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ABSTRACT. In the present article we study the geometrical configuration of b-perturbation of the norm of the
normed space. The notion of b-metric is important in the solving of the fixed point problem.

1. PRELIMINARIES

By a space we understand a topological T0-space. We use the terminology from [20, 22,
34]. The problem of fixed points is one of the most investigated one and consists in finding
conditions under which for a given mapping ϕ : X −→ X the set of fixed points Fix(ϕ)
= {x ∈ X : ϕ(x) = x} of ϕ is non-empty. Till now, there were founded various conditions
that use distinct structures on the space X : metrical structures; ordering structures; linear
structures etc., see for example [34].

Let X be a non-empty set and d : X ×X → R be a mapping such that for all x, y ∈ X ,
we have

(im) d(x, y) ≥ 0; (iim) d(x, y) + d(y, x) = 0⇒ x = y.
Then (X, d) is called a dislocated distance space and d is called a dislocated distance on X .

A dislocated distance d on a set X is called a distance if we have
(iiim) d(x, x) = 0 for any x ∈ X .
A dislocated distance d : X ×X −→ R on a set X is called a dislocated b-quasi-metric if

there exists a positive number k, named a b-constant, such that for all x, y, z ∈ X we have
(ivm) d(x, z) ≤ k(d(x, y) + d(y, z)).

A dislocated distance d : X ×X −→ R on a set X is called symmetric if for all x, y ∈ X
we have:

(vm) d(x, y) = d(y, x).
A symmetric dislocated b-quasi-metric d on X is called a dislocated b-metric.
A dislocated b-quasi-metric d generates the following dislocated b-metrics

ds(x, y) = d(x, y) + d(y, x), dm(x, y) = max{d(x, y), d(y, x)}.
Any dislocated b-quasi-metric (dislocated b-metric) with the b-constant k = 1 is called

a dislocated quasi-metric (dislocated metric).
A distance d which is a dislocated b-quasi-metric (dislocated b-metric) is called a b-

quasi-metric (b-metric). A b-quasi-metric (b-metric) with the b-constant k = 1 is called a
quasi-metric (metric).

Let d be a dislocated distance on X , B(x, d, r) = {y ∈ X : d(x, y) < r}∪{x} be the open
d-ball andB[x, d, r] = {y ∈ X : d(x, y) ≤ r}∪{x} be the closed d-ball with the center x and
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radius r > 0. The set U ⊂ X is called d-open if for any x ∈ U there exists r > 0 such that
B(x, d, r) ⊂ U . The family T (d) of all d-open subsets is the topology of X generated by
d. A distance space is a sequential space, i.e., a set B ⊆ X is closed if and only if together
with any sequence it contains all its limits [20].

If d is a dislocated distance on X and Y is a subset of X , then ρ = d|Y is the restriction
of the distance d to Y : ρ(x, y) = d(x, y), for all x, y ∈ Y .

Let (X, d) be a dislocated distance space, {xn : n ∈ N = {1, 2, ...}} be a sequence in X
and x ∈ X . We say that the sequence {xn : n ∈ N}:
1) is convergent in X if for any d-open subset U ∈ T (d), for which x ∈ U , there exists a

number n ∈ N = {1, 2, 3, ...} such that {xm : m ∈ N,m ≥ n} ⊂ U . We denote this by
xn → x or x = limn→∞ xn;

2) is d-convergent to x if and only if limn→∞ d(x, xn) = 0. We denote this by x = d-
limn→∞ xn.

3) is Cauchy if limn,m→∞ d(xn, xm) = 0.
We say that a dislocated distance space (X, d) is complete if every Cauchy sequence in

X d-converges to some point in X .
Any d-convergent sequence is convergent. The reverse assertion is not true, in general.

Example 1.1. Let X = {a, b} ∪ N, where a 6= b and {a, b} ∩ N = ∅. We put d(x, x) = 0,
for each x ∈ X , d(a, b) = 1, d(b, a) = 0 and d(n, b) = d(b, n) = 1, d(n, a) = d(a, n) =
2−n, d(n,m) = |2−n − 2−m|, for each n,m ∈ N. Then (X,T (d)) is a compact T0-space.
The distance dY = d|Y is a metric on the subspace Y = {a} ∪ N and (Y, T (d)) is a compact
metrizable subspace of (X,T (d)). If Z = {b} ∪ N and dZ = d|Z, then:
(a) Z as the subspace of (X,T (d)) is a compact Hausdorff space homeomorphic to (Y, T (dY ));
(b) (Z, T (dZ)) is a countable discrete space;
(c) (Z, dZ) is a symmetric space;
(d) the sequence {n : n ∈ N} is convergent to the points a, b in the space (X,T (d));
(e) the sequence {n : n ∈ N} is d-convergent to the point a : limn→∞ d(a, n) = 0;
(f) the sequence {n : n ∈ N} is not d-convergent to the point b : limn→∞ d(b, n) = 1.

Example 1.2. Let a, c be two non-negative numbers, c > 0 and X be a set with the cardi-
nality |X| ≥ 2. We put d(a,c)(x, x) = a for each x ∈ X and d(a,c)(x, y) = c for all distinct
points x, y ∈ X . By construction:
(a) d(a,c) is a complete dislocated b-metric on X with the b-constant k ≥ 1 for which

2kc ≥ a;
(b) if a = 0, then d(a,c) is a complete metric on X ;
(c) if a > 0 and 2c ≥ a, then d(a,c) is a complete dislocated metric on X ;
(d) the topology T (d(a,c)) is discrete.

Example 1.3. Let (X, ‖ · ‖) be a normed space. For any x, y ∈ X and any number λ > 1
we denote:

d(x, y) = ‖x− y‖, d0(x, y) = max{‖x‖, ‖y‖}, dλ(x, y) = λ‖x‖+ ‖y‖.
Then, by construction:
(a) d is an invariant metric on X ;
(b) d0 is a complete dislocated metric on X ;
(c) dλ is a complete dislocated quasi-metric on X .

This article was motivated by the following questions put by Selma Gülyaz-Özyurt to
the author (personal communication):

1. Is it true that every closed ball in a dislocated b-metric spaces is a closed set?
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2. I thought that ”an open ball” is an ”open set”, but I am not sure about the ”closed” case. If I
am not bothering you, could I ask whether I am right on the ”open case”?

According to the constructions and examples in Sections 3 – 5, the answers to these
questions for b-metric spaces and dislocated b-metric spaces are in the negative.

2. ON A TOPOLOGY OF A DISLOCATED METRIC SPACE

Let ρ be a dislocated distance on X . The topology T (ρ) is not dislocated in the sense
of the works [24, 23]. In the dislocated topology the neighborhoods of points may to be
empty, or may not include the points.

The set MK(X, ρ) = {x ∈ X : ρ(x, x) = 0} is the metric kernel of (X, ρ). If ρ is a
dislocated b-metric, then for any x ∈ X \MK(X, ρ) we have {x} ∈ T (ρ), i.e., the point
x is isolated in the space (X,T (ρ)). Therefore MK(X, d) is a closed subspace and X \
MK(X, d) is a discrete subspace of the space (X,T (d)).

A dislocated distance space (X, ρ) is a dislocated H-distance space if for any two distinct
points a, b ∈ X there exists r > 0 such that B(a, ρ, r) ∩ B(b, ρ, r) = ∅. A dislocated b-
distance space (X, ρ) is a dislocated H∗-distance space if any convergent Cauchy sequence
in X converges to a unique point in X .

Two dislocated distances ρ1 and ρ2 on X are called:
- topologically equivalent if T (ρ1) = T (ρ2);
- uniformly equivalent if for any ε > 0 there exists a number δ = δ(ε) > 0 such that
ρ1(x, y) < ε provided ρ2(x, y) < δ and ρ2(x, y) < ε provided ρ1(x, y) < δ.

Proposition 2.1. Let ρ1 and ρ2 be two uniformly equivalent dislocated distances on X . Then:
1) MK(X, ρ1) = MK(X, ρ2).
2) T (X, ρ1) = T (X, ρ2).
3) If x ∈ X , then the spaces (X, ρ1) and (X, ρ2) share the same ρ1-convergent and ρ2-convergent

to the point x sequences.
4) The spaces (X, ρ1) and (X, ρ2) share the same Cauchy sequences.
5) The space (X, ρ1) is complete if and only if the space (X, ρ2) is complete.

Proof. It is obvious. �

Proposition 2.2. Let d be a dislocated distance on X . We put ρ(x, x) = 0 for any x ∈ X and
ρ(x, y) = d(x, y) for any distinct points x, y ∈ X . The function ρ is called a location of d. Are
true:
1) ρ is a distance on X .
2) T (X, d) = T (X, ρ).
3) If x ∈ X , then the spaces (X, d) and (X, ρ) are the same d-convergent and ρ-convergent to the

point x sequences.
4) The spaces (X, d) = (X, ρ) are the same Cauchy sequences.
5) The space (X, d) is complete if and only if the space (X, ρ) is complete.
6) If d is a dislocated b-quasi-metric on X , then ρ is a b-quasi-metric on X with the same b-

constant.
7) d is a symmetric if and only if ρ is symmetric.
8) If d is a dislocated b-metric on X , then ρ is a b-metric on X with the same b-constant.

Proof. It is obvious. �

Remark 2.1. Let G be a group with the binary operation +. A dislocated distance d on G
is called invariant dislocated distance if d(x + z, y + z) = d(z + x, z + y) = d(−x,−y) for all
x, y, z ∈ G. In this case d(x, x) = d(y, y) for all x, y ∈ G. Hence for an invariant dislocated
distance d we have MK(G, d) = ∅ or d is a distance on G.
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3. PERTURBATION OF THE NORMS

Let E be a linear space of linear dimension dimE ≥ 2. A b-norm on E is a function
ν : E −→ R with the following properties:

(in) ν(x) ≥ 0 for each x ∈ E;
(iin) ν(x) = 0 if and only if x = 0;

(iiin) ν(tx) = |t| · ν(x) for all x ∈ X and t ∈ R;
(iv) there exists a constant k ≥ 1, named a b-constant, such that ν(x + y) ≤ k(ν(x) +

ν(y)).
A b-norm with the b-constant k = 1 is called a norm.
Any b-norm ν with the b-constant k generates the invariant b-metric ρν(x, y) = ν(x− y)

with the same b-constant k. We put T (ν) = T (ρν).
Let L be a non-empty subset of the linear normed space (E, ν) and L ⊂ S(ν, 1) = {x ∈

E : ν(x) = 1}. If x ∈ E and tx ∈ L for some t > 0, then we denote x ‖ L. By definition,
we consider that 0 ‖ L. If x 6= 0 and tx 6∈ L for any t > 0, then we denote x 6‖ L.

Two b-norms ν1 and ν2 are called:
- topologically equivalent if T (ν1) = T (ν2);
- uniformly equivalent if for any ε > 0 there exists a number δ = δ(ε) > 0 such that ν1(x) <
ε provided ν2(x) < δ and ν2(x) < ε provided ν1(x) < δ.

Proposition 3.3. Let ν and µ be two b-norms on a linear space E. Then the following assertions
are equivalent:
1) The b-norms ν and µ are topologically equivalent.
2) The b-norms ν and µ are uniformly equivalent.
3) The b-metrics ρν and ρµ are topologically equivalent.
4) The b-metrics ρν and ρµ are uniformly equivalent.

Proof. It is obvious. �

Theorem 3.1. Let (E, ν) be a linear normed space of linear dimension dimE ≥ 2, F ⊂ S(ν, 1)
be a non-empty set, F = −F , the set Φ = S(ν, 1) \ F is non-empty, λ > 0, νλ(0) = 0,
νλ(x) = ν(λx) provided x ‖ F and νλ(x) = ν(x) provided x ‖ Φ. Then:

(1) νλ is a b-norm on E.
(2) The b-norms ν and νλ are uniformly equivalent.
(3) If λ > 1, then k = λ is the minimal b-constant of νλ.
(4) If λ < 1, then k = λ−1 is the minimal b-constant of νλ.

Proof. By construction, we have:
- νλ(x) ≥ 0 for each x ∈ E;
- νλ(x) = 0 if and only if x = 0;
- if x ∈ E and x ‖ F , then ν(x) = λ−1νλ(x);
- if x ∈ E, x ‖ F and t ∈ R, then νλ(tx) = ν(tλx) = |t| · ν(λx) = |t| · νλ(x);
- if x, y ∈ E and x+ y = 0, then νλ(x+ y) ≤ νλ(x) + νλ(y);
- if x, y ∈ E and 0 ∈ {x, y}, then νλ(x+ y) = νλ(x) + νλ(y);
- if x ∈ E, x ‖ Φ and t ∈ R, then νλ(tx) = ν(tx) = |t| · ν(x) = |t| · νλ(x).
Assume that λ > 1. Fix x, y ∈ E. We can suppose that 0 6∈ {x, y} and x+ y 6= 0. We have
the following cases:

Case 1. x ‖ F , y ‖ F and (x+ y) ‖ F .
In this case νλ(x + y) = ν(λ(x + y)) = λν(x + y) ≤ λ(ν(x) + ν(y)) = λν(x) + λν(y) =

(νλ(x) + νλ(y)) < λ(νλ(x) + νλ(y)).
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Case 2. x ‖ F , y ‖ F and (x+ y) ‖ Φ.
In this case νλ(x+y) = ν(x+y) ≤ ν(x)+ν(y) = λ−1(νλ(x)+λνλ(y)) < λ(νλ(x)+νλ(y)).

Case 3. x ‖ F , y ‖ Φ and (x+ y) ‖ F .
In this case νλ(x + y) = ν(λ(x + y)) = λν(x + y) ≤ λ(ν(x) + ν(y)) = λν(x) + λν(y) =

νλ(x) + λνλ(y) < λ(νλ(x) + νλ(y)).

Case 4. x ‖ F , y ‖ Φ and (x+ y) ‖ Φ.
In this case νλ(x+ y) = ν(x+ y) ≤ ν(x) + ν(y) = λ−1ν(λx) + νλ(y) < νλ(x) + νλ(y)) <

λ(νλ(x) + νλ(y)).

Case 5. x ‖ Φ, y ‖ Φ and (x+ y) ‖ F .
In this case νλ(x+ y) = ν(λ(x+ y)) = λν(x+ y) ≤ λ(ν(x) + ν(y)) = λ(νλ(x) + νλ(y)).

Case 6. x ‖ Φ, y ‖ Φ and (x+ y) ‖ Φ.
In this case νλ(x+ y) = ν(x+ y) ≤ ν(x) + ν(y)) = νλ(x) + νλ(y)) < λ(νλ(x) + νλ(y)).
Hence νλ is a b-norm with the b-constant λ. Since ν(x) ≤ λνλ(x) ≤ λν(x), the b-norms

ν and νλ are uniformly equivalent.

Now we fix a ∈ F and b ∈ Φ. Since −a ∈ F and −b ∈ Φ, we have the following cases:

Case 7. (a+ b) ‖ F .
We put x = a + b and y = −b. Then (x + y) = a and a ‖ F . In this case, for any t ∈ R

we have νλ(tx+ y) = ν(λ(tx+ y)) = λν(tx+ y) ≤ λ(ν(tx) + ν(y)) = |t| · λν(x) + λνλ(b) ≤
λ(νλ(tx) + λνλ(y). If 1 < k < λ, then 2ε = λν(y) > 0 and there exists t > 0 such that
0 < ktλν(x) < ε. Hence k(νλ(tx) + νλ(y)) < λνλ(y) and λ is the minimal b-constant of νλ.

Case 8. (a− b) ‖ F .
We put x = a − b and y = b. Then (x + y) = a and a ‖ F . As in the Case 7 we can

established that λ is the minimal b-constant of νλ.

Case 9. (a+ b) ‖ Φ and (a− b) ‖ Φ.
We put x = a+ b and y = a− b. Then (x+ y) = 2a and 2a ‖ F .
In this case νλ(x + y) = ν(λ(x + y)) = λν(x + y) ≤ λ(ν(x) + ν(y)) = λ(νλ(x) + νλ(y)).

Hence λ is the minimal b-constant of νλ. In the case λ > 1 the assertions of the theorem
are proved.

Assume now that 0 < λ < 1. Fix x, y ∈ E. We can suppose that 0 6∈ {x, y} and x+y 6= 0.
We have the following cases:

Case 10. x ‖ F , y ‖ F and (x+ y) ‖ F .
In this case νλ(x + y) = ν(λ(x + y)) = λν(x + y) ≤ λ(ν(x) + ν(y)) = λν(x) + λν(y) =

νλ(x) + νλ(y) < λ−1(νλ(x) + νλ(y)).

Case 11. x ‖ F , y ‖ F and (x+ y) ‖ Φ.
In this case νλ(x+y) = ν(x+y) ≤ ν(x)+ν(y) = λ−1(ν(λx)+ν(λy)) = λ−1(νλ(x)+νλ(y)).

Case 12. x ‖ F , y ‖ Φ and (x+ y) ‖ F .
In this case νλ(x + y) = ν(λ(x + y)) = λν(x + y) ≤ λ(ν(x) + ν(y)) = λν(x) + λν(y) =

νλ(x) + λνλ(y) < λ−1(νλ(x) + νλ(y)).

Case 13. x ‖ F , y ‖ Φ and (x+ y) ‖ Φ.
In this case νλ(x+y) = ν(x+y) ≤ ν(x)+ν(y) = λ−1ν(λx)+νλ(y) = λ−1νλ(x)+νλ(y)) <

λ−1(νλ(x) + νλ(y)).

Case 14. x ‖ Φ, y ‖ Φ and (x+ y) ‖ F .
In this case νλ(x+ y) = ν(λ(x+ y)) = λν(x+ y) ≤ λ(ν(x) + ν(y)) = λ(νλ(x) + νλ(y)) <

λ−1(νλ(x) + νλ(y)).
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Case 15. x ‖ Φ, y ‖ Φ and (x+ y) ‖ Φ.
In this case νλ(x+ y) = ν(x+ y) ≤ ν(x) + ν(y)) = νλ(x) + νλ(y)) < λ−1(νλ(x) + νλ(y)).

Hence νλ is a b-norm with the b-constant λ−1. Since νλ(x) ≤ ν(x) ≤ λ−1νλ(x), the
b-norms ν and νλ are uniformly equivalent. As for λ > 1 we established that k = λ−1 is
the minimal b-constant of νλ. The proof is complete. �

Remark 3.2. Let (E, ν) be a linear normed space of linear dimension dimE ≥ 2, F ⊂
S(ν, 1) be a non-empty set, F = −F , the set Φ = S(ν, 1) \F be non-empty, λ > 0 and r > 0.
1) If λ > 1 and the set F is closed in the topology T (ν), then:

- the ”open” νλ-ball B(0, νλ, r) is open in the topology T (ν);
- the ”closed” νλ-ball B[0, νλ, r] is not closed in the topology T (ν).

2) If λ < 1 and the set F is closed in the topology T (ν), then:
- the ”open” νλ-ball B(0, νλ, r) is not open in the topology T (ν);
- the ”closed” νλ-ball B[0, νλ, r] is closed in the topology T (ν).

3) If λ 6= 1 and the sets F and Φ are dense in S(ν, 1) in the topology T (ν), then:
- the ”open” νλ-ball B(0, νλ, r) is not open in the topology T (ν);
- the ”closed” νλ-ball B[0, νλ, r] is not closed in the topology T (ν).

4. PERTURBATION OF THE DISTANCES

Let (E, ν) be a linear normed space. A distance d on E is called a homogeneous distance
if d(x, x+ t(y − x)) = t · d(x, y) for all x, y ∈ E and t > 0.

Theorem 4.2. Let (E, ν) be a linear normed space of linear dimension dimE ≥ 2. Let L ⊂
S(ν, 1) be a non-empty subset and the set M = S(ν, 1) \ L is non-empty, too. For a distance ρ
and a number λ > 0, we put ρ(L,λ)(x, y) = λ · ρ(x, y), provided (y − x) ‖ L and ρ(L,λ)(x, y) =
ρ(x, y), provided (y − x) ‖M . Then

(1) ρ(L,λ) is a distance and MK(E, ρ(L,λ)) = MK(E, ρ).
(2) The distances ρ and ρ(L,λ) are uniformly equivalent.
(3) If d = ρ(L,λ), then ρ = d(L,λ−1).
(4) If ρ is a b-quasi-metric ρ with the b-constant k ≥ 1, then ρ(L,λ) is a b-quasi-metric ρ with

the b-constant ≤ max{λk, λ−1k}. If ρ is a quasi-metric and T (ρ) = T (ν), then this
b-constant is minimal.

(5) If L = −L and ρ is a symmetric distance, then ρ(L,λ) is a symmetric distance, too.
(6) If ρ is an invariant distance, then ρ(L,λ) is an invariant distance, too.
(7) If ρ is a homogeneous distance, then ρ(L,λ) is a homogeneous distance, ρ(L,λ)(x, y) =

ρ(x, x+λ(y−x)), provided (y−x) ‖ L and ρ(L,λ)(x, y) = ρ(x, y), provided (y−x) ‖M .

Proof. If λ > 1, then λ−1ρ(x, y) ≤ ρ(x, y) ≤ λρ(x, y) for all x, y ∈ E. If 0 < λ ≤ 1,
then λρ(x, y) ≤ ρ(x, y) ≤ λ−1ρ(x, y) for all x, y ∈ E. Hence ρ and ρ(L,λ) are uniformly
equivalent distances. Assertions 1 and 2 are proved. Assertion 3 is obvious.

Assume that ρ is a b-quasi-metric ρwith the b-constant k ≥ 1. If λ > 1, then ρ(L,λ)(x, z) ≤
λ·ρ(x, z) ≤ λk(ρ(x, y)+ρ(y, z)) ≤ λk(ρ(L,λ)(x, y)+ρ(L,λ)(y, z)). If λ < 1, then ρ(L,λ)(x, z) ≤
ρ(x, z) ≤ k(ρ(x, y) + ρ(y, z)) ≤ λ−1k(ρ(L,λ)(x, y) + ρ(L,λ)(y, z)). Assertion 4 is proved. As-
sertions 5, 6 and 7 are obvious. The proof is complete. �

Remark 4.3. Let (E, ν) be a linear normed space of linear dimension dimE ≥ 2. Let
L ⊂ S(ν, 1) be a non-empty subset and the set M = S(ν, 1) \ L be non-empty too. Fix on
E an invariant homogeneous metric ρ and a number λ > 0. Assume that T (ρ) = T (ν).
1) If λ > 1 and the set L is closed in the topology T (ν), then:

- the ”open” ρ(L,λ)-ball B(0, ρ(L,λ), r) is open in the topology T (ρ);
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- the ”closed” ρ(L,λ)-ball B[0, ρ(L,λ), r] is not closed in the topology T (ρ).
2) If λ < 1 and the set M is closed in the topology T (ν), then:

- the ”open” ρ(L,λ)-ball B(0, ρ(L,λ), r) is not open in the topology T (ρ);
- the ”closed” ρ(L,λ)-ball B[0, ρ(L,λ), r] is closed in the topology T (ρ).

3) If λ 6= 1 and the sets L and M are dense in S(ν, 1) in the topology T (ρ), then:
- the ”open” ρ(L,λ)-ball B(0, ρ(L,λ), r) is not open in the topology T (ρ);
- the ”closed” ρ(L,λ)-ball B[0, ρ(L,λ), r] is not closed in the topology T (ρ).

4) When switching to B(0, ρ(L,λ))-balls in case λ > 1 the ρ-balls are drilling in the L-
directions, and in the case λ > 1 are added needles in the L-directions.

5) If the sets L and M are dense in S(ν, 1) in the topology T (ρ), then the ”open” ρ(L,λ)-
ball B(0, ρ(L,λ), r) and the ”closed” ρ(L,λ)-ball B[0, ρ(L,λ), r] are the form of a hedgehog
with needles in the directions M for λ > 1 and in directions L for λ < 1.

Example 4.4. Let E = {(x, y) : x, y are real numbers} be the Euclidean plane and T (ρ)
be the topology on E, where ρ((x, y), (u, v)) = ((x − u)2 + (y − v)2)1:2 is the Euclidean
invariant metric generate by the norm ν((x, y)) = (x2 + y2)1:2. Fix positive number λ 6= 1
and non-empty subset L of the circle S = {(cos t, sin t) : 0◦ ≤ t ≤ 360◦} of the radius 1 for
which M = S \ L is non-empty too. Let m(x, y) be the magnitude of the angle in degrees
between the vectors (1, 0) and (x, y). If 0◦ ≤ t ≤ 360◦, then m(cos t, sin t) = t. The set L
generates the b-quasi-metric ρ(L,λ). If −L = L, then ρ(L,λ) is an invariant homogeneous
b-metric with the b-constant k ∈ {λ, λ−1} and k ≥ 1. The structure of ρ(L,λ)-balls:
B((a, b), ρ(L,λ), r), the ”open” ρ(L,λ)-ball of the radius r > 0,
B[(a, b), ρ(L,λ), r], the ”closed” ρ(L,λ)-ball of the radius r > 0,

depends of the set L and the number λ.
It is interesting the form of ρ(L,λ)-balls for the following cases:

Case 1. λ = 2 and L1 = {(1, 0), (0, 1)}.
In this case:

- B((0, 0), ρ(L1,2), 1) = B((0, 0), ν, 1) \ {t · (x, y) : (x, y) ∈ L1.2
−1 ≤ t ≤ 1} is an open and a

not closed set andB[(0, 0), ρ(L1,2), 1] = B[(0, 0), ν, 1]\{t · (x, y) : (x, y) ∈ L1.2
−1 < t ≤ 1}

is a not open and a not closed set;
- the sets B((0, 0), ρ(L1,2), 1) and B[(0, 0), ρ(L1,2), 1] are dense in B[(0, 0), ν, 1];
- B((0, 0), ν, 2−1) ⊂ B((0, 0), ρ(L1,2), 1) ⊂ B[(0, 0), ρ(L1,2), 1];
- ρ(L1,2) is a b-quasi-metric with the b-constant k = 2 and ρ(L1,2) is not a b-metric.

Case 2. λ = 2−1 and L1 = {(1, 0), (0, 1)}.
In this case:

- B((0, 0), ρ(L1,2−1), 1) = B((0, 0), ν, 1) ∪ {t · (x, y) : (x, y) ∈ L1, 1 ≤ t < 2} is a not open
and a not closed set and B[(0, 0), ρ(L1,2−1), 1] = B[(0, 0), ν, 1] \ {t · (x, y) : (x, y) ∈ L1, 1 ≤
t ≤ 2} is a not open and a closed set;

- B((0, 0), ν, 1) ⊂ B((0, 0), ρ(L1,2−1), 1) ⊂ B[(0, 0), ρ(L1,2−1), 1];
- ρ(L1,2−1) is a b-quasi-metric with the b-constant k = 2 and ρ(L1,2−1) is not a b-metric.

Case 3. λ = 2 and L2 = {(1, 0), (0, 1), (−1, 0), (0,−1)}.
In this case:

- B((0, 0), ρ(L2,2), 1) = B((0, 0), ν, 1) \ {t · (x, y) : (x, y) ∈ L1.2
−1 ≤ t ≤ 1} is an open and a

not closed set andB[(0, 0), ρ(L2,2), 1] = B[(0, 0), ν, 1]\{t · (x, y) : (x, y) ∈ L1.2
−1 < t ≤ 1}

is a not open and a not closed set;
- the sets B((0, 0), ρ(L2,2), 1) and B[(0, 0), ρ(L2,2), 1] are dense in B[(0, 0), ν, 1];
- B((0, 0), ν, 2−1) ⊂ B((0, 0), ρ(L2,2), 1) ⊂ B[(0, 0), ρ(L2,2), 1];
- ρ(L2,2) is a b-metric with the b-constant k = 2.



248 Mitrofan M. Choban

Case 4. λ = 2−1 and L2 = {(1, 0), (0, 1), (−1, 0), (0,−1)}.
In this case:

- B((0, 0), ρ(L2,2−1), 1) = B((0, 0), ν, 1) ∪ {t · (x, y) : (x, y) ∈ L2, 1 ≤ t < 2} is a not open
and a not closed set and B[(0, 0), ρ(L2,2−1), 1] = B[(0, 0), ν, 1] \ {t · (x, y) : (x, y) ∈ L2, 1 ≤
t ≤ 2} is a not open and a closed set;

- B((0, 0), ν, 1) ⊂ B((0, 0), ρ(L2,2−1), 1) ⊂ B[(0, 0), ρ(L2,2−1), 1];
- ρ(L2,2−1) is a b-metric with the b-constant k = 2.

Case 5. λ = 2 and L3 = {(cos t, sin t) : 0◦ < t ≤ 90◦}.
In this case:

- B((0, 0), ρ(L3,2), 1) = B((0, 0), ν, 1) \ {t · (x, y) : (x, y) ∈ L3.2
−1 ≤ t ≤ 1} is a not open

and a not closed set and B[(0, 0), ρ(L3,2), 1] = B[(0, 0), ν, 1] \ {t · (x, y) : (x, y) ∈ L3.2
−1 <

t ≤ 1} is a not open and a not closed set;
- B((0, 0), ν, 2−1) ⊂ B((0, 0), ρ(L3,2), 1) ⊂ B[(0, 0), ρ(L3,2), 1];
- ρ(L3,2) is a b-quasi-metric with the b-constant k = 2 and ρ(L1,2) is not a b-metric.

Case 6. λ = 2−1 and L3 = {(cos t, sin t) : 0◦ < t ≤ 90◦}.
In this case:

- B((0, 0), ρ(L3,2−1), 1) = B((0, 0), ν, 1) ∪ {t · (x, y) : (x, y) ∈ L3, 1 ≤ t < 2} is a not open
and a not closed set and B[(0, 0), ρ(L3,2−1), 1] = B[(0, 0), ν, 1] \ {t · (x, y) : (x, y) ∈ L3, 1 ≤
t ≤ 2} is a not open and a closed set;

- ρ(L1,2−1) is a b-quasi-metric with the b-constant k = 2 and ρ(L1,2−1) is not a b-metric.

Case 7. λ = 2 and L4 = {(cos t, sin t) : 0◦ ≤ t ≤ 360◦, t is rational}.
In this case:

- B((0, 0), ρ(L4,2), 1) = B((0, 0), ν, 1) \ {t · (x, y) : (x, y) ∈ L4.2
−1 ≤ t ≤ 1} is an open and a

not closed set andB[(0, 0), ρ(L4,2), 1] = B[(0, 0), ν, 1]\{t · (x, y) : (x, y) ∈ L4.2
−1 < t ≤ 1}

is a not open and a not closed set;
- the sets B((0, 0), ρ(L4,2), 1) and B[(0, 0), ρ(L4,2), 1] are dense in B[(0, 0), ν, 1];
- B((0, 0), ν, 2−1) ⊂ B((0, 0), ρ(L4,2), 1) ⊂ B[(0, 0), ρ(L4,2), 1];
- ρ(L2,2) is a b-metric with the b-constant k = 2.

Case 8. λ = 2−1 and L4 = {(cos t, sin t) : 0◦ ≤ t ≤ 360◦, t is rational}.
In this case:

- B((0, 0), ρ(L4,2−1), 1) = B((0, 0), ν, 1) ∪ {t · (x, y) : (x, y) ∈ L4, 1 ≤ t < 2} is a not open
and a not closed set and B[(0, 0), ρ(L4,2−1), 1] = B[(0, 0), ν, 1] \ {t · (x, y) : (x, y) ∈ L4, 1 ≤
t ≤ 2} is a not open and a closed set;

- B((0, 0), ν, 1) ⊂ B((0, 0), ρ(L4,2−1), 1) ⊂ B[(0, 0), ρ(L4,2−1), 1];
- ρ(L2,2−1) is a b-metric with the b-constant k = 2.

The next figures represent the shape of the balls for the Cases 1 – 7.

5. PARTIAL PERTURBATION OF THE DISTANCES

The idea is to change the distance between two different points.

Let (X, ρ) be a dislocated distance space, a, b ∈MK(X, ρ), ρ(b, a) > 0, ρ(a, b) > 0 and a
be a non-isolated point of the space (X, ρ), i.e., there exists a sequence {an ∈ X : n ∈ N}
such that limn→∞ ρ(a, an) = 0 and ρ(a, an) > 0, 0 < 2µ < ρ(b, an) ≤ λ, for all n ∈ N and a
fixed λ ≥ max{1, ρ(a, b), ρ(b, a)}.

We put d?(x, y) = d(x, y) = ρ(x, y) if b 6∈ {x, y}, d(b, a) = d(b, a) = λ + 1, d?(b, a) =
d?(b, a) = µ, d?(b, x) = d(b, x) = ρ(b, x) and d?(x, b) = d(x, b) = ρ(x, b) for x 6= a.

By construction, the following properties of d hold.



On the geometry of b-distances and the fixed points of mappings 249

(a) B(O, ρ(L,λ), 1) (b) B[O, ρ(L,λ), 1]

Figure 1. λ = 2, L = L1

(a) B(O, ρ(L,λ), 1) (b) B[O, ρ(L,λ), 1]

Figure 2. λ = 2−1, L = L1

(a) B(O, ρ(L,λ), 1) (b) B[O, ρ(L,λ), 1]

Figure 3. λ = 2, L = L2

(a) B(O, ρ(L,λ), 1) (b) B[O, ρ(L,λ), 1]

Figure 4. λ = 2−1, L = L2

(a) B(O, ρ(L,λ), 1) (b) B[O, ρ(L,λ), 1]

Figure 5. λ = 2, L = L3

(a) B(O, ρ(L,λ), 1) (b) B[O, ρ(L,λ), 1]

Figure 6. λ = 2−1, L = L3

(a) B(O, ρ(L,λ), 1) (b) B[O, ρ(L,λ), 1]

Figure 7. λ = 2, L = L4

Property 1. d and d? are dislocated distances and MK(X, d) = MK(X, d?) = MK(X, ρ). If ρ
is a distance, then d and d? are distances, too.

Property 2. ρ(x, y) ≤ d(x, y) for all x, y ∈ X and d, d?, ρ are uniformly equivalent.
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Property 3. If ρ(x, y) = ρ(y, x) for all x, y ∈ X , then d(x, y) = d(y, x), for all x, y ∈ X too.

Property 4. If (X, ρ) is a dislocated b-quasi-metric space, then:
- (X, d) is a dislocated b-quasi-metric space;
- (X, d?) is a dislocated b-quasi-metric space.
Property 5. If (X, ρ) is a dislocated b-metric space, then:
- (X, d) is a dislocated b-metric space;
- (X, d?) is a dislocated b-metric space.
Property 6. If λr < 1 = λ, then the ”closed” d-ball B[b, d, r] is not closed in the space (X,T (d)).

Property 7. If µ < r ≤ 2µ, then the ”open” d?-ball B(b, d?, r) is not open in the space
(X,T (d?)).

6. SPACES WITH H -DISTANCES AND THE FIXED POINT PROBLEM

In the last fifty years, many metrical fixed point results have been obtained. Initially,
these results were demonstrated for complete metric spaces, and then expanded for spaces
with special distances.

Example 6.5. Let X = [0, 1] ∪ {s}, where s 6∈ [0, 1], and A = {2−n : n ∈ N}. Consider
on X the symmetric d, where d(x, y) = |x − y| if 0, s 6∈ {x, y}, d(0, 2−n) = d(0, s) = 1,
d(0, x) = x if x ∈ [0, 1] \ A, d(s, 2−n) = 2−n and d(s, x) = 1 if x ∈ [0, 1] \ A. The space
(X, T (d)) is not Hausdorff: if U, V ∈ T (d), 0 ∈ U and s ∈ V , then U ∩ V 6= ∅. Since
B(0, d, 1) ∩B(s, d, 1) = ∅, d is a H-distance.

Example 6.6. Let X = {a, b} ∪ N, where a 6= b and {a, b} ∩ N = ∅. We put ρ(x, x) = 0
for each x ∈ X , ρ(a, b) = 1, ρ(b, a) = 0 and ρ(n, b) = ρ(b, n) = 1, ρ(n, a) = ρ(a, n) = 2−n,
ρ(n,m) = |n − m| for each n,m ∈ N. Then (X,T (ρ)) is a compact T0-space. If d is the
distance on X from Example 1.1, then T (ρ) = T (d). Hence we have:
- the sequence {n : n ∈ N} is convergent to the points a, b in (X,T (ρ));
- the sequence {n : n ∈ N} is convergent and is not a Cauchy sequence in (X, ρ);
- the sequence {n : n ∈ N} is ρ-convergent to the point a : limn→∞ ρ(a, n) = 0;
- the sequence {n : n ∈ N} is not ρ-convergent to the point b : limn→∞ ρ(b, n) = 1;
- ρ is a H∗-distance and is not a H-distance.

Let (X, d) be a dislocated distance space and R+ = {t ∈ R : t > 0}. Consider the
conditions:

(F ) there exists a function δ : R+ −→ R+ such that from x, y, z ∈ X , d(x, y) ≤ δ(ε) and
d(y, z) ≤ δ(ε) it follows d(x, z) ≤ ε.

(AU) for any point x ∈ X there exists a function δx : R+ −→ R+ such that from y, z ∈ X ,
d(x, y) ≤ δx(ε) and d(y, z) ≤ δx(ε) it follows d(x, z) ≤ ε.

The distance d with the condition (F ) is called an F -distance. The distance d with the
condition (AU) is called an AU -distance. Any b-quasi-metric is an F -distance and any F -
distance is anAU -distance. Any b-metric is aH-distance. Topological properties of spaces
with distances were studied by many authors (see [1, 21, 10, 3, 27, 28, 29, 30, 31, 32]).

The notion of b-distance is due to P. Alexandroff and P. Urysohn [1], M. Fréchet [10], S.
Czerwik [19], I. A. Bakhtin [4], V. Berinde [5] (see [34]). That notion is very important for
the solving fixed point problem [4, 19, 34, 22, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 23, 25].

Fix a dislocated distance space (X, d) and a mapping ϕ : X −→ X . For any point x ∈ X
we put ϕ0(x) = x, ϕ1(x) = ϕ(x), ..., ϕn(x) = ϕ(ϕn−1(x)),... The sequence O(ϕ, x) = {xn =
ϕn(x) : n ∈ N = {1, 2, ...} is called the orbit of ϕ with respect to the point x or the Picard
sequence of the point x. We say that the mapping ϕ:
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1) is contractive if d(ϕ(x), ϕ(y)) < d(x, y) provided d(x, y) > 0;
2) is a contraction if there exists λ ∈ [0, 1) such that d(ϕ(x), ϕ(y)) ≤ λd(x, y) for all x, y ∈ X ;
3) is a Lipschitz mapping if there exists λ > 0 such that d(ϕ(x), ϕ(y)) ≤ λd(x, y) for all

x, y ∈ X .
Any contraction or any contractive mapping is Lipschitz mapping and every Lipschitz

mapping is continuous.
The following statements, which were discussed in [14, 16] for b-quasi-metrics, are

powerful tools for fixed point problems.

Proposition 6.4. Let (X, d) be a dislocated distance space, ϕ : X −→ X be a contractive map-
ping. Then Fix(ϕ) ⊂MK(X, d) and Fix(ϕn) = Fix(ϕ), for each n ∈ N .

Proof. If a 6∈ MK(X, d) and a ∈ Fix(ϕ), then 0 < d(a, a) = d(ϕ(a), ϕ(a)) < d(a, b), a con-
tradiction. Let a ∈ Fix(ϕn), n > 1 and b = ϕ(a) 6= a. Since ϕn is a contractive mapping,
too, we have 0 < d(a, b) + d(b, a) = d(ϕn(a), ϕn(b)) < d(a, b) + d(b, a), a contradiction. �

Proposition 6.5. Let (X, d) be a dislocated distance space, ϕ : X −→ X be a contractive map-
ping. Then the mapping ϕ is continuous and the set of fixed points Fix(ϕ) of the mapping ϕ is
empty or a singleton.

Proof. Since ϕ(B(x, d, r)) ⊂ B(ϕ(x), d, r) for all x ∈ X and r > 0, the mapping ϕ is
continuous.

Let a, b ∈ Fix(ϕ) be two distinct points. Then d(a, b) + d(b, a) > 0. Then d(a, b) +
d(b, a) = d(ϕ(a), ϕ(b)) + d(ϕ(b), ϕA(b)) < d(a, b) + d(b, a), a contradiction. �

Proposition 6.6. Let (X, d) be a dislocated H-distance space, ϕ : X −→ X be a continuous
mapping and for some point x ∈ X the Picard sequence O(ϕ, x) is convergent. Then the set of
fixed points Fix(ϕ) of the mapping ϕ is non-empty.

Proof. Let {xn = ϕn(x) ∈ X : n ∈ N} be the Picard sequence of the given point x ∈ X
which is a convergent to a point a ∈ X . Then, since the mapping ϕ is continuous and
limn→∞ xn = a, we have ϕ(a) = limn→∞ ϕ(xn) = limn→∞ xn+1 = a and ϕ(a) = a. �

Proposition 6.7. Let (X, d) be a dislocated b-quasi-metric space with the b-constant λ ≥ 1, k > 0,
kλ < 1, ϕ : X −→ X be a mapping and d(ϕ(x), ϕ(y)) ≤ k · d(x, y) for all x, y ∈ X . Then the
orbit O(ϕ, a) is a Cauchy sequence for any point a ∈ X .

Proof. Let Σ{(kλ)n : n ∈ N} = c. Fix a ∈ X . We put s = d(a, ϕ(a)) + d(ϕ(a), a). We put
an = ϕn(a). For all n,m ∈ N we have d(an, an+m) + d(an+m, an) ≤ s · kn−1 ·Σ{(kλ)i : 1 ≤
i ≤ m} ≤ s · c · kn−1. The proof is complete. �

Proposition 6.8. Let (X, d) be a dislocated F -distance space, ϕ : X −→ X be a contraction
mapping, m ∈ N, a ∈ X and the orbit O(ϕm, a) is a Cauchy sequence. Then the orbit O(ϕ, a) is
a Cauchy sequence, too.

Proof. There exists λ ∈ [0, 1) such that d(ϕ(x), ϕ(y)) ≤ λd(x, y) for all x, y ∈ X . Fix a
function δ : R+ −→ R+ such that from x, y, z ∈ X , d(x, y) ≤ δ(ε) and d(y, z) ≤ δ(ε) it
follows d(x, z) ≤ ε. We put q = d(a1, a2) + d(a2, a1). Then d(an, an+1) + d(an+1, an) ≤
λn−1q. Let {an = ϕn(x) ∈ X : n ∈ N} be the Picard sequence of the given point a ∈ X . As
contractive mappings, the mappings ϕi, i ∈ N, are continuous and the image of a Cauchy
sequence is a Cauchy sequence. Hence O(ϕm+1, a) = ϕ(O(ϕm, a)) is a Cauchy sequence.
Fix ε > 0. There exists nε ∈ Nm = {n ·m : n ∈ N} such that:
- d(anε , anε+1) < δ(ε);
- if n1, n2 ∈ Nm and n1 ≥ nε, n2 ≥ nε, then d(an1 , an2) < δ(ε).
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In this case d(an1
, an2+1) < ε, d(an1+1, an2

) and d(an1+1, an2+1) < ε and O(ϕm+1, a) ∪
ϕ(O(ϕm, a)) is a Cauchy sequence. By induction, we establish thatO(ϕm, a)∪ϕ(O(ϕm), a)∪
ϕ2(O(ϕm, a)) ∪ ... ∪ ϕi(O(ϕm, a)) is a Cauchy sequence for any i ∈ N. Hence O(ϕ, a) =
O(ϕm, a) ∪ ϕ(O(ϕm, a)) ∪ ϕ2(O(ϕm, a)) ∪ ... ∪ ϕm(O(ϕm, a)) is a Cauchy sequence. �

Corollary 6.1. Let (X, d) be a dislocated H-distance space, 0 ≤ k < 1, ϕ : X −→ X be
a mapping, d(ϕ(x), ϕ(y)) ≤ kd(x, y) for all x, y ∈ X and for some point a ∈ X the Picard
sequence O(ϕ, a) is convergent. Then:
1) There exists a unique fixed point b ∈ X of the mapping ϕ and Fix(ϕ) = {b}.
2) If x ∈ X and O(ϕ, x) = {xn : n ∈ N}, then limn→∞ xn = b and limn→∞d(b, xn) = 0.

Proof. Let {an = ϕn(a) ∈ X : n ∈ N} be the Picard sequence of the given point a ∈ X
which is a convergent to a point b ∈ X , i.e. limn→∞ an = b. Since ϕ is continuous as
contraction and an+1 = ϕ(an) for any n ∈ N, we have b = limn→∞ an = limn→∞ ϕ(an) =
ϕ(b). Since d is a H-distance, b = ϕ(b). Hence b ∈ Fix(ϕ).

Fix x ∈ X . Let λ = d(b, x) and xn = ϕn(x) for each n ∈ N. Then d(b, x1) ≤
kd(b, x) = kλ and d(b, xn) ≤ knλ for each n ∈ N. Hence limn→∞ d(b, xn) = limn→∞ knλ =
λ limn→∞ kn = 0. �

Corollary 6.2. Let (X, d) be a complete H∗-b-quasi-metric space, 0 ≤ k < 1, ϕ : X −→ X be a
mapping and d(ϕ(x), ϕ(y)) ≤ kd(x, y) for all x, y ∈ X . Then:
1) There exists a unique fixed point b ∈ X of the mapping ϕ and Fix(ϕ) = {b}.
2) If x ∈ X and O(ϕ, x) = {xn : n ∈ N}, then limn→∞ xn = b and limn→∞ d(b, xn) = 0.
3) Fix(ϕ) ⊂ ϕ(MK(X, d)) ⊂MK(X, d).

Proof. Let λ ≥ 1 be the b-constant of d, i. e. d(x, z) ≤ λ(d(x, y) + d(y, z)) for all x, y, z ∈ X .
We have ϕ(MK(X, d)) ⊂M(X, d).

Case 1. MK(X, d) 6= ∅.
In this case we can assume that X = MK(X, d) and d be a b-quasi-metric on X .
Fix a ∈ X . Let {an = ϕn(a) ∈ X : n ∈ N} be the Picard sequence of the given point

a ∈ X .
We put ds(x, y) = d(x, y) + d(y, x) for all x, y ∈ X . Then ds is a b-metric on X with the

b-constant λ and ds(ϕ(x), ϕ(y)) ≤ kds(x, y) for all x, y ∈ X .
There exists m ∈ N such that kmλ < 1. If f = ϕm, then ds(f(x), f(y)) ≤ kmd(x, y)

for all x, y ∈ X . Hence, by virtue of Proposition 6.7, {bn = fm(a) : n ∈ N} is a Cauchy
sequence of the b-metric space (X, ds) ([4], [34], pag. 54). In this case {an : n ∈ N} is a
Cauchy sequence of the b-metric space (X, ds), too (see [14, 16]).

Any Cauchy sequence of the distance space (X, ds) is a Cauchy sequence of the distance
space (X, d). Since (X, d) is a complete distance space, the Picard sequence of the given
point a ∈ X is convergent as a Cauchy sequence of the distance space (X, d). Corollary
6.1 completes the proof.

Case 2. MK(X, d) = ∅.
We put ρ(y, y) = 0 for any y ∈ X and ρ(x, y) = d(x, y) for distinct points x, y ∈ X .

Then ρ is the location of d, ρ(x, z) ≤ λ(ρ(x, y) +ρ(y, z)) and ρ(ϕ(x), ϕ(y)) ≤ kρ(x, y) for all
x, y, z ∈ X . Therefore (X, ρ) is a b-quasi-metric space and ϕ is a ρ-contraction, too.

Fix a point a ∈ X . Then a 6∈ Fix(ϕ). There exists m ∈ N such that 0 ≤ km · λ < 1.
In this case, from Proposition 6.7 (see [4], [34], pag. 54), O(ϕm, x) is a Cauchy sequence
of the distance spaces (X, ds) and (X, d) for any point x ∈ X . Fix a ∈ X . By Proposition
6.8, O(ϕm, x) is a Cauchy sequence of the space (X, d). Let b be the limit of the sequence
{an = ϕn(a) ∈ X : n ∈ N}. Then b ∈ MK(X, d), a contradiction. Hence, this case is
impossible. The proof is complete. �
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The above assertions allow us to state the following general principle.

Reduction principle. Assume that for any b-metric space (Z, ρ) and any mapping ψ : Z −→ Z
with properties Q any Picard orbit O(ψ, z) is a Cauchy sequence and the restriction of ψ on the
closure of the orbit is continuous. Then, for any dislocated H∗-b-quasi-metric space (X, ρ) and
any mapping f : X −→ X with properties Q, the following assertions are true:
1) Any Picard orbit O(f, x) is a Cauchy sequence.
2) If (X, ρ) is a complete space, then the set Fix(f) is non-empty.
3) If any mapping f with propertiesQ is contractive, then the set Fix(f) is empty or a singleton.

Note that the above assertions are not true for not H-distances.

Example 6.7. (see [15, 16]). Let X = N, ρ(x, y) = d(x, x) = 0 for all x ∈ X , ρ(n,m) = 2−m

and d(n,m) = d(m,n) = 2−n−m for all distinct n,m ∈ N = X . We have d(x, y) = d(y, x) and
d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .

The topology T (d) generated by d is equal with the topology T (ρ) generated by ρ. The
topology T (d) = T (ρ) is a compact T1-topology on X , {n : n ∈ N} is a Cauchy sequence
convergent to any point x ∈ X . On X consider the continuous mapping ϕ : X −→ X ,
where ϕ(n) = n+ 1 for any n ∈ N. Hence:
- d is a symmetric and complete distance on X ;
- the distance ρ is a complete quasi-metric;
- d and ρ are not a H-distances on X ;
- since limn→∞(d(x, n) + d(n, y)) = 0 for all x, y ∈ X , d is not an AU -distance on X ;
- T (ρ) = T (d) = {∅} ∪ {X \ F : F is a finite subset of X};
- the ballsB(x, d, r) andB(x, ρ, r) are open in the space (X,T (d)) and the setsX\B(x, d, r)

and X \B(x, ρ, r) are finite for all x ∈ X and r > 0;
- ϕ is a contraction, d(ϕ(x), ϕ(y)) = 2−2d(x, y) and ρ(ϕ(x), ϕ(y)) = 2−1ρ(x, y) for all x, y ∈
X ;

- Fix(ϕ) = ∅.

7. PARTIAL b-DISTANCES AND THE FIXED POINT PROBLEM

A function d on a set X ×X is called a partial distance on a set X if, for all x, y ∈ X , we
have:
(vim) d(x, x) ≤ d(x, y);

(viim) if d(x, x) = d(x, y) = d(y, x), then x = y.
A partial distance d on a set X is called a partial b-quasi-metric if there exists a positive

number k, named a b-constant, such that for all x, y, z ∈ X we have:
(viiim) d(x, z) ≤ k(d(x, y) + d(y, z)− d(y, y)).

The partial quasi-metric, metric and b-metric are defined as in the case of dislocated
distances. Partial metrics have been introduced in S. G. Matthews [26] as part of the study
of the denotational semantics of data flow networks (see [8, 2, 33]).

Remark 7.4. Let (X, d) be a partial b-quasi-metric space with the b-constant k. If d(x, x) ≥
0 for any x ∈ X , then (X, d) is a dislocated b-quasi-metric space with the b-constant k. If
d(x, x) < 0 for some x ∈ X , then d is called a dualistic partial metric [33]. We will not use
this term.

Let (X, d) be a partial distance space.
For any x ∈ X and r > 0 we put Bp(x, d, r) = {y ∈ X : d(x, y) − d(x, x) < r} be

the d-p-open ball with the center x and radius r > 0. The set U ⊂ X is called d-p-open
if, for any x ∈ U , there exists r > 0 such that Bp(x, d, r) ⊂ U . The family T p(d) of all
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d-p-open subsets is the partial topology on X generated by d. A partial distance space is a
sequential space.

Let {xn : n ∈ N} be a sequence in X and x ∈ X . We say that the sequence {xn : n ∈ N}:
1) is p-convergent in X if for any d-p-open subset U ∈ T p(d), for which x ∈ U , there exists

a number n ∈ N = {1, 2, 3, ...} such that {xm : m ∈ N,m ≥ n} ⊂ U . We denote this by
x = p -limn→∞ xn;

2) is d-p-convergent to x if and only if limn→∞ d(x, xn) = d(x, x). We denote this by x =
d-p-limn→∞ xn;

3) is d-convergent to x if and only if limn→∞ d(x, xn) = 0. We denote this by x = d-
limn→∞ xn;

4) is d-Cauchy if there exists the limit limn,m→∞ d(xn, xm) = 0;
5) is d-p-Cauchy if there exists the limit limn,m→∞ d(xn, xm).

A partial distance space (X, d) is complete if any d-Cauchy sequence is d-convergent.
Our definition of completeness is more general than the completeness in sense of S. G.
Matthews (see [26, 2, 33]): a partial b-quasi-metric space (X, d) is complete if any d-p-
Cauchy sequences is d-p-convergent.

Example 7.8. Let (X, ρ) be a b-metric space with the b-constant k. Fix a number s 6= 0 and
put d(x, y) = ρ(x, y) + s. The following properties of d are true:

1) If {xn : n ∈ N} is a Cauchy sequence of the space (X, d), then there exists n ∈ N such
that xn+m = xn for all m ∈ N, i.e. the sequence {xn : n ∈ N} is trivial. Hence non-trivial
Cauchy sequences of the space (X, ρ) are not Cauchy sequences of the space (X, d).

2) d is a complete partial distance on X .
3) We have T (ρ) = T p(d). The spaces (X, ρ) and (X, d) are the same convergent se-

quences to given point x ∈ X .
4) If k = 1, then d is a partial metric.
5) If s > 0, then d is a complete partial b-metric with the constant k and a complete

dislocated b-metric with the constant k. Since s 6= 0, the topology T (d) is discrete.

For negative numbers s, the partial distance d(x, y) = ρ(x, y) + s may lose the property
of being a b-metric.

Example 7.9. Let (E, ν) be a linear normed space of linear dimension dimE ≥ 2. Fix a
positive number λ 6= 1 and a number s < 0. LetL ⊂ S(ν, 1) be a non-empty subset,−L =L
and the setM = S(ν, 1)\L is non-empty too. As in Theorem 4.2, we put ρ(x, y) = ν(x−y),
ρ(L,λ)(x, y) = λ ·ρ(x, y) provided (y−x) ‖ L and ρ(L,λ)(x, y) = ρ(x, y) provided (y−x) ‖M .
Then ρ(L,λ) is an invariant homogeneous b-metric with b-constant k = max{λ, λ−1}. Since
the sets L and M are not empty there exists the distinct points a1, a2, b1, b2, c1, c2 ∈ E
such that ρ(L,λ)(a1, c1) > ρ(L,λ)(a1, b1) + ρ(L,λ)(b1, c1) and ρ(L,λ)(a2, c2) = ρ(L,λ)(a2, b2) +
ρ(L,λ)(b2, c2). Now we put d(x, y) = ρ(L,λ)(x, y) + s for all x, y ∈ E. Then d is a symmetric
partial distance on E and d is not a partial b-metric for any b-constant k ≥ 1.

Example 7.10. Let a, c be two numbers, X be a set with the cardinality |X| ≥ 2 and
d(a,c)(x, x) be the distance from Example 1.2. If a ≥ c > 0, then d(a,c) is a dislocated
distance and not a partial distance, the topology T (d(a,c)) is discrete and for a = c > 0 the
topology T p(d(a,c)) = {∅, X} is anti-discrete. If c > a, then d(a,c) is a partial metric.

Proposition 7.9. Let (X, d) be a partial b-quasi-metric space. Then:
1) dp(x, y) = d(x, y)− d(x, x) is a b-quasi-metric generate by the partial b-quasi-metric d.
2) T p(d) = T (dp).
3) If x ∈ X , then the spaces (X, d) and (X, dp) are the same d-p-convergent and dp-convergent

to the point x sequences.
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4) Any p-Cauchy sequence of the space (X, d) is a Cauchy sequence of the space (X, dp) too.

Proof. Is obvious �

Example 7.11. Let (E, ν) be a non-complete linear normed space of linear dimension
dimE ≥ 1. Fix a point c ∈ E \ {0} and the numbers λ ∈ [0, 1) and s < −1. We put
g(x) = x+ c and ρ(x, y) = s+ min{0, ν(x− y)}. Then:
1) ρ is an invariant partial metric on E;
2) g is an isometric mappings and ρ(g(x), g(y)) = ρ(x, y) for all x, y ∈ E;
3) s ≤ ρ(g(x), g(y)) = λ · ρ(x, y) < 0 for all x, y ∈ E;
4) Fix(g) = ∅.
5) partial metric ρ is complete and it is not complete in sense of S. G. Matthews.

Proposition 7.10. Let (X, d) be a partial b-metric space and {an ∈ X : n ∈ N} be a Cauchy
sequence convergent to the point a. Then:

(1) a ∈MK(X, ρ) = {x ∈ X : d(x, x) = 0}.
(2) limn→∞ d(an, an) = 0.

Proof. Is obvious �

Proposition 7.11. Let (X, d) be a partial b-metric space and {an ∈ X : n ∈ N} be a sequence
convergent to the point a. If a ∈MK(X, ρ), then {an ∈ X : n ∈ N} is a Cauchy sequence.

Proof. Let k ≥ 1 be the b-constant of d. Fix ε > 0. Then there exists n ∈ N such that
2·d(a, an+m) < k−1 ·ε for allm ∈ N. Then d(an+m, an+s) ≤ k(d(an+m, a)+d(a, an+s)−0) <
ε for all m, s ∈ N. The proof is complete. �

Proposition 7.12. Let (X, d) be a partial b-metric space. Then the distinct points a, b ∈MK(X, d)
have distinct convergent sequences to them.

Proof. Let k ≥ 1 be the b-constant of d. Fix two distinct points a, b ∈MK(X, d). In this case
d(a, a) = d(b, b) = 0 and d(a, b) > 2kλ > 0 for some λ > 0. Then Bp(a, d, λ) ∩Bp(b, d, λ) =
∅. The proof is complete. �

The following fact is distinct than the Contraction Principle of Matthews, Rus ([26],
[34], pag. 55) and is more general than the Contraction Principle from [33].

Theorem 7.3. Let (X, d) be a complete partial b-metric space, 0 ≤ λ < 1, ϕ : X −→ X be a
mapping and |d(ϕ(x), ϕ(y))| ≤ k|d(x, y)| for all x, y ∈ X . Then:

(1) There exists a unique fixed point b ∈ X of the mapping ϕ and Fix(ϕ) = {b}.
(2) If x ∈ X , then the orbitO(ϕ, x) = {xn : n ∈ N} is a Cauchy sequence and limn→∞ xn =

b, limn→∞ d(b, xn) = 0.
(3) b ∈MK(X, d).
(4) ϕ(MK(X, d)) ⊂MK(X, d).

Proof. Let k ≥ 1 be the b-constant of d, i. e. d(x, z) ≤ k · (d(x, y) + d(y, z) − d(y, y)) for all
x, y, z ∈ X . We have ϕ(MK(X, d) ⊂M(X, d).

Case 1. MK(X, d) 6= ∅.
In this case we can we fix a ∈ MK(X, d). Since (MK(X, d), d) is a b-metric space, by

virtue of Corollary 6.2, the orbit O(ϕ, a) = {an : n ∈ N} is a Cauchy sequence. There
exists the limit limn→∞ an = b. From Proposition 7.10 it follows that b ∈ MK(X, d).
Hence b ∈ Fix(ϕ). Obviously Fix(ϕ) ⊂MK(X, d).

Fix x ∈ X . Then d(fn(x), ϕn(a)) ≤ knd(x, a). Therefore limn→∞(b, ϕn(x)) = 0 and
limn→∞ ϕn(x) = b.

In this case the theorem is proved.
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Case 2. MK(X, d) = ∅.
There exists m ∈ N such that kmλ < 1. If f = ϕm, then |d(f(x), f(y))| ≤ km|d(x, y)| for

all x, y ∈ X .
Fix a ∈ X . Let {an = fn(a) : n ∈ N} be the Picard sequence of the point a ∈ X .

We can assume that |d(a, f(a))| < 1 and |d(a, a)| < 1. Then |d(an, an+1| < kn+m and
|d(an, an| < kn+m. We have an 6= am for distinct n,m ∈ N. As in the proof of Proposition
6.7 we can proved that the orbit O(f, a) is a Cauchy sequence. There exists the limit
limn→∞ fn(a) = c. From Proposition 7.10 it follows that c ∈ MK(X, d), a contradiction.
The proof is complete. �
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