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Fixed points results in modular vector spaces with
applications to quantum operations and Markov operators

MOHAMED AMINE KHAMSI, POOM KUMAM and UMAR BATSARI YUSUF

ABSTRACT. Recently, researchers are showing more interest on both modular vector spaces and modular
function spaces. Looking at the number of results it is pertinent to say that, exploration in this direction espe-
cially in the area of fixed point theory and applications is still ongoing, many good results can still be unveiled.
As a contribution from our part, we study some fixed point results in modular vector spaces associated with
order relation. As an application, we were able to study the existence of fixed point(s) of both depolarizing
quantum operation and Markov operators through modular functions/modular spaces. The awareness on the
importance of quantum theory and Economics globally were the sole motivations of the application choices in
our work. Our work complement the existing results. In fact, it adds to the number of application areas that
modular vector/function spaces covered.

1. INTRODUCTION

It was recorded that, introduction of the vector space that consist of sequences was
associated to the work of Orlicz [23], as we can observe below

(OS) `p(·) = X =
{
{ul} ⊂ RN :

∞∑
l=0

|γ ul|p(l) <∞ for some γ > 0
}
,

for {p(l)} ⊂ [1,∞). After the introduction of the space X , many researchers undergo an
extensive study on both the topological and geometrical structures of the space X , see
[10, 13, 14, 16, 17, 21, 26, 27].
From 1950 to 1951, Nakano [19, 20] coined the definition of the modular function we use

today and which specifically contained the spaces `p(·) introduced by Orlicz. Looking at
the variable exponent spaces (VES) [4], one can easily observe that, `p(·) is a special case.

As time pass by, the applications of those spaces were unveiled especially in the area
of material sciences. As such, the area received more attention from many researchers
globally, which in turn boost the quantity of published results. Kováčik and Rákosnı́k
[11] tackled the topological structures/properties involving the VES; the concern on hy-
drodynamics of electrorheological fluids by Rajagopal and Ružička [24, 25] motivate them
to initiate a mathematical investigation in the area. Due to their studies, other researchers
follow their foot print and establish good results that are essential today in the area of
VES. For example, mathematically, one can use the partial differential equations with
non-standard growth to illustrate the behavior of the non-Newtonian fluids obtainable
in the Rajagopal-Ružička model, whose solutions is typically found in Sobolev spaces of
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variable exponents. No doubt, experts in the area of medicine, defense industry and civil
engineering are currently enjoying the Electrorheological fluids applications.

In this paper, with keen interest to the work of Abdou et al [1], Kamihigashi et al [6] and
Batsari et al [28], we used the modular function and a binary relation to establish some
fixed point results. And later, we give some applications through quantum operations
and Markov operators.

As the nature of our work inclined more on the fixed point theory of metric type, the
reader can consult the books written by Khamsi and Kirk [8] and the recent one written
by Khamsi and Kozlowski [9].

2. NOTATIONS AND DEFINITIONS

As stated above that the space X = `p(·) is clearly a special case of the VES, see [23]. With
this motivation, Nakano [19, 20] come up with the structure of the modular vector.

Definition 2.1. Consider a real vector space X . A function ρ : X → [0,+∞] is referred to
as regular modular if the following conditions hold:

(1) ρ(z) = 0 iff z = 0.
(2) ρ(z) = ρ(−z).
(3) ρ(βz + (1− β)t) ≤ ρ(z) + ρ(t), β ∈ [0, 1] and for every z, t ∈ X .

By replacing (3) with the below inequality
(4) ρ(βz + (1− β)t) ≤ βρ(z) + (1− β)ρ(t), for any z, t ∈ X and β ∈ [0, 1],

then we called the function ρ regular convex modular.

Example 2.1. Let X = [0, 1] define the functional ρ : X → [0,+∞] by

ρ(x) = |x|, ∀ x ∈ [0, 1],

it is easy to check that ρ is a regular convex modular finctional.

Example 2.2. [15] Below are definitions/formulations of two important modular func-
tions:

(1) The Orlicz modular on the set of measurable real valued functions X is defined as

ρ(f) =

∫
R
ψ(|f(t)|)dm(t),

where m denotes the lebesgue measure in R whereas ψ : R→ [0,∞) is continuous,
ψ(v) = 0 iff v = 0 and ψ(t)→∞ as t→∞.

(2) The Musielak-Orlicz modular function is given as

ρ(f) =

∫
Ω

ψ(ω, f(ω))dµ(ω),

where µ is a σ−finite measure on Ω and ψ : Ω×R→ [0,∞) satisfy the followings:
(i)ψ(ω, v) is a continuous even function which is non decreasing for v > 0, ψ(ω, 0) =
0, ψ(ω, v) > 0 for v 6= 0 and ψ(ω, v)→∞ as v →∞.
(ii) ψ(ω, v) is a measurable function of ω for every v ∈ R.

Many good examples involving modular vector spaces and modular function spaces can
be found in the book [12].

Definition 2.2. Consider a vector space X and ρ its associated regular convex modular
function. The set

Xρ = {z ∈ X : lim
γ→0+

ρ(γz) = 0}
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is a vector subspace of X which is usually known as the associated modular vector space.
On it, the Luxemburg norm is define as

‖z‖ρ = inf{γ > 0 : ρ

(
z

γ

)
≤ 1},

for any z ∈ Xρ.

In the following definition, we give the necessary tools used throughout.

Definition 2.3. Let ρ be a regular convex modular defined on a vector space X .
(1) We will say that a sequence {ul}l∈N ⊂ Xρ ρ-converges to u if and only if lim

l→∞
ρ(ul −

u) = 0. u is conventionally known as the ρ-limit of {ul}.
(2) We will say that a sequence {ul}l∈N ⊂ Xρ is ρ-Cauchy if and only if

lim
h,l→∞

ρ(uh − zl) = 0.

(3) We will say that C ⊂ Xρ is ρ-closed if the ρ-limit of any ρ-convergent sequence of C
belongs to C.

(4) We will say that C ⊂ Xρ is ρ-complete if any ρ-Cauchy sequence {ul} ⊂ C is ρ-
convergent and its ρ-limit belongs to C.

(5) We will say that C ⊂ Xρ is ρ-bounded if

δρ(C) = sup{ρ(z − t) : z, t ∈ C} <∞.

(6) ρ is said to satisfy the Fatou property if and only if for any two ρ-convergent sequences
{ul}, {sl} ⊆ Xρ ρ-converging to u and s respectively, we have

ρ(u− s) ≤ lim inf
l→∞

ρ(ul − sl).

In general if lim
l→∞

ρ(γ(ul−u)) = 0, for some γ > 0, then we may not have lim
l→∞

ρ(γ(ul−u)) =

0, for all γ > 0. This little problem is fixed by assuming that, the modular function ρ
satisfies the ∆2-condition, i.e. lim

l→∞
ρ(γ(ul − u)) = 0 for some γ > 0 implies lim

l→∞
ρ(γ(ul −

u)) = 0 for all γ > 0. In particular, we have

lim
l→∞

‖ul − u‖ρ = 0 if and only if lim
l→∞

ρ(γ(ul − u)) = 0, for all γ > 0,

for any {ul} ⊆ Xρ and u ∈ Xρ. In other words, we will have ρ-convergence and ‖.‖ρ con-
vergence to be equivalent if and only if the modular function ρ satisfies the ∆2-condition.
Another similar property is also extensively used. Indeed, we say that, the modular func-
tion ρ satisfies the ∆2-type condition if we can find a real number K ≥ 0 satisfying

ρ(2z) ≤ K ρ(z),

for any z ∈ Xρ. For more information concerning the study of ∆2-condition, the reader
can check [9, 12, 18]. Moreover, it is well known [9] that, the modular function ρ satisfies
the Fatou property if and only if the ρ-balls are ρ-closed. Recall that, a ρ-ball take the
below definition

Bρ(z,m) = {s ∈ Xρ : ρ(z − s) ≤ m},
for z ∈ Xρ and m ≥ 0.

Definition 2.4. Let ρ be a regular convex modular defined on a vector space X . Assume
that � is a partial order defined within X .
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(i) We say that ρ is monotone if

s � t � v implies max{ρ(t− s), ρ(v − t)} ≤ ρ(v − s),
for any s, t, v ∈ Xρ.

(ii) A sequence {ul} in Xρ is said to be monotone increasing (resp. decreasing) if
ul � ul+1 (resp. ul+1 � ul), for any l ∈ N.

Definition 2.5. Let ρ be a regular convex modular defined on a vector space X . Assume
that � is a partial order defined on X . Let ∅ 6= C ⊂ Xρ.

(i) A self mapping U : C → C is referred to as monotone if

s � z implies U(s) � U(z),

for any z, s ∈ C.
(ii) For a mapping U : C → C, a point s ∈ C is said to be a fixed point of U if and only

if U(s) = s. A point s ∈ C will be called ρ-globally stable fixed point of U in C if s
is a fixed point of U and lim

l→+∞
ρ(s− U l(z)) = 0, for any z ∈ C.

(iii) A mapping U : C → C is said to be ρ-asymptotically contractive if and only if

lim
l→+∞

ρ(U l(s)− U l(z)) = 0,

for all s, z ∈ C.
(iv) A mapping U : C → C is said to be monotone ρ-asymptotically contractive if and

only if
lim

l→+∞
ρ(U l(s)− U l(z)) = 0,

for s, z ∈ C comparable elements.

Remark 2.1. Let ρ be a regular convex modular defined on a vector space X . Let ∅ 6=
C ⊂ Xρ. Note that if U : C → C is ρ-asymptotically contractive, then U has at most
one fixed point which is ρ-globally stable. Indeed, let s and z be two fixed points. Then
ρ(U l(s)−U l(z)) = ρ(s− z), for any l ∈ N. Since lim

l→+∞
ρ(U l(s)−U l(z)) = 0, we conclude

that ρ(s− z) = 0, and hence s = z. In addition, if s is a fixed point of U, then we have

lim
l→+∞

ρ(U l(s)− U l(z)) = lim
l→+∞

ρ(s− U l(z)) = 0,

for all z ∈ C.

Example 2.3. Let K denote the vector space consisting of 2 × 2 real valued matrices. Let
ρ : K → [0,+∞] be any regular convex modular. Suppose the nonempty set C ⊆ K is
ρ-bounded and convex. Fix B ∈ C and p ∈ (0, 1]. If the mapping U : C → C is defined by

U(A) = p B + (1− p) A,
then U is ρ-asymptotically contractive and B is the ρ-global stable fixed point of U . In-
deed, it is obvious that U(B) = B. Moreover, we have

ρ(U(A)− U(A′)) = ρ
(

(1− p) (A−A′)
)
,

for any A,A′ ∈ C. Using the convexity of ρ, we get

ρ(U(A)− U(A′)) ≤ (1− p) ρ
(
A−A′

)
,

which implies

ρ(U l(A)− U l(A′)) ≤ (1− p)l ρ
(
A−A′

)
,
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for any A,A′ ∈ C and l ∈ N. Since ρ(A−A′) < +∞ and (1− p) < 1, we conclude that

lim
l→+∞

ρ(U l(A)− U l(A′)) = 0,

this is to say U is ρ-asymptotically contractive. Using Remark 2.1, we conclude that, B is
the ρ-globally stable fixed point of U .

3. MAIN RESULTS

Throughout we assume that, ρ is a regular convex and monotone modular defined on
the vector space X , and � is a partial order defined on X .

Theorem 3.1. Let C ⊂ Xρ be a nonempty subset. Let U : C → C be a monotone mapping.
Assume there exist s, t ∈ C such that, the conditions

lim
i→+∞

ρ(U i(s)− U i(t)) = 0,(3.1)

U i(s) � t, ∀ i ∈ N,(3.2)
t � U(t),(3.3)

are satisfied. Then U has a fixed point.

Proof. Let the conditions (3.1)-(3.3) hold. Since U is monotone and that condition (3.3)
holds, we have {U i(t)} is monotone increasing. Using (3.2), we have

U i(s) � t � U(t) � U i(t),
for any i ≥ 1. The monotonicity of ρ implies

0 ≤ ρ(t− U(t)) ≤ ρ(U i(s)− U i(t))
for any i ≥ 1. The condition (3.1) implies ρ(t− U(t)) = 0, i.e., U(t) = t. �

Example 3.4. Consider the collection M of 2 × 2 matrices with real entries. Define a
mapping U :M→M by

U

([
a b
c d

])
=

1

2

[
2a b
c 2d

]
.(3.4)

Define a relation � onM by A � B iff aij ≥ bij for A,B ∈ M and i, j ∈ {1, 2}. Let the
function ρ :M→ R+ be defined as

ρ(A) =

2∑
j=1

2∑
i=1

|aij |.

So with the above definitions, all conditions and assumptions of the above Theorem 3.1
are satisfied.

Proof. The relation � can easily be seen as a partial order onM. Moreover, it is obvious
that the mapping U is monotone. From the properties of the absolute value function, it is
trivial for the functional ρ to be a regular convex and monotone modular. Using similar
procedure as in Example 2.3, condition (3.1) follows. Conditions (3.2) and (3.3) easily
follow from the definitions of U and �.
Furthermore, using

t =

[
1 0
0 2

]
and s =

[
3 3
3 3

]
,

one can check to see that U(t)=t and the fixed point set of U denoted by F (U) is

F (U) =

{[
a 0
0 d

]
, a, b ∈ R

}
.
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�

Next we assume a property satisfied by most of the modular function spaces when par-
tially ordered by the almost-pointwise order:

Property (UBY): For any increasing sequence {ul} ⊂ Xρ which is ρ-convergent to u ∈ Xρ,
we have ul � u, for any l ∈ N. Moreover, if there exists z ∈ Xρ such that ul � z, for any
l ∈ N, then u � z holds.

Theorem 3.2. AssumeXρ is ρ-complete. Let C ⊂ Xρ be nonempty and ρ-closed. Let U : C → C
be a monotone ρ-asymptotically contractive mapping. Assume there exist t, z ∈ C such that

t � U(t),(3.5)

U l(t) � z, ∀l ∈ N.(3.6)

Then U has a fixed point.

Proof. Since t � U(t), then {U l(t)} is monotone increasing. Since U is monotone, the
condition (3.5) implies U l+h(t) � U l(z), for any h, l ∈ N. Therefore, we have

(I) U l(t) � U l+h(t) � U l(z),

for any h, l ∈ N. Since ρ is monotone, we get

ρ(U l(t)− U l+h(t)) ≤ ρ(U l(t)− U l(z)),

for any h, l ∈ N. Since t and z are comparable and U is monotone ρ-asymptotically con-
tractive, we get

lim
n→+∞

ρ(U l(t)− U l(z)) = 0.

Let ε > 0. There exists l0 ∈ N such that

ρ(U l(t)− U l(z)) < ε,

for any l ≥ l0. Hence
ρ(U l(t)− U l+h(t)) < ε,

for any l ≥ l0 and h ∈ N, i.e., {U l(t)} is ρ-Cauchy. Since Xρ is ρ-complete, there exists
t̂ ∈ Xρ such that {U l(t)} is ρ-convergent to t̂. Since C is ρ-closed, t̂ ∈ C. From the
inequalities (I) and the property (UBY), we get

U l(t) � t̂ � U l(z),

for any l ∈ N. Since U is monotone, we get

U l+1(t) � U(t̂) � U(U l−1(z)) = U l(z), l ≥ 1

Using the property (UBY), we conclude that t̂ � U(t̂). Putting everything together, we
obtain

U l(t) � t̂ � U(t̂) � U l(z),
for any l ∈ N. The monotonicity of ρ implies

ρ(t̂− U(t̂)) ≤ ρ(U l(t)− U l(z)),

for any l ∈ N. Since lim
l→∞

ρ(U l(t) − U l(z)) = 0, we conclude that ρ(t̂ − U(t̂)) = 0, i.e.

U(t̂) = t̂. In other words, t̂ is a fixed point of U which completes the proof of Theorem
3.2. �
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4. SOME APPLICATIONS

4.1. Quantum operations.

FIGURE 1. Bloch sphere

LetQ denote the vector space formed from the collection of quantum states of a two-state
quantum system [22]. Consider the two-state quantum system representation known as
the Bloch sphere and denote it by B (see Fig. 1). Each quantum state |ψ〉 of the system has
a density matrix representation ξ|ψ〉 given as

ξ|ψ〉 =
1

2

(
1 + γ cos θ γe−iϕ sin θ
γeiϕ sin θ 1− γ cos θ

)
,

where γ ∈ [0, 1], 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. Inspired by an example introduced by Orlicz
in [23] (see (OS)), we define the modular function on Q by

ρ(ξ) = ρ

((
m11 m12

m21 m22

))
=

2∑
j=1

(
2∑
i=1

|mij |pij
)
,

where ξ ∈ Q, mij ∈ C and pij ≥ 1, for all i, j ∈ {1, 2}. It is easy to check that ρ is a regular
convex modular. For different partial orders on B, we recommend the paper by Coecke
and Martin [2]. Here we consider the spectral partial order � defined by ξ � ξ′ if and
only if the line segment from the center of the Bloch sphere to the point ξ′ passes through
ξ, where the center of the Bloch sphere is known as the completely mixed quantum state
represented by the matrix I/2. Note that if ξ is defined by (γ, θ, ϕ) and ξ′ is defined by
(γ′, θ′, ϕ′), then ξ � ξ′ if and only if γ ≤ γ′, θ = θ′ and ϕ = ϕ′. The modular ρ is easily
checked to be monotone with respect to the partial order �. Consider the depolarizing
quantum operation U on the Bloch sphere defined by U(ξ) = p

2I + (1 − p)ξ, with the
depolarizing parameter p ∈ [0, 1]. If ξ is given by (γ, θ, ϕ), then

U(ξ) =
1

2

(
p 0
0 p

)
+

1− p
2

(
1 + γ cos θ γe−iϕ sin θ
γeiϕ sin θ 1− γ cos θ

)
which implies

U(ξ) =
1

2

(
1 + γ(1− p) cos θ γ(1− p)e−iϕ sin θ
γ(1− p)eiϕ sin θ 1− γ(1− p) cos θ

)
.

Clearly, the angles θ and φ are not affected by the depolarizing quantum operation U . It
is then easy to check that U is monotone. According to Example 2.3, U is ρ-asymptotically
contractive and I/2 is the ρ-global stable fixed point of U .
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4.2. Nonlinear Markov operators. Let F denote the set whose elements are the proba-
bility distribution functions defined on the set of real numbers R; one can verify that,
each f ∈ F is increasing and upper semi-continuous function from the set R to the closed
interval [0,1], and also satisfy the below conditions

lim
x↓−∞

f(x) = 0, for each x ∈ R(4.7)

lim
x↑+∞

f(x) = 1, for each x ∈ R.(4.8)

Note that, F is a convex set [3]. The self mapping U : F → F is mostly referred to as
nonlinear Markov operator [6].
Consider the order relation � defined on F by

(4.9) f � g iff g(x) ≤ f(x), ∀x ∈ R.
The order � defined above is called a stochastic dominance.
Suppose U : F → F is monotone. For f, g ∈ F and x ∈ R, define

(4.10) ρ(f − g) =

∫
R
|f(x)− g(x)|p(x)dx, p(x) > 1, ∀ x ∈ R.

Definition 4.6. A function Φb : X → R+∪{∞} for b ∈ B ⊆ R is one dimensional, if b ∈ B
does not affect the images/values of
Φb; Φb = Φb′ ∀b, b′ ∈ B.

Theorem 4.3. Let U be monotone and ρ-asymptotically contractive mapping on the modular space
Fρ. If there exist f, f ∈ F such that,

f � Uf,(4.11)
U if � f.(4.12)

Then, U has a global stable fixed point f∗ ∈ F .

Proof. From the above definition of the modular ρ (4.10), it is clear that, ρ is not one di-
mensional. So, another technique of proof is required other than those discussed earlier
that involved a one dimensional modular function. Henceforth, if we write f ≤ g we
mean f(x) ≤ g(x), ∀ x ∈ R. Now, from (4.11) and (4.9) we have Uf ≤ f.
Now, let

(4.13) f∗ = infi∈N{U if},
where the infimum is taken point-wise. Clearly, f∗ satisfies (3.2) and for U being ρ-
asymptotically contractive condition (3.1) holds, with reference to Theorem 3.1, for us
to conclude f∗ is a fixed point of U , it suffices to show condition (3.3) holds.

We proceed by showing f∗ ∈ F . Since each f ∈ F is increasing, then f∗ is increasing too.
Considering (4.11) - (4.13), we have f ≤ f∗ ≤ U if ≤ f ∀i ∈ N. Hence, f∗(x) ∈ [0, 1] for
all x ∈ R. Moreover, 0 ≤ limx↓−∞ f∗(x) ≤ limx↓−∞ f(x) = 0 and 1 = limx↑+∞ f(x) ≤
limx↑+∞ f∗(x) ≤ 1. Therefore, limx↑+∞ f∗(x) = 1 and limx↓−∞ f∗(x) = 0. Note that, for
f∗ being an infimum of upper semi-continuous functions, it is upper semi-continuous too.
Thus, f∗ ∈ F .
Next, for U being monotone, f∗ ≤ U if ∀i ∈ N and U i+1f ≤ U if , we have Uf∗ ≤
U i+1f ∀i ∈ N. Since {U if} is decreasing with respect to≤, then infi∈N U

i+1f = infi∈N U
if =

f∗, which implies Uf∗ ≤ f∗. Thus, f∗ � Uf∗; condition (3.3) holds. Therefore, from the
proof of Theorem 3.1, f∗ is a fixed point of U (invariant probability distribution function).
As U is ρ-asymptotically contractive, then f∗ is a global stable fixed point of U (Remark
2.1). �
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Definition 4.7. Suppose S denote a topological space endowed with borel sets B. Let PS

denote the space of probability measures/distributions on (S,B). A sequence {µn} ⊂ PS

is considered to be tight if, for all ε > 0, there exists a compactK ⊂ S such that µn(S\K) <
ε for all n, see [7].

One way to ensure the existence of f satisfying (4.12) is by assuming that {T if} is
“tight” (with {Tif} viewed as a sequence of probability measures).

5. CONCLUSION

As modular functions were utilized in establishing the fixed point results, the
method/technique proved to be promising. The consequent applications to both Markov
and Quantum operations will no doubt serve as an opener to more application results
using modular vector/function spaces.

It will be interesting if more general quantum operations were studied in modular
vector/function spaces, as fixed points of either the quantum states or density operators
representations can be of valuable importance in quantum information theory.
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[25] Ružička, M., Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, 1748,

Springer-Verlag, Berlin, 2000
[26] Sundaresan, K., Uniform convexity of Banach spaces `({pi}), Studia Math., 39 (1971), 227–231
[27] Waterman, D., Ito, T., Barber, F. and Ratti, J., Reflexivity and Summability: The Nakano `(pi) spaces, Stud.

Math., 33 (1969), 141–146
[28] Batsari, U. Y., Kumam, P. and Dhompongsa, S., Fixed points of terminating mappings in partial metric spaces, J.

Fixed Point Theory Appl., 21 (2019), 20 pp.
[29] Yusuf, U. B., Kumam, P. and Yoo-Kong, S., Some generalised fixed point theorems applied to quantum operations,

Symmetry (MDPI), 12 (2020), 16 pp.

DEPARTMENT OF MATHEMATICAL SCIENCES

THE UNIVERSITY OF TEXAS AT EL PASO

TX 79968, EL PASO, U.S.A.
Email address: mohamed@utep.edu

DEPARTMENT OF MATHEMATICS

KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI

CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONAL SCIENCE CENTER(TACS-COE)
SCIENCE LABORATORY BUILDING, KMUTT
126 PRACHA UTHIT ROAD, BANG MOD, THUNG KHRU, 10140 BANGKOK, THAILAND

DEPARTMENT OF MEDICAL RESEARCH, CHINA MEDICAL UNIVERSITY HOSPITAL

CHINA MEDICAL UNIVERSITY, TAICHUNG 40402, TAIWAN

Email address: poom.kumam@mail.kmutt.ac.th

HASSAN USMAN KATSINA POLYTECHNIC

DEPARTMENT OF MATHEMATICS AND STATISTICS

DUTSIN-MA ROAD, KATSINA, NIGERIA

Email address: ubyusuf@hukpoly.edu.ng


