Iterating nonlinear contractive mappings in Banach spaces

Zoran D. Mitrović, Stojan Radenović, Simeon Reich and Alexander J. ZASLAVSKI

Abstract

We introduce a new class of nonlinear contractive mappings in Banach spaces, study their iterates and establish a fixed point theorem for them.

1. Introduction and preliminaries

Let $(X,\|\cdot\|)$ be a Banach space and let K be a nonempty and closed subset of X. Following [3, 7], we denote by \mathcal{F} the set of continuous functions $f: X \rightarrow[0, \infty)$ with $f(0)=0$ satisfying the following two conditions:
(P1) For each positive number ϵ, there is a positive number δ such that for each pair of points $x, y \in K$ satisfying $f(x-y) \leq \delta$, we have $\|x-y\| \leq \epsilon$;
(P2) The function $(x, y) \mapsto f(x-y), x, y \in K$, is uniformly continuous on the set $K \times K$ and for each point $z \in K$, the function $x \mapsto f(x-z), x \in D$, is bounded on every bounded set $D \subset K$.

Let Ψ denote the set of decreasing functions $\psi:[0, \infty) \rightarrow[0,1]$ satisfying $\psi(t)<1$ for each positive number t.

We begin by recalling the following result, which has recently been established by Reich and Zaslavski [8].

Theorem 1.1. Let $f \in \mathcal{F}$ and $\psi \in \Psi$ be given, and let $A: K \rightarrow K$ be a continuous mapping such that

$$
\begin{equation*}
f(A x-A y) \leq \psi(f(x-y)) f(x-y) \tag{1.1}
\end{equation*}
$$

for all $x, y \in K$. Then the mapping A has a unique fixed point $x_{A} \in K$ and $A^{i} x \rightarrow x_{A}$ as $i \rightarrow \infty$ for each $x \in K$, uniformly on bounded subsets of K.

We also recall the following definition.
Definition 1.1. $[1,5]$ A self-mapping A of a metric space (X, d) is said to be p-continuous, where $p=1,2,3, \ldots$, if $A^{p} x_{n} \rightarrow A z$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that $A^{p-1} x_{n} \rightarrow$ z.

In this paper we introduce a new class of nonlinear contractive mappings in Banach spaces, study their iterates and establish a fixed point theorem for them (see Sections 2 and 3 below). We conclude our paper with a few pertinent remarks and examples (see Section 4 below).

[^0]
2. FIXED POINTS

Let $f \in \mathcal{F}$ and let $\psi, \phi, \varphi \in \Psi$ be such that

$$
\begin{equation*}
\psi(t)+\phi(t)+\varphi(t)<1 \tag{2.2}
\end{equation*}
$$

for all positive numbers t. A mapping $A: K \rightarrow K$ is said to be a nonlinear contractive mapping of Reich type (cf. [6]) if

$$
\begin{equation*}
f(A x-A y) \leq \psi(f(x-y)) f(x-y)+\phi(f(x-A x)) f(x-A x)+\varphi(f(y-A y)) f(y-A y) \tag{2.3}
\end{equation*}
$$ for all $x, y \in K$.

Theorem 2.2. Let $A: K \rightarrow K$ be a p-continuous nonlinear contractive mapping of Reich type.
Then A has a unique fixed point $x_{A} \in K$ and $A^{n} x \rightarrow x_{A}$ as $n \rightarrow \infty$ for each $x \in K$.
Proof. Let $x \in K$. We claim that

$$
\begin{equation*}
f\left(A^{n+1} x-A^{n+2} x\right) \leq f\left(A^{n} x-A^{n+1} x\right), \tag{2.4}
\end{equation*}
$$

for all $n \geq 0$. Indeed, if inequality (2.4) were not true, then there would exist $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
f\left(A^{n_{0}+1} x-A^{n_{0}+2} x\right)>f\left(A^{n_{0}} x-A^{n_{0}+1} x\right) . \tag{2.5}
\end{equation*}
$$

Since $\varphi \in \Psi$, it would follow from (2.5) that

$$
\begin{equation*}
\varphi\left(f\left(A^{n_{0}+1} x-A^{n_{0}+2} x\right)\right) \leq \varphi\left(f\left(A^{n_{0}} x-A^{n_{0}+1} x\right)\right) \tag{2.6}
\end{equation*}
$$

From (2.3) we would then obtain

$$
\begin{aligned}
f\left(A^{n_{0}+1} x-A^{n_{0}+2} x\right) & \leq \psi\left(f\left(A^{n_{0}} x-A^{n_{0}+1} x\right)\right) f\left(A^{n_{0}} x-A^{n_{0}+1} x\right) \\
& +\phi\left(f\left(A^{n_{0}} x-A^{n_{0}+1} x\right)\right) f\left(A^{n_{0}} x-A^{n_{0}+1} x\right) \\
& +\varphi\left(f\left(A^{n_{0}+1} x-A^{n_{0}+2} x\right)\right) f\left(A^{n_{0}+1} x-A^{n_{0}+2} x\right)
\end{aligned}
$$

and using (2.6) we would have

$$
\begin{aligned}
f\left(A^{n_{0}+1} x-A^{n_{0}+2} x\right) \leq & \frac{\psi\left(f\left(A^{n_{0}} x-A^{n_{0}+1} x\right)\right)+\phi\left(f\left(A^{n_{0}} x-A^{n_{0}+1} x\right)\right)}{1-\varphi\left(f\left(A^{n_{0}} x-A^{n_{0}+1} x\right)\right)} \\
& \times f\left(A^{n_{0}} x-A^{n_{0}+1} x\right) \\
\leq & f\left(A^{n_{0}} x-A^{n_{0}+1} x\right) .
\end{aligned}
$$

However, this inequality would contradict inequality (2.5). Therefore we conclude that (2.4) is true, as claimed. Next, we intend to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f\left(A^{n} x-A^{n+1} x\right)=0 \tag{2.7}
\end{equation*}
$$

Indeed, if (2.7) were not true, then by (2.4) it would follow that there exists $\varepsilon>0$ such that the decreasing sequence $\left\{f\left(A^{n} x-A^{n+1} x\right)\right\}$ converges to ε and

$$
\begin{equation*}
f\left(A^{n} x-A^{n+1} x\right) \geq \epsilon \tag{2.8}
\end{equation*}
$$

for all $n \geq 0$. From relation (2.3) we now obtain that

$$
\begin{aligned}
f\left(A^{n+1} x-A^{n+2} x\right) & \leq \psi\left(f\left(A^{n} x-A^{n+1} x\right)\right) f\left(A^{n} x-A^{n+1} x\right) \\
& +\phi\left(f\left(A^{n} x-A^{n+1} x\right)\right) f\left(A^{n} x-A^{n+1} x\right) \\
& +\varphi\left(f\left(A^{n+1} x-A^{n+2} x\right)\right) f\left(A^{n+1} x-A^{n+2} x\right)
\end{aligned}
$$

and since $\psi, \phi, \varphi \in \Psi$, from (2.8) we also see that

$$
\begin{aligned}
f\left(A^{n+1} x-A^{n+2} x\right) & \leq \psi(\epsilon) f\left(A^{n} x-A^{n+1} x\right) \\
& +\phi(\epsilon) f\left(A^{n} x-A^{n+1} x\right) \\
& +\varphi(\epsilon) f\left(A^{n+1} x-A^{n+2} x\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
f\left(A^{n+1} x-A^{n+2} x\right) \leq \frac{\psi(\epsilon)+\phi(\epsilon)}{1-\varphi(\epsilon)} f\left(A^{n} x-A^{n+1} x\right) \tag{2.9}
\end{equation*}
$$

Taking $n \rightarrow \infty$ on both sides of this inequality, we conclude that (2.7) is true, as claimed. Now it follows from property (P1) and (2.7) that

$$
\begin{equation*}
\left\|A^{n} x-A^{n+1} x\right\| \rightarrow 0 \text { as } n \rightarrow \infty \tag{2.10}
\end{equation*}
$$

We claim that $\left\{A^{n} x\right\}$ is a Cauchy sequence. Indeed, if this were not true, there would exist $\epsilon>0$ and two sequences of natural numbers $\left\{n_{k}\right\}$ and $\left\{m_{k}\right\}$ such that

$$
\begin{equation*}
\left\|A^{n_{k}} x-A^{m_{k}} x\right\|>\epsilon, \tag{2.11}
\end{equation*}
$$

for all $k \in \mathbb{N}$. From (2.11) and property (P1) it would then follow that there exists $\delta>0$ such that

$$
\begin{equation*}
f\left(A^{n_{k}} x-A^{m_{k}} x\right)>\delta \tag{2.12}
\end{equation*}
$$

for all $k \in \mathbb{N}$. Since $\psi \in \Psi$, it follows that

$$
\begin{equation*}
\psi\left(f\left(A^{n_{k}} x-A^{m_{k}} x\right)\right) \leq \psi(\delta) \tag{2.13}
\end{equation*}
$$

for all $k \in \mathbb{N}$. Next, we note that from property (P2) and (2.10) it follows that there exists $k_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|f\left(A^{n_{k}+1} x-A^{m_{k}+1} x\right)-f\left(A^{n_{k}} x-A^{m_{k}} x\right)\right| \leq \frac{\delta(1-\psi(\delta))}{2} \tag{2.14}
\end{equation*}
$$

for all $k \geq k_{0}$. However, using (2.3), (2.7) and (2.13) we see that

$$
\begin{aligned}
f\left(A^{n_{k}} x-A^{m_{k}} x\right) & -f\left(A^{n_{k}+1} x-A^{m_{k}+1} x\right) \\
& \geq f\left(A^{n_{k}} x-A^{m_{k}} x\right)-\psi(\delta) f\left(A^{n_{k}} x-A^{m_{k}} x\right) \\
& -\phi\left(f\left(A^{n_{k}} x-A^{n_{k}+1} x\right)\right) f\left(A^{n_{k}} x-A^{n_{k}+1} x\right) \\
& -\varphi\left(f\left(A^{m_{k}} x-A^{m_{k}+1} x\right)\right) f\left(A^{m_{k}} x-A^{m_{k}+1} x\right) \\
& >\delta(1-\psi(\delta)) / 2
\end{aligned}
$$

for all large enough $k \in \mathbb{N}$. Since this contradicts (2.14), we conclude that $\left\{A^{n} x\right\}$ is indeed a Cauchy sequence, as claimed. Therefore there exists a point $x_{A} \in K$ such that

$$
\begin{equation*}
x_{A}=\lim _{n \rightarrow \infty} A^{n} x \tag{2.15}
\end{equation*}
$$

Since $A^{p-1} A^{n} x \rightarrow x_{A}$, the p-continuity of A implies that $\lim _{n \rightarrow \infty} A^{p} A^{n} x=A x_{A}$. Thus x_{A} is a fixed point of A. Its uniqueness follows from (2.3) because if y_{A} is any fixed point of A, then

$$
\begin{aligned}
f\left(x_{A}-y_{A}\right) & =f\left(A x_{A}-A y_{A}\right) \\
& \leq \psi\left(f\left(x_{A}-y_{A}\right)\right) f\left(x_{A}-y_{A}\right) \\
& +\phi\left(f\left(x_{A}-A x_{A}\right)\right) f\left(x_{A}-A x_{A}\right) \\
& +\varphi\left(f\left(y_{A}-A y_{A}\right)\right) f\left(y_{A}-A y_{A}\right) \\
& =\psi\left(f\left(x_{A}-y_{A}\right)\right) f\left(x_{A}-y_{A}\right),
\end{aligned}
$$

which implies that $x_{A}=y_{A}$.

3. Uniform convergence

In this section we continue to use the notations, definitions and assumptions introduced in the previous two sections. In addition, we assume that the following condition holds:
(P3) the function f is bounded on bounded subsets of $K-K$.
Theorem 3.3. Assume that $A: K \rightarrow K$ is a p-continuous nonlinear contractive mapping of Reich type which is bounded on bounded subsets of K and that $x_{A} \in K$ satisfies

$$
\begin{equation*}
A x_{A}=x_{A} \tag{3.16}
\end{equation*}
$$

Then $A^{n} x \rightarrow x_{A}$ as $n \rightarrow \infty$ for all $x \in K$, uniformly on bounded subsets of K.
Proof. Set $A^{0} x:=x$ for all $x \in K$ and let $\epsilon, M>0$. It has already been shown in the proof of Theorem 2.1 that for all $x \in K$, we have

$$
\begin{equation*}
f\left(A^{n+1} x-A^{n+2} x\right) \leq f\left(A^{n} x-A^{n+1} x\right) \text { for all integers } n \geq 0 \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A^{n} x-x_{A}\right\|=0 \tag{3.18}
\end{equation*}
$$

Since A is bounded on bounded sets, there exists a number $M_{0}>M$ such that

$$
\begin{equation*}
\left\|A x-x_{A}\right\| \leq M_{0} \text { for each } x \in K \text { satisfying }\left\|x-x_{A}\right\| \leq M . \tag{3.19}
\end{equation*}
$$

By (P3), there exists a number $M_{1}>M_{0}$ such that

$$
\begin{equation*}
f\left(z_{1}-z_{2}\right) \leq M_{1} \text { for all } z_{1}, z_{2} \in K \text { satisfying }\left\|z_{1}\right\|,\left\|z_{2}\right\| \leq\left\|x_{A}\right\|+M_{0} \tag{3.20}
\end{equation*}
$$

By (P1), there is $\delta_{0} \in(0, \epsilon / 2)$ such that

$$
\begin{equation*}
\text { if } z_{1}, z_{2} \in K \text { and } f\left(z_{1}-z_{2}\right) \leq \delta_{0} \text {, then }\left\|z_{1}-z_{2}\right\| \leq \epsilon / 2 \tag{3.21}
\end{equation*}
$$

By (P2), there exists $\delta_{1} \in\left(0, \delta_{0}\right)$ such that

$$
\begin{equation*}
\left|f\left(z_{1}-z_{2}\right)-f\left(\xi_{1}-\xi_{2}\right)\right| \leq 4^{-1} \delta_{0}\left(1-\psi\left(\delta_{0}\right)\right) \tag{3.22}
\end{equation*}
$$

for all $z_{1}, z_{2}, \xi_{1}, \xi_{2} \in K$ satisfying

$$
\left\|z_{i}-\xi_{i}\right\| \leq 2 \delta_{1}, i=1,2
$$

Property (P1) implies that there exists a positive number

$$
\delta<\left(1-\psi\left(\delta_{0}\right)\right) \delta_{0} / 4
$$

such that

$$
\begin{equation*}
\text { if } z_{1}, z_{2} \in K \text { and } f\left(z_{1}-z_{2}\right) \leq \delta \text {, then }\left\|z_{1}-z_{2}\right\| \leq \delta_{1} . \tag{3.23}
\end{equation*}
$$

Choose a natural number $n_{0}>4$ such that

$$
\begin{equation*}
(\psi(\delta)+\phi(\delta)+\varphi(\delta))^{n_{0}-1}<\delta M_{1}^{-1} \tag{3.24}
\end{equation*}
$$

and assume that

$$
\begin{equation*}
x \in K \text { and }\left\|x-x_{A}\right\| \leq M \tag{3.25}
\end{equation*}
$$

We claim that there exists an integer $i \in\left[0, n_{0}\right]$ such that

$$
f\left(A^{i} x-A^{i+1} x\right) \leq \delta
$$

Suppose to the contrary that no such integer exists. Then for each integer $i \in\left[0, n_{0}\right]$,

$$
\begin{equation*}
f\left(A^{i} x-A^{i+1} x\right)>\delta \tag{3.26}
\end{equation*}
$$

Let $i \in\left\{0, \ldots, n_{0}-1\right\}$. By (2.3), (3.17) and (3.26), we have

$$
f\left(A^{i+1} x-A^{i+2} x\right)
$$

$$
\begin{aligned}
\leq & \psi\left(f\left(A^{i} x-A^{i+1} x\right)\right) f\left(A^{i} x-A^{i+1} x\right)+\phi\left(f\left(A^{i} x-A^{i+1} x\right)\right) f\left(A^{i} x-A^{i+1} x\right) \\
& +\varphi\left(f\left(A^{i+1} x-A^{i+2} x\right)\right) f\left(A^{i+1} x-A^{i+2} x\right) \\
\leq & \psi(\delta) f\left(A^{i} x-A^{i+1} x\right)+\phi(\delta) f\left(A^{i} x-A^{i+1} x\right)+\varphi(\delta) f\left(A^{i+1} x-A^{i+2} x\right)
\end{aligned}
$$

$$
\begin{equation*}
\leq f\left(A^{i} x-A^{i+1} x\right)(\psi(\delta)+\phi(\delta)+\varphi(\delta)) \tag{3.27}
\end{equation*}
$$

In view of (3.27),

$$
\begin{equation*}
f\left(A^{n_{0}-1} x-A^{n_{0}} x\right) \leq f(x-A x)(\psi(\delta)+\phi(\delta)+\varphi(\delta))^{n_{0}-1} \tag{3.28}
\end{equation*}
$$

By (3.19), (3.20) and (3.25),

$$
\begin{equation*}
f(x-A x) \leq M_{1} . \tag{3.29}
\end{equation*}
$$

It follows from (3.26), (3.28) and (3.29) that

$$
\delta<f\left(A^{n_{0}-1} x-A^{n_{0}} x\right) \leq(\psi(\delta)+\phi(\delta)+\varphi(\delta))^{n_{0}-1} M_{1} .
$$

This, however, contradicts (3.24). The contradiction we have reached shows that there indeed exists an integer $j \in\left\{0, \ldots, n_{0}\right\}$ such that

$$
f\left(A^{j} x-A^{j+1} x\right) \leq \delta
$$

When combined with (3.17) this implies that

$$
\begin{equation*}
f\left(A^{i} x-A^{i+1} x\right) \leq \delta \text { for all integers } i \geq n_{0} \tag{3.30}
\end{equation*}
$$

By (3.23) and (3.30),

$$
\begin{equation*}
\left\|A^{i} x-A^{i+1} x\right\| \leq \delta_{1} \text { for all integers } i \geq n_{0} \tag{3.31}
\end{equation*}
$$

Let the integers m_{1} and m_{2} satisfy

$$
n_{0} \leq m_{1}<m_{2} .
$$

We claim that

$$
f\left(A^{m_{1}} x-A^{m_{2}} x\right) \leq \delta_{0} .
$$

Suppose to the contrary that

$$
\begin{equation*}
f\left(A^{m_{1}} x-A^{m_{2}} x\right)>\delta_{0} . \tag{3.32}
\end{equation*}
$$

By (2.3), (3.30) and (3.32), we have

$$
\begin{gathered}
f\left(A^{m_{1}+1} x-A^{m_{2}+1} x\right) \\
\leq \psi\left(f\left(A^{m_{1}} x-A^{m_{2}} x\right)\right) f\left(A^{m_{1}} x-A^{m_{2}} x\right) \\
+\phi\left(f\left(A^{m_{1}} x-A^{m_{1}+1} x\right)\right) f\left(A^{m_{1}} x-A^{m_{1}+1} x\right) \\
+\varphi\left(f\left(A^{m_{2}} x-A^{m_{2}+1} x\right)\right) f\left(A^{m_{2}} x-A^{m_{2}+1} x\right) \\
\leq \psi\left(f\left(A^{m_{1}} x-A^{m_{2}} x\right)\right) f\left(A^{m_{1}} x-A^{m_{2}} x\right)+2 \delta \\
\leq \psi\left(\delta_{0}\right) f\left(A^{m_{1}} x-A^{m_{2}} x\right)+2 \delta .
\end{gathered}
$$

Using the above relation, (3.32) and the choice of δ, we obtain

$$
f\left(A^{m_{1}} x-A^{m_{2}} x\right)-f\left(A^{m_{1}+1} x-A^{m_{2}+1} x\right)
$$

$$
\begin{equation*}
\geq\left(1-\psi\left(\delta_{0}\right)\right) f\left(A^{m_{1}} x-A^{m_{2}} x\right)-2 \delta \geq\left(1-\psi\left(\delta_{0}\right)\right) \delta_{0}-2 \delta \geq 2^{-1} \delta_{0}\left(1-\psi\left(\delta_{0}\right)\right) \tag{3.33}
\end{equation*}
$$

In view of (3.23) and (3.31),

$$
\begin{equation*}
\left\|A^{m_{1}} x-A^{m_{1}+1} x\right\| \leq \delta_{1},\left\|A^{m_{2}} x-A^{m_{2}+1} x\right\| \leq \delta_{1} \tag{3.34}
\end{equation*}
$$

It now follows from (3.22) and (3.34) that

$$
\left|f\left(A^{m_{1}} x-A^{m_{2}} x\right)-f\left(A^{m_{1}+1} x-A^{m_{2}+1} x\right)\right| \leq 4^{-1} \delta_{0}\left(1-\psi\left(\delta_{0}\right)\right) .
$$

This, however, contradicts (3.33). The contradiction we have reached proves that indeed we have

$$
\begin{equation*}
f\left(A^{m_{1}} x-A^{m_{2}} x\right) \leq \delta_{0} . \tag{3.35}
\end{equation*}
$$

By (3.21) and (3.35),

$$
\left\|A^{m_{1}} x-A^{m_{2}} x\right\| \leq \epsilon / 2
$$

for all pairs of integers $m_{1}, m_{2} \geq n_{0}$. When combined with (3.18) this implies that

$$
\left\|A^{m} x-x_{A}\right\| \leq \epsilon
$$

for all integers $m \geq n_{0}$. This completes the proof of Theorem 3.3.
We now present the following corollary of Theorems 2.2 and 3.3. It concerns nonlinear contractive mappings of Kannan [4] type.
Corollary 3.1. Let $f \in \mathcal{F}$ have property $(P 3)$, let $\phi, \varphi \in \Psi$, and let $A: K \rightarrow K$ be a continuous mapping such that
(1) $\phi(t)+\varphi(t)<1$ for all $t>0$,
(2) $f(A x-A y) \leq \psi(f(x-A x)) f(x-A x)+\varphi(f(y-A z)) f(y-A y)$ for all $x, y \in K$.

Then the mapping A has a unique fixed point $x_{A} \in K$ and $A^{n} x \rightarrow x_{A}$ as $n \rightarrow \infty$ for all $x \in K$, uniformly on bounded subsets of K.

4. Some remarks and examples

Remark 4.1. Note that Theorem 1.1 follows from Theorems 2.2 and 3.3 by setting $\psi(t)=0$ and $\phi(t)=0$ for all $t \in[0, \infty)$.

Remark 4.2. It is not difficult to see that, as a matter of fact, in Theorem 1.1 the continuity of the mapping A follows from the other assumptions.

Remark 4.3. A comparison of various definitions of contractive mappings can be found in $[2,9]$.
Remark 4.4. In the proof of Theorem 2.2 we use the p-continuity of the mapping A. Note that in the case where the mapping A satisfies condition (1.1) instead of condition (2.3), we have

$$
\begin{equation*}
f\left(A^{n} x-A x_{A}\right) \leq \psi\left(f\left(A^{n-1} x-x_{A}\right)\right) f\left(A^{n-1} x-x_{A}\right) \tag{4.36}
\end{equation*}
$$

Therefore, in view of (2.15), we may conclude that

$$
\begin{equation*}
f\left(A^{n} x-A x_{A}\right) \rightarrow 0 \text { as } \rightarrow \infty \tag{4.37}
\end{equation*}
$$

Now property (P1) implies that

$$
\begin{equation*}
\left\|A^{n} x-A x_{A}\right\| \rightarrow 0 \text { as } n \rightarrow \infty \tag{4.38}
\end{equation*}
$$

and so we have

$$
\begin{equation*}
\left\|A x_{A}-x_{A}\right\| \leq\left\|A x_{A}-A^{n} x_{A}\right\|+\left\|A^{n} x_{A}-x_{A}\right\|, \tag{4.39}
\end{equation*}
$$

which implies that $A x_{A}=x_{A}$. Therefore the condition that the mapping A is continuous is superfluous.

Example 4.1. Let $X=\mathbb{R}, K=[0,1], A x=\frac{1}{16} x, \psi(t)=\frac{1}{2} e^{-t}, f(x)=|x|$. In this case the assumptions of Theorem 1.1 are fulfilled.

Example 4.2. Let $X=\mathbb{R}, K=[0,4]$ and let $f(x):=x^{2}$ for all $x \in X$. Define a mapping $A: K \rightarrow K$ by

$$
A x:= \begin{cases}1, & x \in[0,3], \\ 0, & x \in(3,4] .\end{cases}
$$

Then the following two statements hold true.
(a) The mapping A does not satisfy condition (1.1) and we cannot apply Theorem 1.1.
(b) The mapping A does satisfy condition (2.3) and therefore we can apply Theorems 2.2 and 3.3.

Indeed, since $f(A 3-A 4)=f(3-4)$, the mapping A is not a nonlinear contractive mapping for which (1.1) holds. However, it is not difficult to see that

$$
f(A x-A y) \leq \phi(f(x-A x)) f(x-A x)+\varphi(f(y-A y)) f(y-A y)
$$

for all $x, y \in K$, where

$$
\phi(t)=\varphi(t):= \begin{cases}\frac{1}{3}, & t \in[0,3] \\ \frac{1}{t}, & t \in(3, \infty)\end{cases}
$$

Example 4.3. Let $X=\mathbb{R}, K=[0,4]$ and let $f(x):=x^{2}$ for all $x \in X$. Define a mapping $A: K \rightarrow K$ by

$$
A x:= \begin{cases}3, & x \in[0,3], \\ 0, & x \in(3,4] .\end{cases}
$$

Now let

$$
\phi(t)=\varphi(t):= \begin{cases}\frac{5}{6}, & t \in[0,3] \\ \frac{1}{t}, & t \in(3, \infty)\end{cases}
$$

Then the mapping A does not satisfy Kannan's contractive condition, but it does satisfy the assumptions of Theorems 2.2 and 3.3.

Remark 4.5. Regarding the relationship between continuity and p-continuity, see Examples 1.2-1.5 on page 3502 of [5].
Acknowledgments. The third author was partially supported by the Israel Science Foundation (Grant no. 820/17),by the Fund for the Promotion of Research at the Technion and by the Technion General Research Fund.

References

[1] Bisht, R. K., A note on the fixed point theorem of Górnicki, J. Fixed Point Theory Appl., 21 (2019), Article 54, 1-3, https://doi.org/10.1007/s11784-019-0695-x
[2] Ćirić, Lj.,Some Recent Results in Metrical Fixed Point Theory, University of Belgrade, Beograd, Serbia, 2003
[3] Gabour, M., Reich, S. and Zaslavski, A. J., A generic fixed point theorem, Indian J. Math., 56 (2014), 25-32
[4] Kannan, R., Some results on fixed points, Bull Calcutta Math Soc., 60 (1968), 71-76
[5] Pant, A. and Pant, R. P., Fixed points and continuity of contractive maps, Filomat, 31 (2017), 3501-3506, https://doi.org/10.2298/FIL1711501P
[6] Reich, S., Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121-124
[7] Reich, S. and Zaslavski, A. J., Contractivity and genericity results for a class of nonlinear mappings, J. Nonlinear Convex Anal., 16 (2015), 1113-1122
[8] Reich, S. and Zaslavski, A. J., Existence of a unique fixed point for nonlinear contractive mappings, Mathematics, 8 (2020), Article 55, 1-7, https:/ /doi:10.3390/math8010055
[9] Rhoades, B. E., A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226 (1977), 257-290

Nonlinear Analysis Research Group

Ton Duc Thang University

Ho Chi Minh City, Vietnam
Faculty of Mathematics and Statistics
Ton Duc Thang University
Ho Chi Minh City, Vietnam
Email address: zoran.mitrovic@tdtu.edu.vn
University of Belgrade
Faculty of Mechanical Engineering
Kraljice Marije 16, 11120 Beograd 35, Serbia
Email address: radens@beotel.rs
Department of Mathematics
The Technion-Israel Institute of Technology
32000 HAIFA, ISRAEL
Email address: sreich@technion.ac.il
Email address: ajzasl@technion.ac.il

[^0]: Received: 13.03.2020. In revised form: 09.06.2020. Accepted: 10.06.2020
 2010 Mathematics Subject Classification. 47H09, 47H10.
 Key words and phrases. Banach space, fixed point, iterate, nonlinear contractive mapping.
 Corresponding author: Zoran D. Mitrović; zoran.mitrovic@tdtu.edu.vn

