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ABSTRACT. In this paper, we introduce the notion of generalized weakly contractive mapping of quadratic
type and we prove fixed point results for this type of mapping. We justify our result by suitable examples and
show that this mapping satisfies properties P andQ. Among other things, as corollaries we recover Banach and
Kannan fixed point theorems.

1. INTRODUCTION AND PRELIMINARIES

Let X be a set. We will denote the set all fixed points of a self mapping T from X into
itself by F (T ), i.e., F (T ) = {z ∈ X : Tz = z}.

It is obvious that if z is a fixed point of T then it is also a fixed point of Tn for each
n ∈ N , i. e.,F (T ) ⊂ F (Tn) if F (T ) 6= ∅. However converse is false.

Definition 1.1. ([16]) Let T be a self mapping of metric space with fixed point set F (T ) 6=
∅. Then T is said to have property P if F (Tn) = F (T ), for each n ∈ N . Equivalently, a
mapping has property P if every periodic point is a fixed point.

Also a pair of maps S and T have property Q if F (S)
⋂
F (T ) = F (Sn)

⋂
F (Tn) for

each n ∈ N.

Famous Banach fixed point theorem, usually called the Banach contraction principle,
from 1922 marks the beginning of the fixed point theory in metric spaces.

Definition 1.2. Let (X, d) be a metric space. A mapping f : X → X is a contraction if there
exists some q ∈ [0, 1) such that

d(f(x), f(y)) ≤ q · d(x, y), for all x, y ∈ X.(1.1)

We shall also use the term q–contraction for contraction. ß

We observe that every contraction is a continuous mapping. The following theorem
shows the existence and uniqueness of a fixed point of an arbitrary contraction on a com-
plete metric space.

Theorem 1.1 (Banach contraction principle, [4]). If (X, d) is a complete metric space and
f : X → X is a contraction, then the mapping f has a unique fixed point z ∈ X .

In 1968, Kannan’s [18] proved the following famous fixed point theorem.
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Theorem 1.2. If (X, d) is a complete metric, 0 ≤ q < 1/2 and f : X → X is a map which
satisfies the condition

d(f(x), f(y)) ≤ q[d(x, f(x)) + d(y, f(y))], for all x, y ∈ X,(1.2)

then the mapping f has a unique fixed point.

In 1972, Chatterjee [9] proved the following variant of Kannan’s [18] fixed point theo-
rem.

Theorem 1.3. If (X, d) is a complete metric, 0 ≤ q < 1/2 and f : X → X is a map which
satisfies the condition

d(f(x), f(y)) ≤ q[d(x, f(y)) + d(y, f(x))], for all x, y ∈ X,(1.3)

then the mapping f has a unique fixed point.

For more details on the advances of fixed point theory can be found in [1, 5, 20, 24,
26, 27]. In 1977, Alber et al. [2] generalized Banachs contraction principle by introducing
the concept of weak contraction mappings in Hilbert spaces. Weak contraction principle
states that every weak contraction mapping on a complete Hilbert space has a unique
fixed point. Rhoades [25] extended weak contraction principle in Hilbert spaces to metric
spaces. Since then, many authors (for example, [3, 10, 12, 21, 22]) obtained generalizations
and extensions of the weak contraction principle. Khan et al. [19] obtained fixed point
theorems in metric spaces by introducing the concept of altering distance mappings. In
particular, Choudhury et al.[11] obtained a generalization of the weak contraction princi-
ple in metric spaces by using altering distance mappings.

Definition 1.3. [19] A mapping ψ : [0,∞)→ [0,∞) is called an altering distance mapping
if the following properties are satisfied
(a) ψ is strictly monotone increasing and continuous
(b) ψ(t) = 0 if and only if t = 0.

We say that a mapping ϕ : [0,∞) → [0,∞) is almost altering distance if ϕ is lower
continuous and satisfies the condition (b).

Inspired on the work on weak contraction mappings and generalized weak contraction
mappings, in this paper we introduce and study generalized weakly contractive mapping
of quadratic type. We prove fixed point results for this type of mapping, justify our result
by suitable examples and show that this mapping satisfies properties P and Q. Among
other things, as corollaries we recover Banach and Kannan fixed point theorems.

Definition 1.4. Let the mapping T : X → X in metric space (X, d). Then T is called
generalized weakly contractive mapping of quadratic type, shortly (ψ,ϕ)2- contractive
map, if

ψ(d2(Tx, Ty)) ≤ ψ(PT (x, y))− ϕ(QT (x, y)),(1.4)

for all x, y ∈ X , where

PT (x, y) = max

{
d2(x, y), d(x, Ty) · d(y, Tx), d

2(x, Tx) + d2(y, Ty)

2

}
,

QT (x, y) = max{d2(x, y), d(x, Ty) · d(y, Tx), d(x, Tx) · d(y, Ty)},
ψ is an altering distance mapping and ϕ is an almost altering distance mapping.

Conditions (1.4) is similar to Ciric’s (see [7, 8]) contractive conditions that do not ensure
unique fixed point.
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Example 1.1. If f is a q–contraction, then f is (ψ,ϕ)2- contractive map with ψ(t) = t and
ϕ(t) = (1− q2)t. This follows by (1.1), since we have

d2(f(x), f(y)) ≤ q2 · d2(x, y) ≤ q2Qf (x, y)
= Qf (x, y)− (1− q2)Qf (x, y)
≤ Pf (x, y)− (1− q2)Qf (x, y),

for all x, y ∈ X .

Example 1.2. Kannan contraction (1.3) f is (ψ,ϕ)2- contractive map with ψ(t) = t and
ϕ(t) = (1− 4q2)t. This follows from (1.3), since

d2(f(x), f(y)) ≤ q2 · [d(x, f(x)) + d(y, f(y))]2

≤ 2q2 · [d2(x, f(x)) + d2(y, f(y))]

≤ 4q2Pf (x, y) = Pf (x, y)− (1− 4q2)Pf (x, y),

≤ Pf (x, y)− (1− 4q2)Qf (x, y),(1.5)

for all x, y ∈ X .

2. MAIN RESULTS

In this section, we give the main results of our paper.

Theorem 2.4. Let (X, d) be a complete metric space and T a (ψ,ϕ)2- contractive map. Then T
has a unique fixed point p ∈ X , and for any x ∈ X the sequence of iterates Tnx converges to p.

Proof. Let x0 ∈ X . We define a sequence {xn} in X such that xn+1 = Txn, for all n ≥ 0. If
there exist a positive integer N such that xN = xN+1, then xN is a fixed point of T. Hence
we shall assume that xn 6= xn+1, for all n ≥ 0.
From (1.4), we have for all n ≥ 0,

ψ(d2(xn+1, xn+2)) = ψ(d2(Txn, Txn+1))

≤ ψ(PT (xn, xn+1)− ϕ(QT (xn, xn+1))(2.6)

≤ ψ
(
max

{
(d2(xn, xn+1),

d2(xn, xn+1) + d2(xn+1, xn+2)

2

})
−ϕ(max{d2(xn, xn+1), d(xn, xn+1) · d(xn+1, xn+2)}).

Suppose that d(xn, xn+1) ≤ d(xn+1, xn+2) for some positive integer n. Then by (2.6) we
have

ψ(d2(xn+1, xn+2)) ≤ ψ(d2(xn+1, xn+2))− ϕ(d(xn, xn+1) · d(xn+1, xn+2)).(2.7)

Hence, ϕ(d(xn, xn+1)·d(xn+1, xn+2)) ≤ 0, which implies that d(xn, xn+1)·d(xn+1, xn+2) =
0 or xn+1 = xn+2, contradicting our assumption that xn 6= xn+1, for each n. Therefore,

d(xn+1, xn+2) < d(xn, xn+1), for all n ≥ 0(2.8)

and {(d(xn, xn+1)} is a monotone decreasing sequence of positive real number. Hence
there exists an r ≥ 0 such that

(2.9) lim
n→∞

d(xn, xn+1) = r.

From (2.6) and (2.8) we have for all n ≥ 0,

ψ(d2(xn+1, xn+2)) ≤ ψ(d2(xn, xn+1))− ϕ(d2(xn, xn+1)).
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Taking the limit as n → ∞ in the above inequality and using the continuities of ϕ and ψ,
we have

ψ(r2) ≤ ψ(r2)− ϕ(r2),
that is ϕ(r2) ≤ 0, which is contradiction unless r = 0. Hence

(2.10) lim
n→∞

d(xn, xn+1) = 0.

Now we show that {xn} is a Cauchy sequence. Suppose that {xn} is not a Cauchy se-
quence. Then, there exists an ε ∈ (0, 1) for which we find two sequences of positive
integer {m(k)} and {n(k)} such that for all positive integer k

n(k) > m(k) > k, d2(xm(k), xn(k)) ≥ ε and d2(xm(k), xn(k)−1) < ε.

Now
ε ≤ d2(xm(k), xn(k)) ≤ (d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k)))

2
,

that is
ε ≤ d2(xm(k), xn(k)) < (ε+ d(xn(k)−1, xn(k)))

2
.

Taking the limit as k →∞ in the above inequality and using (2.10), we have

(2.11) ε ≤ lim
k→∞

d(xm(k), xn(k)) ≤ ε2 < ε,

which is a contradiction with our assumption on ε. Hence {xn} is a Cauchy sequence.
From the completeness of X, there exist a p ∈ X such that xn → p as n→∞.
Putting x = xn, y = p in (1.4) we have

ψ(d2(xn+1, Tp)) = ψ(d2(Txn, Tp))

≤ ψ(P (xn, p))− ϕ(Q(xn, p))

Taking n→∞ in the above inequality and using (2.10) and the continuities of ϕ and ψ,
we obtain

ψ(d2(p, Tp)) ≤ ψ(1
2
d2(p, Tp)),

which implies that d2(p, Tp) = 0, or p = Tp. Hence p is a fixed point of T.

Next we establish that the fixed point is unique. Let p and q be two fixed points of T
and suppose that p 6= q Then putting x = p and y = q in (1.4), we have

ψ(d2(p, q)) = ψ(d2(Tp, Tq)) ≤ ψ(P (p, q))− ϕ(Q(p, q)),

that is
ψ(d2(p, q)) ≤ ψ(d2(p, q))− ϕ(d2(p, q)),

which is contradiction by virtue of a property of ϕ. Therefore p = q and the fixed point is
unique. �

The following corollary shows a relation between Tn and T in the case when Tn is a
(ψ,ϕ)2- contractive.

Corollary 2.1. Let (X, d) be a complete metric space and let T : X → X is a mapping such that
Tn be a (ψ,ϕ)2- contractive map for some n ∈ N, then T has a unique fixed point in X .

Proof. From previous theorem Tn has a unique fixed point, say p ∈ X . Then Tnp = p
implies Tn+1p = Tp and Tp is also fixed point of Tn. Since Tn has a unique fixed point,
we have p = Tp. To show the uniqueness fixed point of T , we suppose that there exists
q ∈ X such that Tq = q. Now, Tnq = q, and since Tn has unique fixed point it must be
q = p. �

Now we recover the following well known result.
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Corollary 2.2. (Bryant [6]) If (X, d) is a complete metric space and f : X → X is a mapping
such that fn is a contraction for some n ∈ N, then f has a unique fixed point in X .

Proof. By Example 1.5 and Corollary 3.18. �

Corollary 2.3. Let (X, d) be a complete metric space and T : X → X is a (ψ,ϕ)2- contractive
map. Then T has a property P.

Proof. By Corollaryy 3.18. � �

Now we can prove the following common fixed point result.

Theorem 2.5. Let (X, d) is a complete metric space. Let S, T : X → X be a self mappings such
that, for all x, y ∈ X

ψ(d2(Sx, Ty)) ≤ ψ
(
max

{
d2(x, y), d(x, Ty) · d(y, Sx), d

2(x, Sx) + d2(y, Ty)

2

})
−ϕ(max{d2(x, y), d(x, Ty) · d(y, Sx), d(x, Sx) · d(y, Ty)}),(2.12)

ψ is an altering distance mapping and ϕ is an almost altering distance mapping. Then S and
T have a unique common fixed point. Moreover, any fixed point of S is a fixed point of T and
conversely.

Proof. Let x0 ∈ X .
We define a sequence{xn} by x2n+1 = Sx2n, x2n+2 = Tx2n+1, n ≥ 0. If there exist a
positive integer n such that x2n = x2n+1, then x2n is a fixed point of S and hence a fixed
point of T. A similar conclusion holds if x2n+1 = x2n+2, for some n. Therefore we may
assume that xn 6= xn+1, for all n ≥ 0.
By (2.12)

ψ(d2(x2n+1, x2n+2)) = ψ(d2(Sx2n, Tx2n+1))

≤ ψ
(
max

{
d2(x2n, x2n+1),

d2(x2n, x2n+1) + d2(x2n+1, x2n+2)

2

})
(2.13)

−φ(max{d2(x2n, x2n+1), d(x2n, x2n+1) · d(x2n+1, x2n+2)})).

Suppose that d(x2n, x2n+1) ≤ d(x2n+1, x2n+2) for some positive integer n. Then from
(2.13) we have

ψ(d2(x2n+1, x2n+2)) ≤ ψ(d2(x2n+1, x2n+2))− φ(d(x2n, x2n+1) · d(x2n+1, x2n+2)),

that is φ(d(x2n, x2n+1) · d(x2n+1, x2n+2)) ≤ 0, which implies that d2(x2n+1, x2n+2) = 0 or
x2n+1 = x2n+2, contradicting our assumption that xn 6= xn+1, for each n.
Therefore d(x2n+1, x2n+2) < d(x2n, x2n+1), for all n ≥ 0.
Similarly, d(x2n+2, x2n+3) < d(x2n+1, x2n+2), for all n ≥ 0.
Thus {(d(xn, xn+1)} is a monotone decreasing sequence of non-negative real numbers.
Hence there exists an r ≥ 0 such that

(2.14) lim
n→∞

d(xn, xn+1) = r.

From (2.13) we have for all n ≥ 0,

ψ(d2(x2n+1, x2n+2)) ≤ ψ(d2(x2n, x2n+1))− φ(d2(x2n, x2n+1)).

Taking the limit as n → ∞ in the above inequality and using the continuities of φ and
ψ, we have

ψ(r2) ≤ ψ(r2)− φ(r2)
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that is φ(r) ≤ 0, which is contradiction unless r = 0. Hence

(2.15) lim
n→∞

d(xn, xn+1) = 0.

Now, as in the proof of Theorem 2.4, we can prove that that {xn} is a Cauchy sequence.
From the completeness of X, there exist a p ∈ X such that xn → p as n→∞.
Putting x = x2n, y = p in (2.12), we have

ψ(d2(x2n+1, Tp)) = ψ(d2(Sx2n, Tp))

≤ ψ

(
max

{
d2(x2n, p), d(x2n, Tp) · d(p, x2n+1)),

d2(x2n, x2n+1) + d2(p, Tp)

2

})
− ϕ(max{d2(x2n, p),

d(x2n, Tp) · d(p, x2n+1)), d(x2n, x2n+1) · d(p, Tp)}).

Taking n→∞ in the above inequality and using the continuities of ϕ and ψ, we get

ψ(d2(p, Tp)) ≤ ψ
(
d2(p, Tp)

2

)
− ϕ(0),

which implies that d2(p, Tp) = 0, or p = Tp. Similarly we get that p is a fixed point of S.
Hence p is a fixed point of T and S.

Suppose that p and q are common fixed point of S and T , and p 6= q. From (2.12), we
have

ψ(d2(p, q)) = ψ(d2(Sp, Tq))

≤ ψ

(
max

{
d2(p, q), d(p, Tq) · d(q, Sp), d

2(p, Sp) + d2(q, T q)

2

})
− ϕ(max{d2(p, q), d(p, Tq) · d(q, Sp), d(p, Sp) · d(q, T q)})
≤ ψ(d2(p, q))− ϕ(d2(p, q)).

This is a contradiction of the property of ϕ. Hence p = q. Similarly we have that any fixed
point of T is also a fixed point of S. � �

Corollary 2.4. Let (X, d) be a complete metric space. Let S, T : X → X be self mappings such
that, for all x, y ∈ X ,

ψ(d2(Smx, Tny)) ≤ ψ
(
max

{
d2(x, y), d(x, Tny) · d(y, Smx), d

2(x, Smx) + d2(y, Tny)

2

})
−ϕ(max{d2(x, y), d(x, Tny) · d(y, Smx), d(x, Smx) · d(y, Tny)}),(2.16)

m and n are fixed positive integers, ψ is an altering distance mapping and ϕ is an almost altering
distance mapping. Then S and T have a unique common fixed point. Further, any fixed point of S
is a fixed point of T and conversely.

Proof. Let f = Sm and g = Tn. Then from Theorem 4.2, f and g have a common unique
fixed point p ∈ X . Now, Sm+1p = Sm(Sp) = Sp and Tn+1p = Tn(Tp) = Tp, and so
Sp = p and Tp = p. Hence, it follows that p is a common fixed point of S and T .
Suppose that p is a fixed point of S. Then p is a fixed point of f . By Theorem 4.2, p is a
fixed point of g. From the uniqueness of common fixed point of f and g, it follows that p
is a fixed point of T . Similarly it can be shown that any fixed point of T is also fixed point
of S. Condition (2.16) implies the uniqueness of p. � �
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Corollary 2.5. Let (X, d) be a complete metric space and S, T be self mapping of X . If S and T
satisfy (2.12), then S and T have a property Q.

Proof. By Corollary 2.4. � �

Corollary 2.6. (Corollary 15 of [23]) Let (X, d) be a complete metric space and S, T be self
mapping of X. If there exists α ∈ (0, 1|2) so that

(2.17) d2(Sx, Ty) ≤ α · [d2(x, Sx) + d2(y, Ty)]

holds true, for all x, y ∈ X , then S and T have a unique common fixed point.

Proof. By Corollary 1.2 and Theorem 2.5. � �

Next example is given to support the usability of our results.

Example 2.3. Let X = [0,+∞) and d : X ×X → R be given as

d(x, y) =


√
x+ y, if x 6= y,

0, if x = y.

Then (X, d) is a complete metric space.
Let ψ, ϕ : [0,∞)→ [0,∞) be defined by

ψ(t) = t2, t ∈ [0,∞)

and for s ∈ [0,∞),

ϕ(s) =


s2

2
, if s ≤ 1,

1

2
, if s > 1.

Then ψ and ϕ have the properties in Theorem 4.1.
Let T : X → X be defined as follows

Tx =

 x− 1, if x > 1,

0, if x ∈ [0, 1].

Then we discuss the following cases for x, y ∈ X .
1. If y ∈ (1,+∞) and x > y, then

ψ(d2(Tx, Ty)) = ψ(d2(x− 1, y − 1)) = (x+ y − 2)
2
,

ψ(PT (x, y)) = ψ(max{x+ y,
√
(x+ y − 1) · (x+ y − 1),

1

2
[(2x− 1) + (2y − 1)]})

= ψ(max{x+ y,
√
(x+ y − 1) · (x+ y − 1), x+ y − 1})

= ψ(x+ y) = (x+ y)
2
,

and

ψ(QT (x, y)) = ϕ(max{x+ y,
√
(x+ y − 1) · (x+ y − 1),

√
(2x− 1) · (2y − 1)})

= ϕ(x+ y) =
1

2
.

Hence,

ψ(d2(Tx, Ty)) ≤ ψ(PT (x, y))− ϕ(QT (x, y)).

2. If y ∈ (1,+∞) and x = y, then obviously condition (1.4) is satisfied.
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3. If y ∈ [0, 1] and x ∈ [1,+∞), then
ψ(d2(Tx, Ty)) = ψ(d2(x− 1, 0)) = (x− 1)

2
,

ψ(PT (x, y)) = ψ(max{d2(x, 0), d(x, T0) · d(0, Tx), 1
2
[d2(x, Tx) + d2(0, T0)]})

= ψ(max{x,
√
x(x− 1),

1

2
[x+ (x− 1)]})

= ψ(max{x, 2x− 1

2
}) = ψ(x) = x2,

and

ψ(QT (x, y)) = ϕ(max{d2(x, 0), d(x, T0) · d(0, Tx), d(x, Tx) · d(0, T0))})

= ϕ(max{x,
√
x(x− 1), 0}) = ϕ(x) =

1

2
.

Thus all conditions of Theorem 4.1 are satisfied. Clearly, 0 is the unique fixed point of T .
4. If y, x ∈ [0, 1], then obviously condition (1.4) is satisfied.

Remark 2.1. Let us remark that map T in Example 2.3 is not a q–contraction. It follows
from

d(Tn, T (n+ 1))

d(n, n+ 1)
=
d(n− 1, n)

d(n, n+ 1)
=

√
2n− 1√
2n+ 1

→ 1, n→∞.

Furthermore, map T does not satisfy Kannan condition (1.2). It follows from

d(Tn, T (n+ 1))

d(n, Tn) + d(n+ 1, T (n+ 1))
=

d(n− 1, n)

d(n, n− 1) + d(n+ 1, n)

=

√
2n− 1√

2n− 1 +
√
2n+ 1

→ 1

2
, n→∞.

Finally, map T does not satisfy Chatterjee condition (1.3). It follows from

d(Tn, T (n+ 1))

d(n, T (n+ 1)) + d(n+ 1, Tn)
=

d(n− 1, n)

d(n, n) + d(n+ 1, n− 1)
=

√
2n− 1

2
√
2n

→ 1

2
, n→∞.

3. RESULTS IN COMPACT METRIC SPACES

In this section we prove some results on compact metric spaces. These results are re-
lated to our results from the previous section.

Theorem 3.6. Let (X, d) be a compact metric space and T : X → X be a continuous map. If

ψ(d2(Tx, Ty)) < ψ(PT (x, y)),(3.18)

for all x, y ∈ X , x 6= y, where

PT (x, y) = max

{
d2(x, y), d(x, Ty) · d(y, Tx), d

2(x, Tx) + d2(y, Ty)

2

}
,

and ψ is an altering distance mapping, then T has a unique fixed point.

Proof. Let x0 ∈ X . We define a sequence {xn} in X such that xn+1 = Txn, for all n ≥ 0. If
there exist a positive integer N such that xN = xN+1, then xN is a fixed point of T. Hence
we shall assume that xn 6= xn+1, for all n ≥ 0. From (3.18), we have for all n ≥ 0,

ψ(d2(xn+1, xn+2)) = ψ(d2(Txn, Txn+1)) < ψ(PT (xn, xn+1)(3.19)

= ψ

(
max

{
(d2(xn, xn+1),

d2(xn, xn+1) + d2(xn+1, xn+2)

2

})
.
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Suppose that d(xn, xn+1) ≤ d(xn+1, xn+2) for some positive integer n. Then by (3.19)
we have

ψ(d2(xn+1, xn+2)) < ψ(d2(xn+1, xn+2)),(3.20)

Hence, a contradiction. Therefore,

d(xn+1, xn+2) < d(xn, xn+1), for all n ≥ 0(3.21)

and {(d(xn, xn+1)} is a monotone decreasing sequence of positive real number. Hence
there exists an r ≥ 0 such that

(3.22) lim
n→∞

d(xn, xn+1) = r.

Let {k(n)} be a sequence of positive integers such that {T k(n)x0} converges to p ∈ X .
Hence, xk(n)+1 → Tp and xk(n)+2 → T 2p, n→∞. We note that by (3.22) we have

lim d(xk(n), xk(n)+1) = d(p, Tp) = lim d(xk(n)+1, xk(n)+2) = d(Tp, T 2p) = r

Now, we claim that Tp = p. If Tp 6= p, by (3.18) we have

ψ(d2(Tp, T 2p)) < ψ(PT (p, Tp))(3.23)

= ψ

(
max

{
d2(p, Tp), d(p, T 2p) · d(Tp, Tp), d

2(p, Tp) + d2(Tp, T 2p)

2

})
= ψ(d2(Tp, T 2p),

hence, a contradiction. So Tp = p. If there is q ∈ X such that Tq = q, and p 6= q, then by
(3.18) we have

ψ(d2(p, q)) = ψ(d2(Tp, Tq)) < ψ(PT (p, q))(3.24)

= ψ

(
max

{
d2(p, q), d(p, q) · d(q, p), d

2(p, p) + d2(q, q)

2

})
= ψ(d2(p, q)),

hence, a contradiction. �

Now, as corollaries, for ψ(t) = t, by Theorem 3.6.we obtain the next results.

Corollary 3.7. (Edelstein [13]) Let (X, d) be a compact metric space and let f : X → X be a
map such that

d(f(x), f(y)) < d(x, y), for all x, y ∈ X with x 6= y.

Then the mapping f has a unique fixed point.

Corollary 3.8. (Fisher [14], Górnicki [15]) Let (X, d) be a compact metric space and let f :
X → X be a map such that

d(f(x), f(y)) <
d(x, f(x)) + d(y, f(y))

2
, for all x, y ∈ X,with x 6= y.(3.25)

Then the mapping f has a unique fixed point.

Corollary 3.9. Let (X, d) be a compact metric space and let f : X → X be a map such that

d(f(x), f(y)) <
d2(x, Tx) + d2(y, Ty)

2
, for all x, y ∈ X, with x 6= y.(3.26)

Then the mapping f has a unique fixed point.
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REFERENCES

[1] Agarwal, R. P., Karapinar, E., O’Regan, D. and Roldán-López-de-Hierro, A. F., Fixed Point Theory in Metric
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[24] Malkowsky, E. and Rakočević, V., Advanced Functional Analysis, CRC Press, Taylor & Francis Group, Boca
Raton, FL, 2019

[25] Rhoades, B. E., Some theorems on weakly contractive maps, Nonlinear Analysis TMA, 47 (2001), 2683–2693
[26] Rus, I. A., Generalized Contractions and Applications Cluj University Press, Cluj-Napoca, 2001
[27] Rus, I. A., Petrusel, A. and Petrusel, G., Fixed Point Theory, Cluj University Press Cluj-Napoca, 2008

1DEPARTMENT OF MATHEMATICS

GOVERNMENT V. Y. T. POST-GRADUATE AUTONOMOUS COLLEGE

DURG 491001, CHHATTISGARH, INDIA

Email address: rakeshtiwari66@gmail.com
Email address: shobharaniy89@gmail.com

2DEPARTMENT OF MATHEMATICS

COLLEGE OF SCIENCE, SULTAN QABOOS UNIVERSITY

POBOX 36, AL-KHOD,MUSCAT, OMAN

Email address: mohammad@squ.edu.om

3DEPARTMENT OF MATHEMATICS
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