Let Ω ⊂ Rn be bounded. Let k : Ω×Ω→ R and f : Ω×R→ R be measur-
able real-valued functions. An integral equation (generally nonlinear) of Hammerstein-
type has the form

(4.16) u(x) +

∫
Ω

k(x, y)f(y, u(y))dy = w(x),

where the unknown function u and inhomogeneous function w lie in a Banach space E of
measurable real-valued functions.

By some transformation, equation (4.16) can be written as

(4.17) u+KFu = 0,

where, without loss of generality, we have taken w(x) = 0, ∀ x ∈ E (see e.g., Pascali and
Sburian [48]).

Interest in Hammerstein integral equations stems mainly from the fact that several prob-
lems that arise in differential equations, for instance, elliptic boundary value problems
whose linear parts posses Green’s functions can, as a rule, be transformed into the form
(4.16) (see e.g., Pascali and Sburian [48], Chapter IV, p. 164).

Several existence and uniqueness theorems have been proved for equations of the Ham-
merstein type (see e.g., Brezis and Browder [5, 6, 7], Browder [8], Browder et al. [9], Brow-
der and Gupta [10], Cydotchepanovich [14], and De Figueiredo and Gupta [37]). In gen-
eral, these equations are nonlinear and there is no known method to find closed form
solutions for them. Consequently, methods of approximating solutions of such equations
are of interest (see e.g., Brezis and Browder [5], Zegeye [60], Ofoedu and Onyi [49], Min-
jibir and Mohammed [47], Chidume and Djitte [21, 26, 27, 29, 30], Chidume and Ofeodu
[28], Chidume et al. [23, 24] Chidume and Shehu [19, 20, 22, 25], Chidume and Bello [17],
Chidume and Zegeye [31, 32, 33], Djitte and Sene [35, 36], Mindy et al. [46], Sow et al.
[55, 56] and also Chapter 13 of [15]).

Here, we shall apply Theorem 3.2 to approximate a solution of problem (4.17). The fol-
lowing lemmas and remark would be needed in what follows.
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Lemma 4.6 (Browder, [4]). Let X be a strictly convex reflexive Banach space with a strictly
convex conjugate spaceX∗, T1 a maximal monotone mapping fromX toX∗, T2 a hemicontinuous
monotone mapping of all of X into X∗ which carries bounded subsets of X into bounded subsets
of X∗. Then, the mapping T = T1 + T2 is a maximal monotone mapping of X into X∗.

Lemma 4.7. Let E be a uniformly convex and uniformly smooth real Banach space with dual
space E∗ and X = E × E∗. Let F : E → E∗ and K : E∗ → E be monotone mappings. Let
A : X → X∗ be defined by A[u, v] = [Fu− v,Kv + u]. Then, A is maximal monotone.

Proof. Define S, T : E × E∗ → E∗ × E as

S[u, v] = [Fu,Kv]; T [u, v] = [−v, u].

DefineA := S+T . It is shown in [18] that S is maximal monotone and that T is monotone
and hemicontinuous. Hence, by Lemma 4.6, A is maximal monotone. �

Lemma 4.8 (Chidume and Idu [18]). Let q > 1 and let X, Y be real uniformly convex and
uniformly smooth spaces. Let E = X × Y with the norm ‖z‖E = (‖u‖qX + ‖v‖qY )

1
q , for arbitrary

z = [u, v] ∈ E. Let E∗ = X∗ × Y ∗ denote the dual space of E. For arbitrary x = [x1, x2] ∈ E,
define the mapping jEq : E → E∗ by

jEq (x) = jEq [x1, x2] := [jXq (x1), jYq (x2)],

so that for arbitrary z1 = [u1, v1], z2 = [u2, v2] in E, the duality pairing 〈·, ·〉 is given by

〈z1, j
E
q 〉 := 〈u1, j

X
q (u2)〉+ 〈v1, j

Y
q (v2)〉.

Then,
(a.) E is uniformly smooth and uniformly convex,
(b.) jEq is single-valued duality mapping on E.

Remark 4.2. We remark that for A defined in Lemma 4.7, [u∗, v∗] is a zero of A if and only
if u∗ solves (4.17), where v∗ = Fu∗. Also, Lemma 4.8 holds for the normalized duality
map, JE2 = J.

We now prove the following theorem.

Theorem 4.3. Let X be a uniformly smooth and uniformly convex real Banach space with dual
space X∗. Let F : X → X∗, and K : X∗ → X be maximal monotone mappings. Let E :=
X ×X∗ and A : E → E∗ be define by A[u, v] := [Fu − v,Kv + u]. For arbitrary z1, w1 ∈ E,
define the sequence {wn} in E by

wn+1 = J−1 [Jwn − λnAwn − λnθn(Jwn − Jz1)] , n ≥ 1.

Assume that the equation u + KFu = 0 has a solution. Then, the sequence {wn}∞n=1 converge
strongly to a solution of u+KFu = 0.

Proof. By Lemma 4.8, E is uniformly convex and uniformly smooth, and by Lemma 4.7,
A is maximal monotone. Hence, the conclusion follows from Theorem 3.2 and Remark
4.2. �

Theorem 4.3 can also be stated as follows.

Theorem 4.4. Let X be a uniformly smooth and uniformly convex real Banach space with dual
space X∗. Let F : X → X∗, and K : X∗ → X be maximal monotone mappings. For
(x1, y1), (u1, v1) ∈ X × X∗, define the sequences {un} and {vn} in E and E∗ respectively,
by

(4.18) un+1 = J−1 [Jun − λn(Fun − vn)− λnθn(Jun − Jx1)] , n ≥ 1,
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(4.19) vn+1 = J
[
J−1vn − λn(Kvn + un)− λnθn(J−1vn − J−1y1)

]
, n ≥ 1.

Assume that the equation u + KFu = 0 has a solution. Then, the sequences {un}∞n=1 and
{vn}∞n=1 converge strongly to u∗ and v∗, respectively, where u∗ is the solution of u + KFu = 0
with v∗ = Fu∗.

5. NUMERICAL ILLUSTRATIONS

In this section, we demonstrate numerically the convergence of the sequence generated
by our algorithm and some important algorithms.

Example 5.2. Let E = L2([0, 1]) and Ax(t) = tx(t). Then, A is monotone and 0 ∈ A−10.
Taking λn = cn = 1

n+1 in algorithms (1.3) and (1.4), respectively, and λn = 1

(n+1)
1
2

and

θn = 1

(n+1)
1
4

in algorithm (3.13), setting maximum number of iteration n = 20 and toler-

ance 10−5, we obtain the following iterates and graph.

Alg. (1.3) Alg. (1.4) Alg. (3.13)
n ‖xn+1‖ ‖xn+1‖ ‖xn+1‖
1 0.3819 0.3169 0.0935
3 0.329 0.2496 2.05e-3
5 0.3059 0.1798 6.19e-4
7 0.293 0.1309 2.75e-4

10 0.2816 0.1052 1.1e-4
15 0.2716 0.0813 3.54e-5
20 0.2659 0.0677 1.48e-5

Table of values choosing x1(t) = t2 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

||u
n

+
1|

|

Algorithm 1.3
Algorithm 1.4
Algorithm 3.13

Graph of the first 20 iterates of algorithms
(1.3), (1.4) and (3.13) choosing x1(t) = t2

Next we an example in the Banach space to support our main theorem 3.2.

Example 5.3. Let E = L3([0, 1]) and Ax(t) = x(t). Then, A is monotone and 0 ∈ A−10.
Taking λn = 1

(n+1)
1
2

and θn = 1

(n+1)
1
4

in algorithm (3.13), setting maximum number of

iteration n = 20 and tolerance 10−5, we obtain the following iterates and graph.

Algorithm (3.13)
n ‖xn+1‖
1 0.17
2 2.27e-3
3 3.99e-4
4 1.01e-4
5 3.35e-5
6 1.31e-5
7 5.69e-6

Table of values choosing
x1(t) = sin t 1 2 3 4 5 6 7

n

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

||
u
n

+
1
||

Algorithm 3.13

Graph of the first 7 iterates of algorithm (3.13)
choosing x1(t) = sin t
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Finally, we a give an example to show that Theorem 4.4 is implementable.

Example 5.4. In Theorem 4.4, set E = L5([0, 1]), then E∗ = L 5
4
([0, 1]). Let F : E → E∗ be

defined by (Fu)(t) := Ju(t). Then, it is to see that F maximal monotone. Let K : E∗ → E
be defined (Kv)(t) = tv(t). Observe that by definition K is linear. Furthermore, it is easy
to see thatK maximal monotone and the function u∗(t) = 0, ∀t ∈ [0, 1] is the only solution
of the equation u + KFu = 0. We take λn = 1

(n+1)
1
2
, θn = 1

(n+1)
1
4
, n = 1, 2, · · · , as

our parameters and fixed. Setting a tolerance of 10−6 and maximum number of iterations
n = 6, we obtain the following iterates and graph

Alg. (4.18) Alg. (4.19)
n ‖un+1‖ ‖vn+1‖
1 0.3102 0.3907
2 0.2271 0.1636
3 0.1171 0.0685
4 0.0618 0.0395
5 0.0378 0.0251
6 0.0255 0.0175

Table of values choosing
u1(t) = cos t, v1(t) = sin t

1 2 3 4 5 6
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

||u
n

+
1|

|

Algorithm 3.13

Graph of the first 7 iterates of algorithm (4.18)
choosing u1(t) = cos t, v1(t) = sin t

6. CONCLUSION

In this paper, an iterative algorithm that complements the proximal point algorithm is
constructed. Strong convergence of the sequence generated by the algorithm is proved in
a uniformly convex and uniformly smooth real Banach space. The convergence theorem
proved is applied to approximate a solution of a Hammerstein integral equation. Finally, a
numerical experiment is presented to demonstrate the convergence of the sequence of the
proposed algorithm and its convergence is compared with that of two existing algorithms.

Acknowledgements. The authors appreciate the support of their institute and the African
Development Bank (AfDB) for the Research Grant that enable this work to be carried out.
The authors wish to thank the referees for their esteemed comments and suggestions.

REFERENCES

[1] Alber, Ya. and Ryazantseva, I., Nonlinear Ill Posed Problems of Monotone Type, Springer, London, UK, 2006
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