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Iterating nonlinear contractive mappings in Banach spaces
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ZASLAVSKI

ABSTRACT. We introduce a new class of nonlinear contractive mappings in Banach spaces, study their iter-
ates and establish a fixed point theorem for them.

1. INTRODUCTION AND PRELIMINARIES

Let (X, ‖ · ‖) be a Banach space and let K be a nonempty and closed subset of X .
Following [3, 7], we denote by F the set of continuous functions f : X → [0,∞) with
f(0) = 0 satisfying the following two conditions:

(P1) For each positive number ε, there is a positive number δ such that for each pair of
points x, y ∈ K satisfying f(x− y) ≤ δ, we have ‖x− y‖ ≤ ε;

(P2) The function (x, y) 7→ f(x− y), x, y ∈ K, is uniformly continuous on the set K×K
and for each point z ∈ K, the function x 7→ f(x−z), x ∈ D, is bounded on every bounded
set D ⊂ K.

Let Ψ denote the set of decreasing functions ψ : [0,∞) → [0, 1] satisfying ψ(t) < 1 for
each positive number t.

We begin by recalling the following result, which has recently been established by Reich
and Zaslavski [8].

Theorem 1.1. Let f ∈ F and ψ ∈ Ψ be given, and let A : K → K be a continuous mapping
such that

(1.1) f(Ax−Ay) ≤ ψ(f(x− y))f(x− y)

for all x, y ∈ K. Then the mapping A has a unique fixed point xA ∈ K and Aix→ xA as i→∞
for each x ∈ K, uniformly on bounded subsets of K.

We also recall the following definition.

Definition 1.1. [1, 5] A self-mapping A of a metric space (X, d) is said to be p-continuous,
where p = 1, 2, 3, . . ., ifApxn → Az whenever {xn} is a sequence inX such thatAp−1xn →
z.

In this paper we introduce a new class of nonlinear contractive mappings in Banach
spaces, study their iterates and establish a fixed point theorem for them (see Sections 2
and 3 below). We conclude our paper with a few pertinent remarks and examples (see
Section 4 below).
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2. FIXED POINTS

Let f ∈ F and let ψ, φ, ϕ ∈ Ψ be such that

(2.2) ψ(t) + φ(t) + ϕ(t) < 1

for all positive numbers t. A mapping A : K → K is said to be a nonlinear contractive
mapping of Reich type (cf. [6]) if

(2.3) f(Ax−Ay) ≤ ψ(f(x−y))f(x−y)+φ(f(x−Ax))f(x−Ax)+ϕ(f(y−Ay))f(y−Ay)

for all x, y ∈ K.

Theorem 2.2. Let A : K → K be a p-continuous nonlinear contractive mapping of Reich type.
Then A has a unique fixed point xA ∈ K and Anx→ xA as n→∞ for each x ∈ K.

Proof. Let x ∈ K. We claim that

(2.4) f(An+1x−An+2x) ≤ f(Anx−An+1x),

for all n ≥ 0. Indeed, if inequality (2.4) were not true, then there would exist n0 ∈ N such
that

(2.5) f(An0+1x−An0+2x) > f(An0x−An0+1x).

Since ϕ ∈ Ψ, it would follow from (2.5) that

(2.6) ϕ(f(An0+1x−An0+2x)) ≤ ϕ(f(An0x−An0+1x)).

From (2.3) we would then obtain

f(An0+1x−An0+2x) ≤ ψ(f(An0x−An0+1x))f(An0x−An0+1x)

+ φ(f(An0x−An0+1x))f(An0x−An0+1x)

+ ϕ(f(An0+1x−An0+2x))f(An0+1x−An0+2x)

and using (2.6) we would have

f(An0+1x−An0+2x) ≤ ψ(f(An0x−An0+1x)) + φ(f(An0x−An0+1x))

1− ϕ(f(An0x−An0+1x))

×f(An0x−An0+1x)

≤ f(An0x−An0+1x).

However, this inequality would contradict inequality (2.5). Therefore we conclude that
(2.4) is true, as claimed. Next, we intend to show that

(2.7) lim
n→∞

f(Anx−An+1x) = 0.

Indeed, if (2.7) were not true, then by (2.4) it would follow that there exists ε > 0 such that
the decreasing sequence {f(Anx−An+1x)} converges to ε and

(2.8) f(Anx−An+1x) ≥ ε
for all n ≥ 0. From relation (2.3) we now obtain that

f(An+1x−An+2x) ≤ ψ(f(Anx−An+1x))f(Anx−An+1x)

+ φ(f(Anx−An+1x))f(Anx−An+1x)

+ ϕ(f(An+1x−An+2x))f(An+1x−An+2x)

and since ψ, φ, ϕ ∈ Ψ, from (2.8) we also see that

f(An+1x−An+2x) ≤ ψ(ε)f(Anx−An+1x)

+ φ(ε)f(Anx−An+1x)

+ ϕ(ε)f(An+1x−An+2x).
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Hence

(2.9) f(An+1x−An+2x) ≤ ψ(ε) + φ(ε)

1− ϕ(ε)
f(Anx−An+1x).

Taking n → ∞ on both sides of this inequality, we conclude that (2.7) is true, as claimed.
Now it follows from property (P1) and (2.7) that

(2.10) ‖Anx−An+1x‖ → 0 as n→∞.

We claim that {Anx} is a Cauchy sequence. Indeed, if this were not true, there would exist
ε > 0 and two sequences of natural numbers {nk} and {mk} such that

(2.11) ‖Ankx−Amkx‖ > ε,

for all k ∈ N. From (2.11) and property (P1) it would then follow that there exists δ > 0
such that

(2.12) f(Ankx−Amkx) > δ

for all k ∈ N. Since ψ ∈ Ψ, it follows that

(2.13) ψ(f(Ankx−Amkx)) ≤ ψ(δ)

for all k ∈ N. Next, we note that from property (P2) and (2.10) it follows that there exists
k0 ∈ N such that

(2.14) |f(Ank+1x−Amk+1x)− f(Ankx−Amkx)| ≤ δ(1− ψ(δ))

2
,

for all k ≥ k0. However, using (2.3), (2.7) and (2.13) we see that

f(Ankx−Amkx) − f(Ank+1x−Amk+1x)

≥ f(Ankx−Amkx)− ψ(δ)f(Ankx−Amkx)

− φ(f(Ankx−Ank+1x))f(Ankx−Ank+1x)

− ϕ(f(Amkx−Amk+1x))f(Amkx−Amk+1x)

> δ(1− ψ(δ))/2

for all large enough k ∈ N. Since this contradicts (2.14), we conclude that {Anx} is indeed
a Cauchy sequence, as claimed. Therefore there exists a point xA ∈ K such that

(2.15) xA = lim
n→∞

Anx.

Since Ap−1Anx→ xA, the p-continuity of A implies that limn→∞ApAnx = AxA. Thus xA
is a fixed point of A. Its uniqueness follows from (2.3) because if yA is any fixed point of
A, then

f(xA − yA) = f(AxA −AyA)

≤ ψ(f(xA − yA))f(xA − yA)

+ φ(f(xA −AxA))f(xA −AxA)

+ ϕ(f(yA −AyA))f(yA −AyA)

= ψ(f(xA − yA))f(xA − yA),

which implies that xA = yA. �
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3. UNIFORM CONVERGENCE

In this section we continue to use the notations, definitions and assumptions intro-
duced in the previous two sections. In addition, we assume that the following condition
holds:

(P3) the function f is bounded on bounded subsets of K −K.

Theorem 3.3. Assume that A : K → K is a p-continuous nonlinear contractive mapping of
Reich type which is bounded on bounded subsets of K and that xA ∈ K satisfies

(3.16) AxA = xA.

Then Anx→ xA as n→∞ for all x ∈ K, uniformly on bounded subsets of K.

Proof. Set A0x := x for all x ∈ K and let ε,M > 0. It has already been shown in the proof
of Theorem 2.1 that for all x ∈ K, we have

(3.17) f(An+1x−An+2x) ≤ f(Anx−An+1x) for all integers n ≥ 0

and

(3.18) lim
n→∞

‖Anx− xA‖ = 0.

Since A is bounded on bounded sets, there exists a number M0 > M such that

(3.19) ‖Ax− xA‖ ≤M0 for each x ∈ K satisfying ‖x− xA‖ ≤M.

By (P3), there exists a number M1 > M0 such that

(3.20) f(z1 − z2) ≤M1 for all z1, z2 ∈ K satisfying ‖z1‖, ‖z2‖ ≤ ‖xA‖+M0.

By (P1), there is δ0 ∈ (0, ε/2) such that

(3.21) if z1, z2 ∈ K and f(z1 − z2) ≤ δ0, then ‖z1 − z2‖ ≤ ε/2.
By (P2), there exists δ1 ∈ (0, δ0) such that

(3.22) |f(z1 − z2)− f(ξ1 − ξ2)| ≤ 4−1δ0(1− ψ(δ0))

for all z1, z2, ξ1, ξ2 ∈ K satisfying

‖zi − ξi‖ ≤ 2δ1, i = 1, 2.

Property (P1) implies that there exists a positive number

δ < (1− ψ(δ0))δ0/4

such that

(3.23) if z1, z2 ∈ K and f(z1 − z2) ≤ δ, then ‖z1 − z2‖ ≤ δ1.
Choose a natural number n0 > 4 such that

(3.24) (ψ(δ) + φ(δ) + ϕ(δ))n0−1 < δM−11 .

and assume that

(3.25) x ∈ K and ‖x− xA‖ ≤M.

We claim that there exists an integer i ∈ [0, n0] such that

f(Aix−Ai+1x) ≤ δ.
Suppose to the contrary that no such integer exists. Then for each integer i ∈ [0, n0],

(3.26) f(Aix−Ai+1x) > δ.

Let i ∈ {0, . . . , n0 − 1}. By (2.3), (3.17) and (3.26), we have

f(Ai+1x−Ai+2x)
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≤ ψ(f(Aix−Ai+1x))f(Aix−Ai+1x) + φ(f(Aix−Ai+1x))f(Aix−Ai+1x)

+ ϕ(f(Ai+1x−Ai+2x))f(Ai+1x−Ai+2x)

≤ ψ(δ)f(Aix−Ai+1x) + φ(δ)f(Aix−Ai+1x) + ϕ(δ)f(Ai+1x−Ai+2x)

(3.27) ≤ f(Aix−Ai+1x)(ψ(δ) + φ(δ) + ϕ(δ)).

In view of (3.27),

(3.28) f(An0−1x−An0x) ≤ f(x−Ax)(ψ(δ) + φ(δ) + ϕ(δ))n0−1.

By (3.19), (3.20) and (3.25),

(3.29) f(x−Ax) ≤M1.

It follows from (3.26), (3.28) and (3.29) that

δ < f(An0−1x−An0x) ≤ (ψ(δ) + φ(δ) + ϕ(δ))n0−1M1.

This, however, contradicts (3.24). The contradiction we have reached shows that there
indeed exists an integer j ∈ {0, . . . , n0} such that

f(Ajx−Aj+1x) ≤ δ.
When combined with (3.17) this implies that

(3.30) f(Aix−Ai+1x) ≤ δ for all integers i ≥ n0.
By (3.23) and (3.30),

(3.31) ‖Aix−Ai+1x‖ ≤ δ1 for all integers i ≥ n0.
Let the integers m1 and m2 satisfy

n0 ≤ m1 < m2.

We claim that
f(Am1x−Am2x) ≤ δ0.

Suppose to the contrary that

(3.32) f(Am1x−Am2x) > δ0.

By (2.3), (3.30) and (3.32), we have

f(Am1+1x−Am2+1x)

≤ ψ(f(Am1x−Am2x))f(Am1x−Am2x)

+ φ(f(Am1x−Am1+1x))f(Am1x−Am1+1x)

+ ϕ(f(Am2x−Am2+1x))f(Am2x−Am2+1x)

≤ ψ(f(Am1x−Am2x))f(Am1x−Am2x) + 2δ

≤ ψ(δ0)f(Am1x−Am2x) + 2δ.

Using the above relation, (3.32) and the choice of δ, we obtain

f(Am1x−Am2x)− f(Am1+1x−Am2+1x)

(3.33) ≥ (1− ψ(δ0))f(Am1x−Am2x)− 2δ ≥ (1− ψ(δ0))δ0 − 2δ ≥ 2−1δ0(1− ψ(δ0)).

In view of (3.23) and (3.31),

(3.34) ‖Am1x−Am1+1x‖ ≤ δ1, ‖Am2x−Am2+1x‖ ≤ δ1.
It now follows from (3.22) and (3.34) that

|f(Am1x−Am2x)− f(Am1+1x−Am2+1x)| ≤ 4−1δ0(1− ψ(δ0)).
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This, however, contradicts (3.33). The contradiction we have reached proves that indeed
we have

(3.35) f(Am1x−Am2x) ≤ δ0.

By (3.21) and (3.35),
‖Am1x−Am2x‖ ≤ ε/2

for all pairs of integers m1,m2 ≥ n0. When combined with (3.18) this implies that

‖Amx− xA‖ ≤ ε

for all integers m ≥ n0. This completes the proof of Theorem 3.3. �

We now present the following corollary of Theorems 2.2 and 3.3. It concerns nonlinear
contractive mappings of Kannan [4] type.

Corollary 3.1. Let f ∈ F have property (P3), let φ, ϕ ∈ Ψ, and let A : K → K be a continuous
mapping such that

(1) φ(t) + ϕ(t) < 1 for all t > 0,
(2) f(Ax−Ay) ≤ ψ(f(x−Ax))f(x−Ax) + ϕ(f(y −Az))f(y −Ay) for all x, y ∈ K.

Then the mapping A has a unique fixed point xA ∈ K and Anx → xA as n → ∞ for all x ∈ K,
uniformly on bounded subsets of K.

4. SOME REMARKS AND EXAMPLES

Remark 4.1. Note that Theorem 1.1 follows from Theorems 2.2 and 3.3 by setting ψ(t) = 0
and φ(t) = 0 for all t ∈ [0,∞).

Remark 4.2. It is not difficult to see that, as a matter of fact, in Theorem 1.1 the continuity
of the mapping A follows from the other assumptions.

Remark 4.3. A comparison of various definitions of contractive mappings can be found
in [2, 9].

Remark 4.4. In the proof of Theorem 2.2 we use the p-continuity of the mapping A. Note
that in the case where the mapping A satisfies condition (1.1) instead of condition (2.3),
we have

(4.36) f(Anx−AxA) ≤ ψ(f(An−1x− xA))f(An−1x− xA).

Therefore, in view of (2.15), we may conclude that

(4.37) f(Anx−AxA)→ 0 as →∞.

Now property (P1) implies that

(4.38) ‖Anx−AxA‖ → 0 as n→∞

and so we have

(4.39) ‖AxA − xA‖ ≤ ‖AxA −AnxA‖+ ‖AnxA − xA‖,

which implies that AxA = xA. Therefore the condition that the mapping A is continuous
is superfluous.

Example 4.1. Let X = R,K = [0, 1] , Ax = 1
16x, ψ (t) = 1

2e
−t, f (x) = |x| . In this case the

assumptions of Theorem 1.1 are fulfilled.
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Example 4.2. Let X = R,K = [0, 4] and let f(x) := x2 for all x ∈ X . Define a mapping
A : K → K by

Ax :=

{
1, x ∈ [0, 3],

0, x ∈ (3, 4].

Then the following two statements hold true.
(a) The mapping A does not satisfy condition (1.1) and we cannot apply Theorem 1.1.
(b) The mapping A does satisfy condition (2.3) and therefore we can apply Theorems 2.2
and 3.3.

Indeed, since f(A3 − A4) = f(3 − 4), the mapping A is not a nonlinear contractive
mapping for which (1.1) holds. However, it is not difficult to see that

f(Ax−Ay) ≤ φ(f(x−Ax))f(x−Ax) + ϕ(f(y −Ay))f(y −Ay)

for all x, y ∈ K, where

φ(t) = ϕ(t) :=


1

3
, t ∈ [0, 3],

1

t
, t ∈ (3,∞).

Example 4.3. Let X = R,K = [0, 4] and let f(x) := x2 for all x ∈ X . Define a mapping
A : K → K by

Ax :=

{
3, x ∈ [0, 3],

0, x ∈ (3, 4].

Now let

φ(t) = ϕ(t) :=


5

6
, t ∈ [0, 3],

1

t
, t ∈ (3,∞).

Then the mapping A does not satisfy Kannan’s contractive condition, but it does satisfy
the assumptions of Theorems 2.2 and 3.3.

Remark 4.5. Regarding the relationship between continuity and p-continuity, see Exam-
ples 1.2–1.5 on page 3502 of [5].
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