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Frum-Ketkov operators which are weakly Picard

ADRIAN PETRUŞEL1,2, IOAN A. RUS1 and MARCEL-ADRIAN ŞERBAN1

ABSTRACT. Let (M,d) be a metric space, X ⊂ M be a nonempty closed subset and K ⊂ M be a nonempty
compact subset. By definition, a continuous operator f : X → X is said to be a Frum-Ketkov operator if
there exists l ∈]0, 1[ such that d(f(x),K) ≤ ld(x,K), for every x ∈ X . In this paper, we will give sufficient
conditions ensuring that a Frum-Ketkov operator is weakly Picard. Some generalized Frum-Ketkov operators
are also studied.

1. INTRODUCTION

Let (B, ‖ · ‖) be a Banach space, K ⊂ B be a nonempty compact subset and f :

B̃(0; 1) → B̃(0; 1) be a continuous operator, where B̃(0; 1) denotes the closed unit ball in
B. We will denote by d‖·‖(x,K) the gap between a point x ∈ X and K, generated by the
norm of the space B. In [7] the following condition is assumed on f : there exists l ∈ [0, 1[
such that

(1.1) d‖·‖(f(x),K) ≤ ld‖·‖(x,K), for every x ∈ B̃(0; 1).

The fixed point theory for this class of operators was considered by many authors, see [2],
[3], [4], [7], [12], [14], [15], [25].

In this paper, we will consider a similar class of operators in a metric space. More
precisely, if (M,d) is a metric space, X ⊂ M is a nonempty closed subset and K ⊂ M
is a nonempty compact subset, then a continuous operator f : X → X is said to be a
Frum-Ketkov operator if there exists l ∈]0, 1[ such that

(1.2) d(f(x),K) ≤ ld(x,K), for every x ∈ X.

Let us recall that if (M,d) is a metric space and X ⊂ M is a nonempty closed subset,
then f : X → X is called weakly Picard operator (WPO if the sequence of successive ap-
proximations, {fn(x)}n∈N, converges for all x ∈ X and its limit (which generally depend
on x) is a fixed point of f . If f is WPO with a unique fixed point, i.e., Ff = {x∗}, then, by
definition, f is called a Picard operator (PO), see [20], [24].

The purpose of this paper is to give conditions ensuring that a Frum-Ketkov operator
is weakly Picard. The structure of this work is the following: 1. Introduction, 2. Prelimi-
naries, 3. Frum-Ketkov operators in metric spaces, 4. Frum-Ketkov operators in terms of
a fixed point structure, 5. Generalized Frum-Ketkov operators, 6. Non-self Frum-Ketkov
operators, 7. Buley pairs.
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2. PRELIMINARIES

Let (M,d) be a metric space. Then, we denote by P (M) the family of all nonempty
subsets of M , by Pcl(M) the family of all nonempty closed subsets of M and by Pcp(M)
the family of all nonempty compact subsets of M . For x0 ∈ M and R > 0, the symbol
B̃(x0;R) denotes the closed ball centered in x0 with radius R. The space of all continuous
operators f : M → M is denoted by C(M,M), while we define the ω-limit set of x ∈ M
under f as

ωf (x) :=

∞⋂
n=0

{fk(x) : k ≥ n},

where fk is the iterate of order k of f . Notice that an useful characterization of the ω-limit
set is

ωf (x) = {x∗ ∈M : there exists nk →∞ such that fnk(x)→ x∗}.
For some considerations on the set ωf (x) see [5], [10], [11], [15], [24].

In the context of a Banach space (B, ‖ · ‖), the symbol Pcv(B) denotes the family of all
nonempty convex subsets of B, while Pcp,cv(B) := Pcp(B) ∩ Pcv(B).

Definition 2.1. Let (M,d) be a metric space. Then f :M →M is called:
(a) l-contraction if l ∈]0, 1[ and d(f(x), f(y)) ≤ ld(x, y), for every x, y ∈M ;
(b) contractive if d(f(x), f(y)) < d(x, y), for every x, y ∈M with x 6= y;
(c) nonexpansive if d(f(x), f(y)) ≤ d(x, y), for every x, y ∈M ;
(d) quasinonexpansive if Ff 6= ∅ and, if x∗ ∈ Ff then d(f(x), x∗) ≤ d(x, x∗), for every

x ∈M .

If f :M →M is a weakly Picard operator, then we can define the operator

f∞ :M →M, given by f∞(x) := lim
n→∞

fn(x).

In the case of a Picard operator with Ff = {x∗}, we have that f∞(x) = x∗, for every
x ∈M . For related notions and results concerning generalized contractions and the theory
of WPO see [1], [16], [20], [23], [24], ...

Finally, we will recall the concept of fixed point structure. Let X be a nonempty set,
∅ 6= S(X) ⊂ P (X) and M1(Y ) ⊂ M(Y, Y ) := {f : Y → Y : f is an operator }, where
Y ⊂ X . Then, the triple (X,S(X),M1) is a fixed point structure if

Y ∈ S(X) and f ∈M1(Y )⇒ Ff 6= ∅.
For examples of fixed point structures see [18], [19].

3. FRUM-KETKOV OPERATORS IN METRIC SPACES

Let (M,d) be a metric space, X ∈ Pcl(M) and K ∈ Pcp(M). Then, a continuous
operator f : X → X is said to be a Frum-Ketkov (l,K)-operator if l ∈]0, 1[ and

(3.3) d(f(x),K) ≤ ld(x,K), for every x ∈ X.
We will present first some examples and remarks on this class of operators.

Remark 3.1. (1) If X ⊂ K, then each continuous operator f : X → X is a Frum-
Ketkov (l,K)-operator. In this case, the fixed point theory for Frum-Ketkov operators
is the fixed point theory of continuous operators on compact metric spaces. Thus, Frum-
Ketkov condition is effective if X 6= K. If M is an infinite dimensional Banach space and
X := B̃(x0;R) (where x0 ∈M and R > 0), then X 6= K.

(2) LetX ∈ Pcl(M) and f : X → X be an l-contraction. Let x∗ be the unique fixed point
of f . Let K := {x∗}. Then f is a Frum-Ketkov (l,K)-operator.
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(3) Let M := R2, d := d‖·‖2 , X = [0, 1] × [0, 1] and K := [0, 1] × {0}. Let f := (f1, f2) :
X → X be a continuous mapping. Then, we have:

(i) d(f(x1, x2),K) = f2(x1, x2);
(ii) d((x1, x2),K) = x2.

Thus, f is a Frum-Ketkov (l,K)-operator if and only if f2(x1, x2) ≤ lx2, for every
(x1, x2) ∈ X .

For example, we can take f1(x1, x2) = f1(x1) a continuous mapping and f2(x1, x2) =
1

2
x2. Then f(x1, x2) :=

(
f1(x1),

1

2
x2

)
is a Frum-Ketkov

(
1

2
,K

)
-operator.

Moreover, in particular, if we consider f(x1, x2) :=
(
1−x1,

1

2
x2

)
, thenFf =

{(
1

2
, 0

)}
,

f2n(x1, x2) =

(
x1,

1

2n
x2

)
and f2n+1(x1, x2) =

(
1− x1,

1

2n
x2

)
, for n ∈ N. It is clear that,

if x1 6=
1

2
, then f is not asymptotically regular at (x1, x2).

(4) Let M := R2, d := d‖·‖2 , X = R2\B(0; 1) and K := B̃(0; 1). Let f := (f1, f2) :

X → X defined by f (x) =
1

2
A

(
x+

x

‖x‖2

)
, where A is the rotation matrix of an angle

α ∈
]
0,
π

2

[
, i.e.,

A :=

(
cosα − sinα
sinα cosα

)
It is clear that Ff = ∅ and we have

‖f (x) ‖2 =

∥∥∥∥12
(
x+

x

‖x‖2

)∥∥∥∥
2

=
1

2
‖x‖2 +

1

2

and

d (f (x) ,K) = ‖f (x) ‖2 − 1 =
1

2
(‖x‖2 − 1) =

1

2
d (x,K) .

Hence f is a Frum-Ketkov
(
1

2
,K

)
-operator. It easy to see that

‖fn (x) ‖2 =

(
1

2

)n

‖x‖2 +
(
1

2

)n

+ . . .+
1

2
=

=

(
1

2

)n

‖x‖2 + 1−
(
1

2

)n

→ 1 as n→ +∞

and

‖fn+1 (x)− fn (x) ‖2 =
√
‖fn+1 (x) ‖22 + ‖fn (x) ‖22 − 2‖fn+1 (x) ‖2‖fn (x) ‖2 cosα.

Therefore
‖fn+1 (x)− fn (x) ‖2 →

√
2− 2 cosα > 0,

proving that f is not asymptotically regular.
(5) Let f : X → X be a Frum-Ketkov (l,K)-operator. Let g : X → K be an oper-

ator such that d(f(x),K) = d(f(x), g(x)), for every x ∈ X . Then, g(X) ∈ Pcp(X) and
d(f(x), g(x)) ≤ ld(x, g(x)), for every x ∈ X . Moreover, if f is g-asymptotically regular,
then f is asymptotically regular. Indeed, for every x ∈ X , we have:

d(fn+1(x), fn(x)) ≤ d(fn+1(x), g(fn(x))) + d(fn(x), g(fn(x))) ≤

(l + 1)d(fn(x), g(fn(x)))→ 0, as n→∞.
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(6) Let f : X → X be a Frum-Ketkov (l,K)-operator. Suppose there exists a continuous
operator ρ :M → K such that d(x,K) = d(x, ρ(x)), for every x ∈ X . Then, we have

d(f(x), ρ(f(x))) ≤ ld(x, ρ(x)), for each x ∈ X.

This implies that

d(fn(x), ρ(fn(x))) ≤ lnd(x, ρ(x))→ 0, as n→∞, for each x ∈ X.

As a consequence, f is ρ-asymptotically regular.

The main result of this section is the following theorem.

Theorem 3.1. Let (M,d) be a metric space, X ∈ Pcl(M) and K ∈ Pcp(M). Let f : X → X be
a Frum-Ketkov (l,K)-operator. Then, the following conclusions hold:

(i) ωf (x) 6= ∅ and ωf (x) ∈ X ∩K, for every x ∈ X ;
(ii) Ff ⊂ X ∩K;
(iii) f(X ∩K) ⊂ X ∩K;
(iv) if f is asymptotically regular, then ωf (x) ⊂ Ff , for every x ∈ X and, as a consequence,

Ff 6= ∅;
(v) if, in addition, f is quasinonexpansive, then f is WPO.

Proof. (i) Let x ∈ X be arbitrary chosen. Since K is compact, there exists yn ∈ K such that
d(fn(x),K) = d(fn(x), yn). By Frum-Ketkov condition, we obtain that d(fn(x),K) → 0
as n → ∞. Using again the compactness of K, we can find a subsequence yni which
converges to an element y∗(x) ∈ K as ni → ∞. As a consequence, fni(x) converges to
y∗(x) ∈ X ∩K as ni →∞.

(ii) Let x ∈ Ff . Then d(x,K) = d(f(x),K) ≤ ld(x,K). Since l < 1 we get that d(x,K) =
0, showing that x ∈ K.

(iii) If x ∈ X ∩K, then d(f(x),K) ≤ ld(x,K) = 0. Thus, f(x) ∈ X ∩K.
(iv) If f is asymptotically regular and continuous, then ωf (x) ⊂ Ff , for each x ∈ X .

Indeed, for x ∈ X , let x∗ ∈ ωf (x). Then, there exists ni → ∞ such that fni(x) → x∗. By
the asymptotically regularity of f , using the continuity assumption, we get

d(x∗, f(x∗)) ≤ d(x∗, fni(x)) + d(fni+1(x), fni(x)) + d(f(fni(x)), f(x∗))→ 0,

as ni →∞. Thus x∗ ∈ Ff .
(v) Let x ∈ X and fni(x)→ y∗(x) (see (i)). By the quasinonexpansivity assumption on

f , we get that the sequence (d(fn(x), y∗(x)))n∈N is decreasing. Hence, it is convergent to
an element d ∈ [0,∞[. Since the subsequence d(fni(x), y∗(x)) converges to 0, it follows
that d = 0. �

Remark 3.2. Instead of (iv) in the above theorem, we can consider each of the following
assumptions:

(iv’) (see [22]) there exist α : R+ → R+ and β : X → R+ such that:

(a) tn ∈ R+, α(tn)→ 0 as n→∞ ⇒ tn → 0 as n→∞;
(b) α(d(x, f(x)) ≤ β(x)− β(f(x)), for each x ∈ X .

(iv”) (see Remark 3.1 (5)) there exists k > 0 and ρ ∈ C(M,K) such that

d(x,K) = d(x, ρ(x)) and d(x, f(x)) ≤ kd(x, ρ(x)), for each x ∈ X.
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4. FRUM-KETKOV OPERATORS IN TERMS OF A FIXED POINT STRUCTURE

Let f : X → X be a Frum-Ketkov operator. By Theorem 3.1 we have that X ∩K 6= ∅,
f(X ∩K) ⊂ X ∩K and Ff ⊂ X ∩K.

Consider now (M,S(M),M1) be a fixed point structure. If X ∩ K ∈ S(M) and the
restriction of f to X ∩ K belongs to M1(X ∩ K), then Ff 6= ∅. Thus, we can prove the
following result.

Theorem 4.2. Let (M,d) be a metric space, X ∈ Pcl(M) and K ∈ Pcp(M). Suppose that
f : X → X is a contractive Frum-Ketkov operator. Then f |X∩K is a Picard operator.

Proof. We consider on M the fixed point structure (M,Pcp(M),M1), where for Y ⊂M we
define

M1(Y ) := {g : Y → Y : g is a contractive operator}.
Since X ∩M ∈ Pcp(M) and f |X∩K ∈M1(X ∩M), the conclusion follows by the definition
of a fixed point structure. �

Another result of this type is the following.

Theorem 4.3. Let (B, ‖ · ‖) be a Banach space, X ∈ Pcl,cv(B) and K ∈ Pcp,cv(B). Suppose that
f : X → X is a Frum-Ketkov operator. Then Ff 6= ∅.

Proof. The conclusion follows using Schauder’s fixed point structure, see [18]. �

Let (B, ‖ · ‖) be a Banach space, K ∈ Pcp,cv(B) and f ∈ C1(B,B) be a Frum-Ketkov
operator. The problem is in which conditions f is a PO ? (see [21]).

5. GENERALIZED FRUM-KETKOV OPERATORS

We present first the notion of generalized Frum-Ketkov operator.

Definition 5.2. Let (M,d) be a metric space, X ∈ Pcl(M) and let K ∈ Pcp(M). Then,
f : X → X is generalized Frum-Ketkov operator if f is continuous and d(fn(x),K) → 0
as n→∞, for every x ∈ X .

Example 5.1. Let (M,d) be a metric space, X ∈ Pcl(M), K ∈ Pcp(M). Let f : X → X be
a continuous operator. If ϕ : R+ → R+ is a comparison function (i.e., ϕ is increasing and
the sequence (ϕn(t))n∈N converges to 0 as n→∞, for every t > 0) and

d(f(x),K) ≤ ϕ(d(x,K)), for every x ∈ X,

then f is a generalized Frum-Ketkov operator. In this case, f is called a Frum-Ketkov
ϕ-operator.

Example 5.2. Let (M,d) be a metric space, X ∈ Pcl(M), K ∈ Pcp(M). Let f : X → X be a
continuous operator such that for every ε > 0 there exists δ > 0 such that

ε ≤ d(x,K) < ε+ δ ⇒ d(f(x),K) < ε.

Then f is a generalized Frum-Ketkov operator. In this case f is called a Frum-Ketkov
MK-operator.
Indeed, by the above Meir-Keeler type condition, we get that d(fn(x),K)→ 0 as n→∞,
for every x ∈ X . (Proof. Since dn := d(fn(x),K) is decreasing, we can suppose, by
contradiction, that dn := d(fn(x),K) ↘ ε > 0 as n → ∞. Assuming, for some m ∈ N∗,
that dm < ε + δ, we get, by the definition of f , that dm+1 < ε, which gives the desired
contradiction.)
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Example 5.3. Let (M,d) be a metric space, X ∈ Pcl(M), K ∈ Pcp(M). Let f : X → X be a
continuous operator for which there exists ϕ : X → R+ such that

d(f(x),K) ≤ ϕ(x)− ϕ(f(x)), for all x ∈ X.
Then f is a generalized Frum-Ketkov operator.

The main result for this section is the following theorem.

Theorem 5.4. Let (M,d) be a metric space, X ∈ Pcl(M) and K ∈ Pcp(M). Suppose that
f : X → X is a generalized Frum-Ketkov operator. Then f |X∩K is a Picard operator..

Proof. The proof follows the ideas and the approach given in Theorem 4.2. �

6. NON-SELF FRUM-KETKOV OPERATORS

Let (M,d) be a metric space, X ∈ Pcl(M) and K ∈ Pcp(M) such that X \ K 6= ∅.
Suppose that f : X → M is a Frum-Ketkov (l,K)-operator. We also suppose that there
exists a continuous retraction r :M → X such that:

(1) Ff = Fr◦f , i.e., f is retractible with respect to r (see [19] and the references
therein);

(2) there exists c > 0 with cl < 1 such that d(r(x),K) ≤ cd(x,K), for every x ∈M \X
Then, the r ◦ f is a self operator on X and it is a Frum-Ketkov (cl,K)-operator. As a

consequence, by the results presented in Section 3, we obtain the following results.

Theorem 6.5. Let (M,d) be a metric space,X ∈ Pcl(M) andK ∈ Pcp(M) such thatX \K 6= ∅.
Suppose that f : X → M is a Frum-Ketkov (l,K)-operator. We also suppose that there exists a
continuous retraction r :M → X such that:

(1) Ff = Fr◦f ;
(2) there exists c > 0 with cl < 1 such that d(r(x),K) ≤ cd(x,K), for every x ∈M \X .

Then, the following conclusions hold:
(i) ωr◦f (x) 6= ∅ and ωr◦f (x) ∈ X ∩K, for every x ∈ X ;
(ii) Ff ⊂ X ∩K;
(iii) (r ◦ f)(X ∩K) ⊂ X ∩K;
(iv) if r ◦ f is asymptotically regular, then ωr◦f (x) ⊂ Ff , for every x ∈ X and, as a

consequence, Ff 6= ∅;
(v) if, in addition, r ◦ f is quasinonexpansive, then r ◦ f is WPO.

Example 6.4. Let M := Rm, d := d‖·‖2 , K := B̃(0; 1) and X := B̃(0;R) \ B(0; 1), with
R > 1. Let f : X → M be a Frum-Ketkov (l,K)-operator and r : M → X be the radial
retraction. In this case, we have that

d(r(x),K) ≤ d(x,K), for every x ∈M \K.
As a consequence, by the above considerations, we get that r ◦ f : X → X is a Frum-
Ketkov (l,K)-operator.

7. BULEY PAIRS

Let (M,d) be a metric space and X ∈ Pcl(M). By definition (see [7]), the operators
f, g : X → M form a Buley pair (f, g) (or an l-Buley pair) if the following conditions are
satisfied:

(1) f is continuous;
(2) the set g(X) is compact;
(3) there exists l ∈]0, 1[ such that d(f(x), g(x)) ≤ ld(x, g(x)), for each x ∈ X .

Notice that, if (f, g) is a Buley pair, then Ff = Fg .
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For a better understanding of the relations between the following conditions:
(FK) f is a Frum-Ketkov operator;
(B) there exists an operator g such that (f, g) is a Buley pair;
we give the following example.

Example 7.5. Let M := R2, d := d‖·‖2 , X := B̃(0; 1), K := [−1, 1]× {0}, f ∈ C(X,X) and
g : X → R2 be given by g(x1, x2) := (f1(x1, x2), 0).

We notice that:
(a) if there exists l ∈]0, 1[ such that |f2(x1, x2)| ≤ l|x2| for all (x1, x2) ∈ X , then f is a

Frum-Ketkov (l,K)-operator.
(b) if there exists l ∈]0, 1[ such that |f2(x1, x2)|2 ≤ l2

[
|x1 − f1(x1, x2)|2 + x22

]
for all

(x1, x2), then (f, g) is an l-Buley pair.

It is obvious from the above example that Buley condition on f is less restrictive than
Frum-Ketkov condition.

In [4] the following theorem was given.

Theorem 7.6. Let E be a normed linear space and X be a contractible set, where

X ∈ {Y ∈ P (E) : there are n ∈ N∗ and C1, · · · , Cn ∈ Pcl,cv(E) such that Y =

n⋃
i=1

Ci}.

Let f : X → E be continuous, such that f(∂X) ⊂ X and g : X → E be such that (f, g) is an
l-Buley pair. Then Ff 6= ∅.

The problem is, if f(X) ⊂ X , in which conditions f is WPO.

Concerning this problem we have the following result.

Theorem 7.7. Let (M,d) be a metric space and X ∈ Pcl(M). Let f, g : X →M such that (f, g)
is an l-Buley pair and f(X) ⊂ X . We suppose:

(1) f is asymptotically g-regular;
(2) f is nonexpansive.

Then f is a WPO.

Proof. For each x ∈ X , we have

d(fn+1(x), g(fn(x))) ≤ d(fn(x), g(fn(x))),

and
d(fn+1(x), fn(x)) ≤ (l + 1)d(fn(x), g(fn(x))).

Thus, by (1), we get that f is asymptotically regular. Since f is g-asymptotically regular
and g(fn(x)) ∈ g(X) ∈ Pcp(M), there exists ni →∞ as i→∞, such that

g(fni(x))→ y∗(x) ∈ g(X) and fni(x)→ y∗(x) ∈ X, as i→∞.

Since f is asymptotically regular, we have that y∗(x) ∈ Ff . Since f is nonexpansive all the
sequences {fn(x)}n∈N converge to y∗(x). Thus, f is WPO. �

Remark 7.3. Instead of (2) we can consider the following condition
(2’) f is conditionally quasinonexpansive.

Remark 7.4. If. in Theorem 7.7. instead of (2) we consider the following condition
(2”) f is contractive,
then f is a PO.



302 A. Petruşel, I. A. Rus and M.-A. Şerban

Remark 7.5. In the case of a nonself operator f : X → M , if we suppose that there
exists a continuous retraction r : M → X such that f is retractible with respect to r, then
r ◦ f : X → X and Ff = Fr◦f . In this case the problem is in which conditions r ◦ f is a
WPO.
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