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pseudomonotone equilibrium programming in a real
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ABSTRACT. The purpose of this paper is to come up with an inertial extragradient method for dealing with
a class of pseudomonotone equilibrium problems. This method can be a view as an extension of the paper
title “A new two-step proximal algorithm of solving the problem of equilibrium programming” by Lyashko
and Semenov et al. (Optimization and Its Applications in Control and Data Sciences: 315—325, 2016). The
theorem of weak convergence for solutions of the pseudomonotone equilibrium problems is well-established
under standard assumptions placed on cost bifunction in the structure of a real Hilbert spaces. For a numerical
experiment, we take up a well-known Nash Cournot equilibrium model of electricity markets to support the
well-established convergence results and be adequate to see that our proposed algorithms have a competitive
superiority over the time of execution and the number of iterations.

1. INTRODUCTION

The equilibrium problem (shortly, EP ) [5] is also described as the Ky Fan inequality
were firstly studied in [10]. The equilibrium problems had a significant impact and influ-
ence in the advancement of different branches of pure and applied sciences. It has been
determined that the equilibrium problem theory set up a novel and unanimous handling
of a wide class of problems which occurred in economics, finance, image reconstruction,
ecology, transportation network, elasticity and optimization. It has been established that
equilibrium problems take into account variational inequalities, fixed point, Nash equi-
librium and game theory as special cases (see e.g.,[5, 11, 27]). Consequently, equilibrium
problems cover a wide range of applications. For the study of the solution problem of
an equilibrium problem, numerical iterative methods are effective and useful. Certainly,
widely known problems came into existence in different branches of science can be stud-
ied by using algorithms which are iterative in their nature. In recent years, many meth-
ods have been developed to solve equilibrium problems in finite and infinite dimensional
spaces (for instance, see [9, 13, 26, 24, 25, 1]).

For the numerical solution of equilibrium problem, two practical techniques are par-
ticularly important, one of them is the proximal point method (shortly, PPM ) [19] and
other one is auxiliary problem principle [17], both are used to solve equilibrium prob-
lems. The proximal point method (PPM ) method was basically set up by Martinet for
monotone variational inequality problems and afterwards, it was extended by Rockafel-
lar [28] in the case of monotone operators. In addition, Moudafi [19] expanded the PPM
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to EP s for involving monotone bifunctions. Furthermore, Konnov [14] presented an-
other explanation of the PPM with weaker conditions. The proximal point method is
commonly imposed to monotone EPs, i.e. the bifunction of an equilibrium problem has
to be monotone. Thus, each regularized subproblem turns into strongly monotone, and
so its solution exists and is unique. This will not ensure the existence of the solution if the
bifunction is more general, like pseudomonotone. On the other side, another well-known
approach is the auxiliary problem principle, which is based on the perception to estab-
lish a new problem which is identical and generally simpler to work out that correlated
to our initial problem. This concept started by Cohen [7] for optimization problems and
later presented for variational inequality problems [8]. Additionally, Mastroeni [17] take
the auxiliary problem principle into equilibrium problems involving strongly monotone
bifunctions.

In this paper, we concentrate on the proximal point method, consisting of extragradi-
ent methods which are well-known and essentially accessible to implement owing to their
easier numerical computation. As we know, the earliest established projection method for
variational inequality problems is the gradient projection method. After that, many alter-
native projection methods were established such as the extragradient method [15], the
subgradient extragradient method [6], Popov's extragradient method [23], Tseng's extra-
gradient method [30], projection and contraction schemes [12] and others hybrid and pro-
jected gradient methods. The first consideration respecting to the extragradient method
[15], is needed to figure out twice the orthogonal projection onto C per each iteration.
So, in case that the set C is not “simple” to project onto it, a minimal distance problem
has to be resolved (twice) in order to gain the next iteration, a fact that might affect the
efficiency and applicability of the method. Evenly, an initial step to conquer this diffi-
culty, Censor et al. in [6] introduced the subgradient extragradient scheme in which the
second projection onto C is replaced by a specific subgradient projection which can be
efficiently computed. On the other hand, let us point out inertial-type methods, based on
the heavy ball methods of the two-order time dynamical system, Polyak [22] begin with
and looked at an inertial extrapolation as an acceleration strategy to deal with the smooth
convex minimization problem. The inertial algorithm is a two-step iterative process, and
the next iteration is determined by making use of the earlier two iterations and it can be
considered as a way of speeding up iterative sequence, look at [4, 22].

In this paper, we modify the result that presented in [16] by employing the subgradient
technique [6] which have the improvements on Lyashko et al. [16] i.e. solve a minimal
distance problem onto half plane which is formerly pointed out in the above passage.
Additionally, at the same moment, the inertial method is also connected to the propos-
ing method to speed up the iterative sequence. The theorem of weak convergence for
the solution of the equilibrium problems involving pseudomonotone and Lipschitz-type
constants of a cost bifunction is well-formed under standard assumptions placed on bi-
function. Furthermore, some numerical results are also shown to look at the performance
of our proposed method.

The rest of this paper is organized as follows: In Section 2, we provide some definitions
and preliminary results which are making to be used entire paper. Section 3, consists of
an algorithm for pseudomonotone bifunction, and we provide the weak convergence the-
orem for the proposed algorithm. Finally, in Section 4, we give the numerical experiments
to illustrate the computational performance of the suggested algorithms on a test prob-
lem which is modelled from a Nash Cournot equilibrium model of electricity markets, in
comparisons with other well-known algorithms.
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2. PRELIMINARIES

In this part, we give some preliminary results that will be useful in the demonstration
of our upcoming results. From now on, let C be closed and convex subset of a Hilbert
space H with inner product 〈., .〉 and norm ‖.‖ respectively. Let R and N be two sets of
all real numbers and all positive integers respectively. While {xn} is a sequence in H, we
denote the strong convergence and weak convergence of xn to x ∈ H as n→∞ by xn → x
and xn ⇀ x respectively. Finally, EP (f, C) stand for the solution set of the equilibrium
problem inside C and p is a member of EP (f, C).

Definition 2.1 (Equilibrium Problem[5]). Let C be a nonempty closed convex subset of H.
Let f be a bifunction from C × C to the set of real numbers R such that f(x, x) = 0 for all
x ∈ C. The equilibrium problem (EP) for the bifunction f on C is to

(2.1) find p ∈ C such that (p, y) ≥ 0,∀y ∈ C.

Definition 2.2. Let C be a closed convex subset in H, we denote the metric projection on
C by PC(x), ∀x ∈ H, i.e.,

PC(x) = arg min{‖y − x‖ : y ∈ C}.

We now recall classical concepts of monotonicity of nonlinear operators.

Definition 2.3. [18]A mapping F : H→ H is said to be
(i) strongly monotone on C if

〈F (x)− F (y), x− y〉 ≥ γ‖x− y‖2, ∀x, y ∈ C;

(ii) monotone on C if

〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ C;

(iii) strongly pseudomonotone on C if

〈F (y), x− y〉 ≥ 0 =⇒ 〈F (x), x− y〉 ≥ γ‖x− y‖2, ∀x, y ∈ C;

(iv) pseudomonotone on C if

〈F (y), x− y〉 ≥ 0 =⇒ 〈F (x), x− y〉 ≥ 0, ∀x, y ∈ C;

(v) L-Lipschitz continuous on C if there exists a constant L > 0 such that

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ C.

Analogous to the above definitions, we have the following concepts for equilibrium
problems (see [5] and the references therein).

Definition 2.4. A bifunction f : H×H→ R is said to be
(i) strongly monotone on C if there exists a constant γ > 0 such that

f(x, y) + f(y, x) ≤ −γ‖x− y‖2, ∀x, y ∈ C;

(ii) monotone on C if
f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C;

(iii) strongly pseudomonotone on C if there exists a constant γ > 0 such that

f(x, y) ≥ 0 =⇒ f(y, x) ≤ −γ‖x− y‖2, ∀x, y ∈ C;

(iv) pseudomonotone on C if

f(x, y) ≥ 0 =⇒ f(y, x) ≤ 0, ∀x, y ∈ C;

(v) Lipschitz-type condition on C if there exist two positive constants c1, c2 such that

f(x, z) ≤ f(x, y) + f(y, z) + c1‖x− y‖2 + c2‖y − z‖2, ∀x, y, z ∈ C.
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Remark 2.1. From the Definitions 2.4, the following implications holds.

(i) =⇒ (ii) =⇒ (iv) and (i) =⇒ (iii) =⇒ (iv).

Remark 2.2. The converses of the above implication is not true in general.

Further, we recall that the subdifferential of a convex function g : C → R at x ∈ C is
defined by

∂g(x) = {w ∈ H : g(y)− g(x) ≥ 〈w, y − x〉,∀ y ∈ C},
and the normal cone of C at x ∈ C is defined by

NC(x) = {w ∈ H : 〈w, y − x〉 ≤ 0,∀ y ∈ C}.

Lemma 2.1 ([29], Page 97). Let C be a nonempty closed convex subset of a real Hilbert space
H and g : C → R be a convex, subdifferentiable, lower semicontinuous function on C. Then,
z is a solution to the following convex optimization problem min{g(x) : x ∈ C} if and only if
0 ∈ ∂g(z) +NC(z), where ∂g(z) and NC(z) denotes the subdifferential of g at z and the normal
cone of C at z respectively.

Lemma 2.2 ([3], Page 31). For all x, y ∈ H and µ ∈ R, the following equality hold:

‖µx+ (1− µ)y‖2 = µ‖x‖2 + (1− µ)‖y‖2 − µ(1− µ)‖x− y‖2.

Lemma 2.3. [2] Let φn, δn and βn be sequences in [0,+∞) such that

φn+1 ≤ φn + βn(φn − φn−1) + δn, ∀n ≥ 1 and
+∞∑
n=1

δn < +∞,

and there exists a real number β with 0 ≤ βn ≤ β < 1 for all n ∈ N. Then the following relation
is true:

(i)
∑+∞
n=1[φn − φn−1]+ <∞, where[s]+ := max{s, 0};

(ii) There exists φ∗ ∈ [0,+∞) such that limn→+∞ φn = φ∗.

Lemma 2.4. [21] Let C be a nonempty set of H and {xn} be a sequence in H such that the
following two conditions hold:

(i) For every x ∈ C, limn→∞ ‖xn − x‖ exists;
(ii) Every sequentially weak cluster point of {xn} is in C.

Then, {xn} converges weakly to a point in C.

3. AN ALGORITHM FOR A CLASS OF PSEUDOMONOTONE EQUILIBRIUM PROBLEM

In this section, we propose our main result which is a modification of algorithm 1 (see
[16]) to find an approximate solution of a class of pseudomonotone problem (EP ). Our
proposed iterative method consists of two strong convex optimization problems with an
subgradient and inertial technique which is adopted to speed up the iterative process, so
we called it an “Modified two-step subgradient extragradient method” for equilibrium
programming.

Assumption 1. We assume that the bifunction f : H×H→ R, satisfies the following conditions:
A1. f(x, x) = 0,∀x ∈ C and f is pseudomontone on C.
A2. f satisfies the Lipschitz-type conditions with two constants c1 and c2.
A3. limn→∞ sup f(xn, y) ≤ f(p, y) for each y ∈ C and {xn} ⊂ C with xn ⇀ p.
A4. f(x, .) is convex and subdifferentiable on C for every fixed x ∈ C.

The following is the algorithm in detail:



Two-step extragradient method for pseudomonotone equilibrium problems 317

Algorithm 1 (Modified two-step subgradient extragradient method)

Initialization: Choose x−1, x0, y0 ∈ H, λ > 0, and αn ∈ [0,
√

5− 2). Set

w0 = x0 + α0(x0 − x−1),

x1 = Proxλf(y0, .)w0 = arg min
y∈C

{λf(y0, y) +
1

2
‖w0 − y‖2},

y1 = Proxλf(y0, .)x1 = arg min
y∈C

{λf(y0, y) +
1

2
‖x1 − y‖2}.

Iterative steps: For given xn, yn and yn−1 for n ≥ 1. Compute

wn = xn + αn(xn − xn−1),

and construct half space

Hn = {z ∈ H : 〈wn − λυn−1 − yn, z − yn〉 ≤ 0},
where υn−1 ∈ ∂f(yn−1, yn).
Step 1: Compute

xn+1 = Proxλf(yn, .)wn = arg min
y∈Hn

{λf(yn, y) +
1

2
‖wn − y‖2}.

Step 2: Compute

yn+1 = Proxλf(yn, .)xn+1 = arg min
y∈C

{λf(yn, y) +
1

2
‖xn+1 − y‖2}.

Step 3: If xn+1 = wn and yn = yn−1, then stop and yn is the solution of an equilibrium
problem, otherwise set n := n+ 1 and go back Step 1.

Lemma 3.5. From Algorithm 1 we have the following useful inequality.

λf(yn, y)− λf(yn, xn+1) ≥ 〈wn − xn+1, y − xn+1〉, ∀y ∈ Hn.

Proof. From Lemma 2.1 and definition of xn+1 in Algorithm 1, we have

0 ∈ ∂2
{
λf(yn, y) +

1

2
‖wn − y‖2

}
(xn+1) +NHn(xn+1).

Thus, there exist ω ∈ ∂f(yn, xn+1) and ω ∈ NC(xn+1) such that

λω + xn+1 − wn + ω = 0.

Thus, we have

〈wn − xn+1, y − xn+1〉 = λ〈ω, y − xn+1〉+ 〈ω, y − xn+1〉, ∀y ∈ Hn.

Since ω ∈ NHn(xn+1) then 〈ω, y − xn+1〉 ≤ 0 for all y ∈ Hn. This implies that

(3.2) λ〈ω, y − xn+1〉 ≥ 〈wn − xn+1, y − xn+1〉, ∀y ∈ Hn.

From ω ∈ ∂f(yn, xn+1) and the definition of subdifferential, we have

(3.3) f(yn, y)− f(yn, xn+1) ≥ 〈ω, y − xn+1〉.
Combining (3.2) and (3.3) we obtain

(3.4) λf(yn, y)− λf(yn, xn+1) ≥ 〈wn − xn+1, y − xn+1〉, ∀y ∈ Hn.

�

Lemma 3.6. From Algorithm 1 we also have the following useful inequality.

λf(yn, y)− λf(yn, yn+1) ≥ 〈xn+1 − yn+1, y − yn+1〉, ∀y ∈ C.
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Proof. From Lemma 2.1 and definition of yn+1 in Algorithm 1, we have

0 ∈ ∂2
{
λf(yn, y) +

1

2
‖xn+1 − y‖2

}
(yn+1) +NC(yn+1).

Thus, there exist ω ∈ ∂f(yn, yn+1) and ω ∈ NC(yn+1) such that

λω + yn+1 − xn+1 + ω = 0.

Thus, we have

〈xn+1 − yn+1, y − yn+1〉 = λ〈ω, y − yn+1〉+ 〈ω, y − yn+1〉, ∀y ∈ C.
Since ω ∈ NC(yn+1) implies 〈ω, y − yn+1〉 ≤ 0 for all y ∈ C. This implies that

(3.5) λ〈ω, y − yn+1〉 ≥ 〈xn+1 − yn+1, y − yn+1〉, ∀y ∈ C.
From ω ∈ ∂f(yn, yn+1) and the definition of subdifferential, we have

(3.6) f(yn, y)− f(yn, yn+1) ≥ 〈ω, y − yn+1〉.
Combining (3.5) and (3.6) we obtain

(3.7) λf(yn, y)− λf(yn, yn+1) ≥ 〈xn+1 − yn+1, y − yn+1〉, ∀y ∈ C.
�

Lemma 3.7. Let {xn} and {yn} generated from the Algorithm 1 the following relation holds.

λ
{
f(yn−1, xn+1)− f(yn−1, yn)

}
≥ 〈wn − yn, xn+1 − yn〉.

Proof. It follows from Algorithm 1 and xn+1 ∈ Hn, by the definition of Hn implies that
〈wn − λυn−1 − yn, xn+1 − yn〉 ≤ 0. Thus, we get

(3.8) λ〈υn−1, xn+1 − yn〉 ≥ 〈wn − yn, xn+1 − yn〉.
By υn−1 ∈ ∂f(yn−1, yn) and the definition of subdifferential, we have

f(yn−1, y)− f(yn−1, yn) ≥ 〈υn−1, y − yn〉, ∀y ∈ H.
Put y = xn+1 in the above expression

(3.9) f(yn−1, xn+1)− f(yn−1, yn) ≥ 〈υn−1, xn+1 − yn〉, ∀y ∈ H.
By combining (3.8) and (3.9) we obtain

λ
{
f(yn−1, xn+1)− f(yn−1, yn)

}
≥ 〈wn − yn, xn+1 − yn〉.

�

Next, we discuss different possible stopping criterion for Algorithm 1 and also provide
the proof for readable purpose.

Lemma 3.8. If xn+1 = yn = wn, in Algorithm 1 then yn ∈ EP (f, C).

Proof. From Lemma 3.5, we have

λf(yn, y)− λf(yn, xn+1) ≥ 〈wn − xn+1, y − xn+1〉, ∀y ∈ Hn.

From above hypothesis and condition A1 in (Assumption 1) implies λf(yn, y) ≥ 0, and
further due to step size λ > 0 with C ⊂ Hn implies that yn ∈ EP (f, C). �

Lemma 3.9. If xn+1 = yn+1 = yn in Algorithm 1 then yn ∈ EP (f, C).

Proof. From Lemma 3.6, we have

λf(yn, y)− λf(yn, yn+1) ≥ 〈xn+1 − yn+1, y − yn+1〉, ∀y ∈ C.
From above hypothesis and condition A1 in (Assumption 1) implies λf(yn, y) ≥ 0, and
further due to step size λ > 0, implies that yn ∈ EP (f, C). �
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Lemma 3.10. If xn+1 = wn and yn = yn−1 as in Step 3 of Algorithm 1, then yn ∈ EP (f, C).

Proof. By xn+1 = wn in Lemma 3.5, we obtain

(3.10) λf(yn, y)− λf(yn, xn+1) ≥ 0, ∀y ∈ Hn.

Since xn+1 ∈ Hn, we have

λ
{
f(yn−1, xn+1)− f(yn−1, yn)

}
≥ 〈wn − yn, xn+1 − yn〉.

From given yn = yn−1 and xn+1 = wn, with hypothesis A1 in (Assumption 1) above
implies that

(3.11) λf(yn, xn+1) ≥ ‖wn − yn‖2 ≥ 0.

From expression (3.10) and (3.11) implies that yn ∈ EP (f, C). �

Lemma 3.11. Let f : H × H → R is a bifunction satisfying the conditions (A1)-(A4) in (As-
sumption 1). Assume that the solution set EP (f, C) is nonempty. Then, for all p ∈ EP (f, C),
we have

(3.12)
‖xn+1 − p‖2 ≤ ‖wn − p‖2 − (1− 4c1λ)‖wn − yn‖2 − (1− 2c2λ)‖xn+1 − yn‖2

+ 4c1λ‖wn − yn−1‖2.

Proof. Substituting y = p into Lemma 3.5, we obtain

(3.13) λf(yn, p)− λf(yn, xn+1) ≥ 〈wn − xn+1, p− xn+1〉, ∀y ∈ Hn.

Since p ∈ EP (f, C), we have f(p, yn) ≥ 0. Thus f(yn, p) ≤ 0, due to pseudomonotonicity
of bifunction f. Thus, from (3.13) we get

(3.14) 〈wn − xn+1, xn+1 − p〉 ≥ λf(yn, xn+1).

The Lipschitz-type continuity of f leads to

(3.15) f(yn−1, xn+1) ≤ f(yn−1, yn) + f(yn, xn+1) + c1‖yn−1 − yn‖2 + c2‖yn − xn+1‖2.
From relation (3.14) and (3.15) implies that

(3.16)
〈wn − xn+1, xn+1 − p〉 ≥ λ

{
f(yn−1, xn+1)− f(yn−1, yn)

}
− c1λ‖yn−1 − yn‖2 − c2λ‖yn − xn+1‖2.

Since xn+1 ∈ Hn and by Lemma 3.7, we have

(3.17) λ
{
f(yn−1, xn+1)− f(yn−1, yn)

}
≥ 〈wn − yn, xn+1 − yn〉.

From (3.16) and (3.17), we obtain

(3.18)
〈wn − xn+1, xn+1 − p〉 ≥ 〈wn − yn, xn+1 − yn〉

− c1λ‖yn−1 − yn‖2 − c2λ‖yn − xn+1‖2.

We have the following facts:

−2〈wn − xn+1, xn+1 − p〉 = −‖wn − p‖2 + ‖xn+1 − wn‖2 + ‖xn+1 − p‖2.

2〈wn − yn, xn+1 − yn〉 = ‖wn − yn‖2 + ‖xn+1 − yn‖2 − ‖wn − xn+1‖2.
From the above last two inequalities and (3.18) we obtain

(3.19)

‖xn+1 − p‖2

≤ ‖wn − p‖2 − ‖xn+1 − wn‖2 − ‖wn − yn‖2 − ‖xn+1 − yn‖2

+ ‖xn+1 − wn‖2 + 2c1λ‖yn−1 − yn‖2 + 2c2λ‖yn − xn+1‖2

= ‖wn − p‖2 − ‖wn − yn‖2 − (1− 2c2λ)‖xn+1 − yn‖2 + 2c1λ‖yn−1 − yn‖2.
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We have the following inequality

‖yn−1 − yn‖2 ≤
(
‖yn−1 − wn‖+ ‖wn − yn‖

)2 ≤ 2‖yn−1 − wn‖2 + 2‖wn − yn‖2.
From the above inequality and equation (3.19) implies the required result.

‖xn+1−p‖2 ≤ ‖wn−p‖2−(1−4c1λ)‖wn−yn‖2−(1−2c2λ)‖xn+1−yn‖2 +4c1λ‖wn−yn−1‖2.
�

Let us formulate the main convergence result of this work.

Theorem 3.1. Let f : H × H → R is a bifunction satisfying the conditions (A1)-(A4) in (As-
sumption 1). Let {xn} be a sequences in H generated by Algorithm 1, where the sequence αn is
non-decreasing and with λ be a positive real number such that

0 < λ ≤
1
2 − 2α− 1

2α
2

c2(1− α)2 + 2c1(1 + α+ α2 + α3)
and 0 ≤ αn ≤ α <

√
5− 2.

Then, {xn}, {yn} and {wn} converges weakly to an element of EP (f, C).

Proof. From Lemma 3.11 and adding 4c1λ‖wn+1 − yn‖2 in both sides, we obtain

‖xn+1 − p‖2 + 4c1λ‖wn+1 − yn‖2 ≤ ‖wn − p‖2 − (1− 4c1λ)‖wn − yn‖2

(3.20) −(1− 2c2λ)‖xn+1 − yn‖2 + 4c1λ‖wn − yn−1‖2 + 4c1λ‖wn+1 − yn‖2.
By the definition of wn in Algorithm 1, we have

‖wn − p‖2 = ‖xn + αn(xn − xn−1)− p‖2 = ‖(1 + αn)(xn − p)− αn(xn−1 − p)‖2

(3.21) = (1 + αn)‖xn − p‖2 − αn‖xn−1 − p‖2 + αn(1 + αn)‖xn − xn−1‖2.
By the definition of wn+1 in Algorithm 1, we obtain

‖wn+1−yn‖2 = ‖xn+1+αn+1(xn+1−xn)−yn‖2 = ‖(1+αn+1)(xn+1−yn)−αn+1(xn−yn)‖2

= (1 + αn+1)‖xn+1 − yn‖2 − αn+1‖xn − yn‖2 + αn+1(1 + αn+1)‖xn+1 − xn‖2

(3.22) ≤ (1 + αn)‖xn+1 − yn‖2 + αn(1 + αn)‖xn+1 − xn‖2.
From expression (3.20), (3.21) and (3.22) implies that

‖xn+1 − p‖2 + 4c1λ‖wn+1 − yn‖2

≤ (1 + αn)‖xn − p‖2 − αn‖xn−1 − p‖2 + αn(1 + αn)‖xn − xn−1‖2

+ 4c1λ‖wn − yn−1‖2 − (1− 4c1λ)‖wn − yn‖2 − (1− 2c2λ)‖xn+1 − yn‖2

+ 4c1λ(1 + αn)‖xn+1 − yn‖2 + 4c1λαn(1 + αn)‖xn+1 − xn‖2(3.23)

≤ (1 + αn)‖xn − p‖2 − αn‖xn−1 − p‖2 + αn(1 + αn)‖xn − xn−1‖2

+ 4c1λ‖wn − yn−1‖2 + 4c1λαn(1 + αn)‖xn+1 − xn‖2

− (1− 4c1λ)‖wn − yn‖2 − (1− 2c2λ− 4c1λ(1 + αn))‖xn+1 − yn‖2(3.24)

≤ (1 + αn+1)‖xn − p‖2 − αn‖xn−1 − p‖2 + αn(1 + αn)‖xn − xn−1‖2

+ 4c1λ‖wn − yn−1‖2 + 4c1λαn(1 + αn)‖xn+1 − xn‖2

−
(
1− 2c2λ− 4c1λ(1 + αn)

)
2

[
2(‖xn+1 − yn‖2 + ‖wn − yn‖2)

]
.(3.25)

Next, put

σn =
1− 2c2λ− 4c1λ(1 + αn)

2
,
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and due to the inequality

2‖xn+1 − yn‖2 + 2‖wn − yn‖2 ≥ ‖xn+1 − wn‖2,

the expression (3.25) becomes

(3.26)
∆n+1 ≤ ∆n + αn(1 + αn)‖xn − xn−1‖2 + 4c1λαn(1 + αn)‖xn+1 − xn‖2

− σn‖xn+1 − wn‖2,

where

∆n = ‖xn − p‖2 − αn‖xn−1 − p‖2 + 4c1λ‖wn − yn−1‖2.

Furthermore, by the definition wn+1 and using Cauchy inequality, we have
(3.27)
‖xn+1 − wn‖2 = ‖xn+1 − xn − αn(xn − xn−1)‖2

= ‖xn+1 − xn‖2 + α2
n‖xn − xn−1‖2 − 2αn〈xn+1 − xn, xn − xn−1〉

≥ ‖xn+1 − xn‖2 + α2
n‖xn − xn−1‖2 − 2αn‖xn+1 − xn‖‖xn − xn−1‖

≥ ‖xn+1 − xn‖2 + α2
n‖xn − xn−1‖2 − αn‖xn+1 − xn‖2 − αn‖xn − xn−1‖2

≥ (1− αn)‖xn+1 − xn‖2 + (α2
n − αn)‖xn − xn−1‖2.

From (3.26) and (3.27) implies that

(3.28)

∆n+1 ≤ ∆n + αn(1 + αn)‖xn − xn−1‖2 + 4c1λαn(1 + αn)‖xn+1 − xn‖2

− σn(1− αn)‖xn+1 − xn‖2 − σn(α2
n − αn)‖xn − xn−1‖2

≤ ∆n + ηn‖xn − xn−1‖2 − ζn‖xn+1 − xn‖2,

where

ηn := αn(1 + αn) + σnαn(1− αn), ζn := σn(1− αn)− 4c1λαn(1 + αn).

Further, we take

Γn = ∆n + ηn‖xn − xn−1‖2.

It follows from (3.28) that

(3.29)

Γn+1 − Γn

= ‖xn+1 − p‖2 − αn+1‖xn − p‖2 + ηn+1‖xn+1 − xn‖2 + 4c1λ‖wn+1 − yn‖2

− ‖xn − p‖2 + αn‖xn−1 − p‖2 − ηn‖xn − xn−1‖2 − 4c1λ‖wn − yn−1‖2

= ‖xn+1 − p‖2 − (1 + αn+1)‖xn − p‖2 + αn‖xn−1 − p‖2 + 4c1λ‖wn+1 − yn‖2

− 4c1λ‖wn − yn−1‖2 − ηn‖xn − xn−1‖2 + ηn+1‖xn+1 − xn‖2

≤ −ζn‖xn+1 − xn‖2 + ηn+1‖xn+1 − xn‖2

= −(ζn − ηn+1)‖xn+1 − xn‖2.
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Further, we compute

(3.30)

ζn − ηn+1

= σn(1− αn)− 4c1λαn(1 + αn)− αn+1(1 + αn+1)− σn+1αn+1(1− αn+1)

≥ σn(1− αn)− 4c1λαn(1 + αn)− αn(1 + αn)− σnαn(1− αn)

≥ σn(1− α)2 − 4c1λα(1 + α)− α(1 + α)

≥ 1− 2c2λ− 4c1λ(1 + α)

2
(1− α)2 − 4c1λα(1 + α)− α(1 + α)

=
(1

2
− 2α− 1

2
α2
)
− λ
(
c2
(
1− α

)2
+ 2c1

(
1 + α+ α2 + α3

))
≥ 0.

By expression (3.29) and (3.30) for some δ ≥ 0, implies that

(3.31) Γn+1 − Γn ≤ −(ζn − ηn+1)‖xn+1 − xn‖2 ≤ −δ‖xn+1 − xn‖2 ≤ 0.

So expression (3.31) implies that the sequence {Γn} is nonincreasing. Further, from defi-
nition of Γn+1 we have

(3.32)
Γn+1 = ‖xn+1 − p‖2 − αn+1‖xn − p‖2 + ηn+1‖xn+1 − xn‖2 + 4c1λ‖wn+1 − yn‖2

≥ −αn+1‖xn − p‖2.
Also, from Γn we have

(3.33)
Γn = ‖xn − p‖2 − αn‖xn−1 − p‖2 + ηn‖xn − xn−1‖2 + 4c1λ‖wn − yn−1‖2

≥ ‖xn − p‖2 − αn‖xn−1 − p‖2.
By equation (3.33) implies that

‖xn − p‖2 ≤ Γn + αn‖xn−1 − p‖2

≤ Γ1 + α‖xn−1 − p‖2

≤ · · · ≤ Γ1(αn−1 + · · ·+ 1) + αn‖x0 − p‖2

≤ Γ1

1− α
+ αn‖x0 − p‖2.(3.34)

From expression (3.32) and (3.34), we obtain

−Γn+1 ≤ αn+1‖xn − p‖2

≤ α‖xn − p‖2

≤ α Γ1

1− α
+ αn+1‖x0 − p‖2.(3.35)

It follows from (3.31) and (3.35) that

δ

k∑
n=1

‖xn+1 − xn‖ ≤ Γ1 − Γk+1

≤ Γ1 + α
Γ1

1− α
+ αn+1‖x0 − p‖2

≤ Γ1

1− α
+ ‖x0 − p‖2,(3.36)

letting k →∞ in above expression (3.36), we have

(3.37)
∞∑
n=1

‖xn+1 − xn‖ < +∞ implies ‖xn+1 − xn‖ → 0 as n→∞.
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By expression (3.27) and (3.37) we obtain

(3.38) ‖xn+1 − wn‖ → 0 as n→∞.
Next, equation (3.35) also implies that

(3.39) −∆n+1 ≤ α
Γ1

1− α
+ αn+1‖x0 − p‖2 + ηn+1‖xn+1 − xn‖2.

Further, from expression (3.25) we have

(3.40)

(
1− 2c2λ− 4c1λ(1 + α)

)[
‖xn+1 − yn‖2 + ‖wn − yn‖2

]
≤ ∆n −∆n+1 + α(1 + α)‖xn − xn−1‖2 + 4c1λα(1 + α)‖xn+1 − xn‖2.

Now, we fix a number k ∈ N and consider above inequality for all number 1, 2, · · · , k.
Summing up them, we obtain

(3.41)

(
1− 2c2λ− 4c1λ(1 + α)

) k∑
n=1

[
‖xn+1 − yn‖2 + ‖wn − yn‖2

]
≤ ∆0 −∆k+1 + α(1 + α)

k∑
n=1

‖xn − xn−1‖2 + 4c1λα(1 + α)

k∑
n=1

‖xn+1 − xn‖2

≤ ∆0 + α
Γ1

1− α
+ αk+1‖x0 − p‖2 + ηk+1‖xk+1 − xk‖2

+ α(1 + α)

k∑
n=1

‖xn − xn−1‖2 + 4c1λα(1 + α)

k∑
n=1

‖xn+1 − xn‖2,

letting k →∞ in above expression we have

(3.42)
∑
‖xn+1 − yn‖2 =

∑
‖wn − yn‖2 < +∞,

and implies that

(3.43) lim
n→∞

‖xn+1 − yn‖ = lim
n→∞

‖wn − yn‖ = 0.

Also, from above equation expression we can easily derive the following

(3.44) lim
n→∞

‖xn − yn‖ = lim
n→∞

‖xn − wn‖ = lim
n→∞

‖yn−1 − yn‖ = 0.

Furthermore, by the definition wn and using Cauchy inequality we have
(3.45)
‖wn − yn−1‖2 = ‖xn + αn(xn − xn−1)− yn−1‖2

= ‖(1 + αn)(xn − yn−1)− αn(xn−1 − yn−1)‖2

= (1 + αn)‖xn − yn−1‖2 − αn‖xn−1 − yn−1‖2 + αn(1 + αn)‖xn − xn−1‖2

≤ (1 + αn)‖xn − yn−1‖2 + αn(1 + αn)‖xn − xn−1‖2

≤ (1 + α)‖xn − yn−1‖2 + α(1 + α)‖xn − xn−1‖2.

Now, summing up equation (3.45) for n = 1, 2 · · · , k, we obtain

(3.46)
k∑

n=1

‖wn − yn−1‖2 ≤ (1 + α)

k∑
n=1

‖xn − yn−1‖2 + α(1 + α)

k∑
n=1

‖xn − xn−1‖2.

The above equation with (3.37) and (3.42) implies that

(3.47)
∑
‖wn − yn−1‖2 < +∞.
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Further, equation (3.23) gives that

(3.48)
‖xn+1 − p‖2 ≤ (1 + α)‖xn − p‖2 − α‖xn−1 − p‖2 + α(1 + α)‖xn − xn−1‖2

+ 4c1λ‖wn − yn−1‖2,
above equation with (3.37), (3.47) and Lemma 2.3, implies that limit of ‖xn − p‖ exists.
Further, equation (3.44) implies that the limit of ‖wn−p‖ and ‖yn−p‖ exists. This implies
that, the sequences {xn}, {wn} and {yn} are bounded, and for every p ∈ EP (f, C), the
limn→∞ ‖xn − p‖2 exists. Now, further we show that for very sequential weak cluster
point of the sequence {xn} is in EP (f, C). Assume that p is a weak cluster point of {xn},
i.e., there exists a subsequence, denoted by {xnk}, of {xn} weakly converging to p. Then
{ynk} also weakly converges to p and p ∈ C. Let us show that p ∈ EP (f, C). By Lemma
3.5, the Lipschitz-type condition of bifunction and Lemma 3.7, we have

(3.49)

λf(ynk , y) ≥ λf(ynk , xnk+1) + 〈wnk − xnk+1, y − xnk+1〉
≥ λf(ynk−1, xnk+1)− λf(ynk−1, ynk)− c1λ‖ynk−1 − ynk‖2

− c2λ‖ynk − xnk+1‖2 + 〈wnk − xnk+1, y − xnk+1〉
≥ 〈wnk − ynk , xnk+1 − ynk〉 − c1λ‖ynk−1 − ynk‖2

− c2λ‖ynk − xnk+1‖2 + 〈wnk − xnk+1, y − xnk+1〉,
where y is any element in Hn. It follows from (3.43), (3.44), (3.38) and the boundness
of {xn} that the right-hand side of the last inequality tends to zero. Using λ > 0, the
condition (A3) in (Assumption 1) and ynk ⇀ p, we have

0 ≤ lim sup
k→∞

f(ynk , y) ≤ f(z, y), ∀y ∈ Hn.

Since p ∈ C ⊂ Hn, we have f(p, y) ≥ 0,∀y ∈ C. This shows that p ∈ EP (f, C). Thus
Lemma 2.4, ensures that {wn}, {xn} and {yn} converges weakly to p as n→∞. �

Note: If we assume that the bifunction f(x, y) := 〈F (x), y − x〉 for all x, y ∈ C,
then the equilibrium problem convert into the above variational inequality problem with
L = 1

2c1 = 1
2c2. It follows from the definition of yn+1 in the Algorithm 1 and the above

definition of bifunction f such that

yn+1

(3.50)

= arg min
y∈C

{
λf(yn, y) +

1

2
‖xn+1 − y‖2

}
= arg min

y∈C

{
λ〈F (yn), y − yn〉+

1

2
‖xn+1 − y‖2 +

λ2

2
‖F (yn)‖2

}
= arg min

y∈C

{
λ〈F (yn), y − xn+1〉+

1

2
‖xn+1 − y‖2 +

λ2

2
‖F (yn)‖2 + λ〈F (yn), xn+1 − yn〉

}
= arg min

y∈C

{1

2
‖xn+1 − λF (yn)− y‖2

}
= PC(xn+1 − λF (yn)).

(3.51)

Similarly to the expression (3.51), xn+1 in Algorithm 1 reduces to

xn+1 = PHn(wn − λF (yn)).

Assumption 2. We assume that F satisfying the following assumptions:
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F1. F is pseudomonotone on C and V I(F,C) is nonempty;
F2. lim sup

n→∞
〈F (xn), y − xn〉 ≤ 〈F (x∗), y − x∗〉 for every y ∈ C and {xn} ⊂ C satisfying

xn ⇀ x∗.
F3. F is L-Lipschitz continuous on C for some positive constant L > 0.

Corollary 3.1. Suppose that F : C → E satisfying the conditions (F1, F2, F3). Let {wn}, {xn},
{yn} be the sequences generated as follows.

i. Choose x−1, x0, y0 ∈ H, λ > 0, and αn ∈ [0,
√

5− 2). Set

w0 = x0 + α0(x0 − x−1),

x1 = PC(w0 − λF (y0)) and y1 = PC(x1 − λF (y0)).

ii. For given xn, yn and yn−1 for n ≥ 1. compute

wn = xn + αn(xn − xn−1),

and construct half space

Hn = {z ∈ H : 〈wn − λF (yn−1)− yn, z − yn〉 ≤ 0}.

iii. Compute {
xn+1 = PC

(
wn − λF (yn)

)
,

yn+1 = PHn
(
xn+1 − λF (yn)

)
.

Then, the sequence {wn}, {xn} and {yn} converges weakly to the solution p of V I(F,C).

4. COMPUTATIONAL EXPERIMENT

In this section few numerical results will be presented in order to test Algorithm 1
(shortly, MTSPA) and also illustrates the comparison of our proposed algorithm with Ex-
tragradient method [25] (shortly, EgA) and Two-Step Proximal Algorithm (shortly, TSPA)[16].
The MATLAB codes run on a PC (with Intel(R) Core(TM)i3-4010U CPU @ 1.70GHz 1.70GHz,
RAM 4.00 GB) under MATLAB version 9.5 (R2018b).

4.1. Nash-Cournot equilibrium model of electricity markets. In this experiment, we
apply our proposed algorithm to a Nash-Cournot equilibrium model of electricity mar-
kets as in [24]. In this model, it is considered that there are three electricity companies i
(i = 1, 2, 3). Each company i has its own, several generating units with index set Ii. In this
experiment, suppose that I1 = {1}, I2 = {2, 3} and I3 = {4, 5, 6}. Let xj be the power gen-
eration of units j (j = 1, · · · , 6) and suppose that the electricity price p can be expressed
as by

p = 378.4− 2
6∑
j=1

xj .

The cost of a generating unit j is illustrated as:

cj(xj) := max{ ◦cj(xj),
•
cj(xj)},

with
◦
cj(xj) :=

◦
αj
2
x2j +

◦
βjxj +

◦
γj ,

and

•
cj(xj) :=

•
αjxj +

•
βj
•
βj + 1

•
γj

−1
•
βj (xj)

(
•
βj+1)

•
βj ,
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where the parameters values are given in
◦
αj ,

◦
βj ,

◦
γj ,

•
αj ,

•
βj and

•
γj are given in Table 1.

Suppose for the profit of the company i is given by

fi(x) := p
∑
j∈Ii

xj −
∑
j∈Ii

cj(xj) =
(

378.4− 2

6∑
l=1

xl

)∑
j∈Ii

xj −
∑
j∈Ii

cj(xj),

where x = (x1, · · · , x6)T subject to the constraint x ∈ C := {x ∈ R6 : xmin
j ≤ xj ≤ xmax

j },
with xmin

j and xmax
j give in Table 2.

TABLE 1. The parameters values using in above equations

j
◦
αj

◦
βj

◦
γj

•
αj

•
βj

•
γj

1 0.0400 2.00 0.00 2.0000 1.0000 25.0000
2 0.0350 1.75 0.00 1.7500 1.0000 28.5714
3 0.1250 1.00 0.00 1.0000 1.0000 8.0000
4 0.0116 3.25 0.00 3.2500 1.0000 86.2069
5 0.0500 3.00 0.00 3.0000 1.0000 20.0000
6 0.0500 3.00 0.00 3.0000 1.0000 20.0000

TABLE 2. The parameters values used in this example
j 1 2 3 4 5 6
xminj 0 0 0 0 0 0
xmaxj 80 80 50 55 30 40

Next, we define the equilibrium function f by

f(x, y) :=

3∑
i=1

(
φi(x, x)− φi(x, y)

)
,

where

φi(x, y) :=

[
378.4− 2

(∑
j 6∈Ii

xj +
∑
j∈Ii

yj

)]∑
j∈Ii

yj −
∑
j∈Ii

cj(yj).

The Nash-Cournot equilibrium models of electricity markets can be reformulated as an
equilibrium problem:

find x∗ ∈ C such that f(x∗, y) ≥ 0, ∀y ∈ C.
By Lemma 7 in [24], the equilibrium model of electricity markets can be reformulated
as the equilibrium problem of the form EP (f, C), where C := C1 × C2 × C3. Then, the
bifunction f can be expressed as

f(x, y) :=
〈
(A+B)x+By + a, y − x

〉
+ c(y)− c(x),

where qi = (qi1, · · · , qi6)T and

qij :=

{
1 if j ∈ Ii
0 otherwise, A := 2

3∑
i=1

(1− qjj )(q
i)T , B := 2

3∑
i=1

(qi)(qi)T ,

a := −378.4

3∑
i=1

qi, c(x) :=

6∑
i=1

cj(xj).

But A is not positive semidefinite, so f is not monotone on C. However, in this case,
equilibrium problemEP (f, C) is equivalent toEP (g, C) where the bifunction g is defined
by

g(x, y) :=
〈
A1x+B1y + a, y − x

〉
+ c(y)− c(x),
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where A1 := A+ 3
2B and B1 := 1

2B.

4.1.1. Algorithm nature by using different stopping criterion. During the first experiment, we
take x−1 = (10, 0, 10, 1, 10, 1)T , x0 = (48, 48, 30, 27, 18, 24)T , y0 = (48, 48, 30, 27, 18, 24)T ,
λ = 0.1 and y-axes represent for the value ofDn while the x-axes represent for the number
of iterations or elapsed time (in seconds). Figures 1 and 2 describes the numerical results
for the comparison regarding different stopping criterion which are follows:

D1 = ‖xn+1 − yn‖2 + ‖wn − yn‖2

D2 = ‖xn+1 − yn+1‖2 + ‖yn+1 − yn‖2

D3 = ‖xn+1 − wn‖2 + ‖yn − yn−1‖2.

TABLE 3. The numerical results for Figure 1-2

error αn x iter. time TOL

D1 0.164 (46.6578, 32.1726, 14.9533, 24.0724, 11.0785, 11.6547)T 457 19.4914 ε = 10−5

D2 0.164 (46.6638, 32.1766, 14.9563, 24.0841, 11.0735, 11.6686)T 478 22.1301 ε = 10−5

D3 0.164 (46.6639, 32.1796, 14.9776, 24.0496, 11.1676, 11.5678)T 471 23.0261 ε = 10−5

FIGURE 1. Algorithm 1
in term of number of it-
erations by taking dif-
ferent stopping crite-
rion

FIGURE 2. Algorithm
1 in term of elapsed
time by taking different
stopping criterion

4.1.2. Algorithms nature by using different value of αn. During this experiment, we take
x−1 = (10, 0, 10, 1, 10, 1)T , x0 = (48, 48, 30, 27, 18, 24)T , y0 = (48, 48, 30, 27, 18, 24)T and
y-axes represent for the value of Dn while the x-axes represent for the number of itera-
tions or elapsed time (in seconds). Figures 3 and 4 describes the numerical results for the
stopping criterion (error term Dn = ‖xn+1 − yn‖2 + ‖wn − yn‖2) of Algorithm 1 (shortly,
MTSPA) with respect to using different values of αn in term of no.of iterations and elapsed
time respectively. The results are shown in Figures 3 and 4 and Table 4.
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TABLE 4. The numerical results for Figure 3-4
λ αn x iter. time TOL

0.089 0.215 (46.6535, 32.2173, 14.9333, 24.1343, 10.9688, 11.7062)T 412 27.706785 ε = 10−5

0.089 0.174 (46.6538, 32.1726, 14.9563, 24.0741, 11.0705, 11.6645)T 453 29.946840 ε = 10−5

0.089 0.123 (46.6539, 32.1726, 14.9774, 24.0496, 11.1620, 11.5975)T 514 34.186107 ε = 10−5

0.089 0.082 (46.6540, 32.1615, 14.9882, 24.0572, 11.2093, 11.5427)T 569 38.273818 ε = 10−5

0.089 0.021 (46.6540, 32.1523, 14.9973, 24.0948, 11.2467, 11.4680)T 658 45.240680 ε = 10−5

FIGURE 3. Algorithm 1
in term of number of it-
erations respect to dif-
ferent values of αn

FIGURE 4. Algorithm 1 in
term of elapsed time respect
to different values of αn

4.1.3. Algorithm comparison with existing algorithms. Figures 5 and 6 illustrate the compari-
son of our proposed algorithm with the already existing algorithm that appears in papers
[16, 25]. For numerical results, we compare Algorithm 1 (shortly, MTSPA) with Extragra-
dient method [25] (shortly, EgA) and Two-Step Proximal Algorithm (shortly, TSPA)[16].
The results are shown in Figures 5 and 6 and Table 5.

TABLE 5. The numerical results for Figure 5-6
Algo. name λ αn x iter. time TOL

EgA 0.089 0.123 (46.6523, 32.1467, 15.0011, 25.1426, 10.8359, 10.8359)T 3349 233.335939 ε = 10−5

TSPA 0.089 0.123 (46.6541, 32.1516, 14.9981, 23.9903, 11.2888, 11.5298)T 724 48.766912 ε = 10−5

MTSPA 0.089 0.123 (46.6539, 32.1726, 14.9774, 24.0496, 11.1620, 11.5975)T 514 34.186107 ε = 10−5

5. CONCLUSION

The paper suggests the modification of the one existing algorithm with the help of
subgradient and inertial technique and theorem of weak convergence is established. Due
to these actions, we improve the efficiency of the algorithm in the term of both number
of iteration and elapsed time. In the end, we also discuss our results for one equilibrium
model and also observe that which extrapolation factor in inertial step is work better than
all others. These numerical results have also confirmed that the algorithm with inertial
effects seems to work better than without inertial effects.
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FIGURE 5. Algorithm 1
comparison with other
algorithms in term of
number of iterations

FIGURE 6. Algorithm 1
comparison with other al-
gorithms in term of elapsed
time
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