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ABSTRACT. In this paper, we introduce and study a new Stackelberg-population competition model which
captures the desired features of both population games and Stackelberg competition model within the same
framework. We obtain some characterization results for the Stackelberg-population equilibrium response set
and the Stackelberg-population equilibrium leader set by using the variational inequality technique and
Brouwer’s fixed point theorem. We also show an existence theorem of Nash equilibrium for Stackelberg-
population competition model under some mild conditions. Finally, we give an example to illustrate our main
results.

1. INTRODUCTION

Population games provide a unified framework for studying strategic interactions with
the following properties: (i) the number of agents is large; (ii) individual agents are
small; (iii) agents interact anonymously; (iv) the number of roles is finite; (v) payoffs
are continuous. As pointed out by Sandholm [28]: “Applications of population games
range from economics (externalities, macroeconomic spillovers, centralized markets) to
biology (animal conflict, genetic natural selection), transportation science (highway net-
work congestion, mode choice), and computer science (selfish routing of Internet traf-
fic)”. We note that various theoretical results, numerical algorithms and applications
have been studied extensively for population games in the literature (see, for example,
[2, 6, 8, 15, 17, 25, 27, 28, 29, 30] and the references therein).

Following Sandholm [28], we recall some definitions concerned with the population
games. Let P = {1, · · · , P} be a society, where P ≥ 1 is the number of populations. The
set of strategies for population p ∈ P is denoted by Sp = {1, 2, · · · , np}, where np is the
number of strategies in Sp. The total number of pure strategies in society P is n =

∑
p∈P

np.

During the game play, for each p ∈ P , the set of population states is denoted by

Xp =

{
xp = (xp1, x

p
2, · · · , x

p
np) ∈ Rn

p

+ :
∑
i∈Sp

xpi = 1

}
,

where the nonnegative scalar xpi ∈ [0, 1] represents the share of members in population p
choosing strategy i ∈ Sp. In order to describe behavior in all populations at once, the set
of social states is X =

∏
p∈P

Xp = {x = (x1, x2, · · · , xP ) ∈ Rn+ : xp ∈ Xp}.

Now we take into account the payoff function of the population games. For each pop-
ulation p and each strategy i ∈ Sp, a continuous map F pi : X → R is a payoff function
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for strategy i ∈ Sp, and the the payoff functions for all strategies in Sp is denoted by
F p = (F p1 , F

p
2 , · · · , F

p
np) : X → Rnp

. Then a population game can be identified with its
payoff function: F = (F 1, F 2, · · · , FP ) : X → Rn.

A social state x ∈ X is said to be a Nash equilibrium of the population game with
payoff function F if in each population, every strategy in use earns the maximal payoff:

NE(F ) = {x ∈ X : xpi > 0⇒ F pi (x) ≥ F pj (x), ∀i, j ∈ Sp, ∀p ∈ P}.

On the other hand, it is well known that Stackelberg equilibrium problems play an
important role in the study of economics, finance, risk management, design of mechanical
structures, migration problems, transportation, internet advertising, resources allocation,
minimax mathematical programming and decision science (see, for example, [1, 3, 7, 12,
13, 14, 18, 19, 22, 24] and the references therein). However, in some practical world, leaders
and followers may appear in the form of populations. Thus, one natural question is: can
we extend the population game to the Stackelberg-population competition model? The
main purpose of this paper is to make an attempt in this new direction.

Following the work of [22, 28], we are now to propose a Stackelberg-population com-
petition model as follows. Consider a hierarchical societyH, where there is a single popu-
lation in the leader level, called the leader population, and P populations in the follower
level, called the follower populations P . The set of strategy for the leader population is
denoted as S0 = {1, 2, · · · ,m} and the set of population state for the leader population is
defined as

X =

{
x = (x1, x2, · · · , xm) ∈ Rm+ :

∑
i∈S0

xi = 1

}
,

where xi is the proportion of agents who choose strategy i ∈ S0.
Then concerned the follower populations P = {1, 2, · · · , P}, the set of strategies for

population p ∈ P is denoted by Sp = {1, 2, · · · , np}, where np is the number of strategies
in Sp, and n =

∑
p∈P

np is the total number of strategies in the follower populations P . The

set of population states for population p is defined by

Y p =

{
yp = (yp1 , y

p
2 , · · · , y

p
np) ∈ Rn

p

+ :
∑
i∈Sp

ypi = 1

}
,

where the scalar ypi represents the share of members in population p choosing strategy
i ∈ Sp. Moreover, the set of social states in the follower level is denoted by Y =

∏
p∈P

Y p =

{y = (y1, y2, · · · , yP ) ∈ Rn+ : yp ∈ Y p}. It is easy to see that both X and Y are bounded,
closed and convex.

If we take the set of strategies as fixed, we can identify a game with payoff functions of
leader and follower populations. Let Fi : X × Y → R be the payoff function to strategy
i ∈ S0 and F = (F1, F2, · · · , Fm) : X×Y → Rm be the leader population’s payoff function
for all strategies in S0.

Let Gpi : X × Y → R be the payoff function for any strategy i ∈ Sp and any population
p in the follower populations P . Then the payoff functions for all strategies in Sp can be
defined asGp = (Gp1, G

p
2, · · · , G

p
np) : X×Y → Rnp

and the payoff function for the follower
populations P can be denoted as G = (G1, G2, · · · , GP ) : X × Y → Rn.

Concerning the Stackelberg-population competition model, the leader population moves
first and followed by the follower populations. Thus, the first step is to determine the
Stackelberg-population equilibrium response set as

RSPE(x) =
{
y ∈ Y : ypi > 0⇒ Gpi (x, y) ≥ Gpj (x, y), ∀ p ∈ P, ∀ i, j ∈ Sp

}
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for each fixed x ∈ X . Now assume that RSPE(x) 6= ∅ for each x ∈ X , the concluding step
(for the leader population) is to determine the Stackelberg-population equilibrium leader
set as

SSPE =
{
x ∈ X : xi > 0⇒ Fi(x, r(x)) ≥ Fj(x, r(x)), ∀ i, j ∈ S0

}
,

where r(x) is a selection of the set-valued mapping RSPE(x).
Clearly, if the leader population and the follower populations are in the same level,

then the Stackelberg-population competition model reduces to the classical population
game. We would like to mention that the Stackelberg-population competition model cap-
tures the desired features of both population games and Stackelberg competition model
within the same framework. Thus, it is important and interesting to study the Stackelberg-
population competition model under some mild conditions.

The rest of this paper is organized as follows. The next section presents some basic
concepts and necessary lemmas. In Section 3, by employing the variational inequality
technique and Brouwer’s fixed point theorem, some characterization results are given for
the Stackelberg-population equilibrium response set and the Stackelberg-population equi-
librium leader set. Moreover, an existence theorem of Nash equilibrium for Stackelberg-
population competition model is obtained under some mild conditions. Finally, we sum-
marize this paper in Section 4.

2. PRELIMINARIES

In this section, we recall some basic known notions and lemmas that are essential for
our further results.

Definition 2.1. Let K ⊂ Rn be a nonempty set. A function f : K → Rn is said to be
pseudomonotone if for any x, y ∈ K,

〈f(x), y − x〉 ≥ 0⇒ 〈f(y), y − x〉 ≥ 0,

where 〈·, ·〉 denotes the inner product in Rn.

Definition 2.2. Let X and Y be two metric spaces. A set-valued mapping F : X →
2Y is said to be lower semicontinuous (l.s.c.) at x0 ∈ X if, for any y ∈ F (x0) and any
neighborhood V (y) of y, there exists a neighborhood U(x0) of x0 such that F (x)

⋂
V (y) 6=

∅ for every x ∈ U(x0).

We say that F is l.s.c. on X if it is l.s.c. at each point x ∈ X .

Lemma 2.1. [4] A set valued mapping F : X → 2Y is l.s.c. at x0 ∈ X if and only if for any
sequence {xn} ⊂ X with xn → x0 and for any y ∈ F (x0), there exists {yn} ⊂ F (xn) such that
yn → y.

Definition 2.3. Let X and Y be two metric spaces. A single-valued mapping f : X → Y
is said to be a selection of a set-valued mapping F : X → 2Y if f(x) ∈ F (x) for every
x ∈ X .

Lemma 2.2. [20] Let F be an l.s.c. set-valued mapping with closed convex values from a compact
metric space X to a Banach space Y . Then F has a continuous selection.

Definition 2.4. Let K ⊂ Rn be a nonempty set. The metric projection PK : Rn → K of
x ∈ Rn to K is defined by

PK(x) = {y ∈ K : ‖y − x‖ = inf
z∈K
‖x− z‖}, ∀x ∈ K.

It is well known that PK(x) 6= ∅ when K is closed. Furthermore, if K is closed and
convex, then we have the following characterization.
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Lemma 2.3. [21] Assume that K ⊂ Rn is a closed, convex and nonempty subset. Then

x = PK(y)⇔ 〈y − x, x− z〉 ≥ 0, ∀z ∈ K.
Moreover, the mapping PK is non-expansive, i.e.

‖PK(x)− PK(y)‖ ≤ ‖x− y‖, ∀x, y ∈ Rn.

3. MAIN RESULTS

In this section, we first show characterization results for the Stackelberg-population
equilibrium response set and Stackelberg-population equilibrium leader set.

For any given x ∈ X , to determine the elements ofRSPE(x), we define the Stackelberg-
population variational response set as follows:

RSPV (x) = {ȳ ∈ Y : 〈G(x, ȳ), y − ȳ〉 ≤ 0,∀y ∈ Y } .

Theorem 3.1. For every fixed x ∈ X , one has RSPE(x) = RSPV (x).

Proof. Suppose that ȳ ∈ RSPE(x). Then, for each p ∈ P and i ∈ Sp,

ȳpi > 0⇒ Gpi (x, ȳ) ≥ Gpj (x, ȳ), ∀j ∈ Sp.

This shows that
ȳpiG

p
i (x, ȳ) ≥ ȳpiG

p
j (x, ȳ), ∀j ∈ Sp.

Summing with respect to i ∈ Sp on both side of the above inequality and noting that∑
i∈Sp

ȳpi = 1, we have

〈Gp(x, ȳ), ȳp〉 ≥ Gpj (x, ȳ), ∀j ∈ Sp.
For any yp = (yp1 , y

p
2 , · · · , y

p
np) ∈ Y p, multiplying both sides of above inequality by ypj ,

summing with respect to j ∈ Sp and noting that
∑
j∈Sp

ypj = 1, one has

〈Gp(x, ȳ), ȳp〉 ≥ 〈Gp(x, ȳ), yp〉, ∀p ∈ P.
Thus, for each p ∈ P and yp ∈ Y p, we know that 〈Gp(x, ȳ), yp − ȳp〉 ≤ 0 is true and so
ȳ = (ȳ1, ȳ2, · · · , ȳP ) ∈ RSPV (x).

Conversely, assume that ȳ ∈ RSPV (x). Then

〈G(x, ȳ), y − ȳ〉 ≤ 0, ∀y ∈ Y.
For any p ∈ P and yp ∈ Y p, take y = (yp; ȳ−p) ∈ Y , where −p = P\{p}. Then

〈Gp(x, ȳ), ȳp〉 ≥ 〈Gp(x, ȳ), yp〉, ∀yp ∈ Y p, ∀p ∈ P.
Since ȳp ∈ Y p, without loss of generality, assume that ȳpi > 0 for a certain i ∈ Sp. For any
j ∈ Sp, set

ŷp = (ȳp1 , ȳ
p
2 , · · · , ȳ

p
i−1, 0, ȳ

p
i+1, · · · , ȳ

p
j−1, ȳ

p
i + ȳpj , ȳ

p
j+1, · · · , ȳ

p
np).

Then ŷp ∈ Y p. Replacing yp by ŷp in the above inequality, we have

〈Gp(x, ȳ), ȳp〉 ≥ 〈Gp(x, ȳ), ŷp〉.
This shows that

Gpi (x, ȳ)ȳpi +Gpj (x, ȳ)ȳpj ≥ G
p
j (x, ȳ)(ȳpi + ȳpj ), ∀j ∈ Sp

and so
(Gpi (x, ȳ)−Gpj (x, ȳ))ȳpi ≥ 0, ∀j ∈ Sp.

Since ȳpi > 0, it clearly implies that

Gpi (x, ȳ) ≥ Gpj (x, ȳ), ∀j ∈ Sp.
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That is,
ȳpi > 0⇒ Gpi (x, ȳ) ≥ Gpj (x, ȳ), ∀j ∈ Sp.

Due to the arbitrariness of p ∈ P and i ∈ Sp, we have ȳ ∈ RSPE(x). This completes the
proof. �

Assume that RSPV (x) 6= ∅ for every x ∈ X and there is a continuous selection r :
X → Y of the set-valued mapping RSPV (x). Then the Stackelberg-population variational
leader set can be defined as

SSPV = {x̄ ∈ X : 〈F (x̄, r(x̄)), x− x̄〉 ≤ 0,∀x ∈ X}.

Similar to the proof of Theorem 3.1, we have the following result for the Stackelberg-
population variational leader set.

Theorem 3.2. Assume that RSPV (x) is nonempty and there exists a continuous selection r(x)
of RSPV (x) for every x ∈ X . Then SSPE = SSPV .

Since the equivalence of variational inequalities and projection mappings under some
assumption, it is more easier to compute the Stackelberg-population variational response
set RSPV (x) than the Stackelberg-population equilibrium response set RSPE(x). We can
locate the elements of RSPE(x) among the points in RSPV (x) which can be characterized
by fixed points of the metric projection mapping into the social states Y .

Theorem 3.3. Let G(x, y) be continuous. Then RSPE(x) 6= ∅ for every x ∈ X .

Proof. For any fixed x ∈ X and α > 0, define a mapping Axα : Y → Y by

Axα(y) = PY [y + αG(x, y)] , ∀y ∈ Y.

First we show that ȳ ∈ RSPV (x) if and only if Axα(ȳ) = ȳ. In fact, ȳ ∈ RSPV (x) if and
only if

〈ȳ + αG(x, ȳ)− ȳ, ȳ − y〉 ≥ 0, ∀y ∈ Y
for all/some α > 0. Thus, according to Lemma 2.3, it is equivalent to

ȳ = PY [ȳ + αG(x, ȳ)] .

Thus, we have

(3.1) RSPV (x) = {ȳ ∈ Y : PY [ȳ + αG(x, ȳ)] = ȳ} = {ȳ ∈ Y : Axα(ȳ) = ȳ} .

Next we prove that RSPE(x) 6= ∅. In fact, since PY is non-expensive and G(·, y) is
continuous, we know thatAxα is a continuous mapping. Clearly, Y is convex and compact.
By Brouwer’s fixed point theorem, the mapping Axα has a fixed point y∗ ∈ Y and so
y∗ ∈ RSPV (x). According to (3.1) and Theorem 3.1, we can see that y∗ ∈ RSPE(x). �

Now we turn to characterize the Stackelberg-population equilibrium leader set SSPE .
To this end, we need to introduce the Stackelberg-population Minty variational response
set as follows:

RSPMV (x) = {ȳ ∈ Y : 〈G(x, y), y − ȳ〉 ≤ 0,∀y ∈ Y } .

Theorem 3.4. Let −G(x, y) be continuous and pseudomonotone with respect to the second vari-
able. Then RSPV (x) = RSPMV (x).

Proof. Let ȳ ∈ RSPV (x). Then the pseudomonotonicity of −G(·, y) shows that

〈G(x, ȳ), y − ȳ〉 ≤ 0⇒ 〈G(x, y), y − ȳ〉 ≤ 0, ∀y ∈ Y

and so ȳ ∈ RSPMV (x).
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Conversely, assume that ȳ ∈ RSPMV (x). Then the convexity of Y implies that y =
ȳ + t(z − ȳ) ∈ Y for all z ∈ Y and t ∈ (0, 1). From the fact that ȳ ∈ RSPMV (x), we have

〈G(x, ȳ + t(z − ȳ)), t(z − ȳ)〉 ≤ 0

and so
〈G(x, ȳ + t(z − ȳ)), z − ȳ〉 ≤ 0.

Since G(·, y) is continuous, taking t→ 0, one has

〈G(x, ȳ), z − ȳ〉 ≤ 0, ∀z ∈ Y.

This implies that ȳ ∈ RSPV (x). Therefore, RSPV (x) = RSPMV (x). �

Theorem 3.5. Let −G(x, y) be continuous and pseudomonotone with respect to y. Then the
set-valued mapping RSPV (x) has a continuous selection r(x).

Proof. For any given x ∈ X , Theorem 3.3 shows that RSPV (x) 6= ∅. By the compactness of
X and Lemma 2.2, we only need to show that RSPV is an l.s.c. set-valued mapping with
closed and convex values. Since G is continuous, we can see that RSPV (x) is closed.

Now we check that RSPV (x) is convex. Consider the Stackelberg-population Minty
variational response set RSPMV (x). Letting u, v ∈ RSPMV (x), one has

〈G(x, y), y − u〉 ≤ 0, 〈G(x, y), y − v〉 ≤ 0.

For any t ∈ (0, 1), it follows that

〈G(x, y), y − (tu+ (1− t)v)〉 ≤ 0

and so tu+ (1− t)v ∈ RSPMV (x). This means that RSPMV (x) is convex. By Theorem 3.4,
we know that RSPV (x) is also convex.

Next we show that RSPV is l.s.c.. In fact, let {xn} ⊂ X be a sequence that converges to
x0 ∈ X and ȳ ∈ RSPV (x0). Then it is easy to have

(3.2) 〈G(x0, ȳ), y − ȳ〉 ≤ 0, ∀y ∈ Y.

Note thatRSPV (x0) is a closed set in Y . For the fact that ȳ ∈ RSPV (x0), there is a sequence
{yn} ⊂ RSPV (x0) such that {yn} converges to ȳ. By the continuity of G(x, y) and the
compactness of Y , if follows from (3.2) that there exists a positive integer N such that, for
any n > N ,

〈G(xn, yn), y − yn〉 ≤ 0, ∀y ∈ Y.
This shows that {yn} ⊂ RSPV (xn). Thus, by Lemma 2.1, we know that RSPV (x) is l.s.c.
and so Lemma 2.2 implies that RSPV (x) has a continuous selection r(x). �

Theorem 3.6. Let F (x, y) andG(x, y) be continuous functions. Moreover, assume that−G(x, y)
is pseudomonotone with respect to y ∈ Y . Then SSPE 6= ∅.

Proof. By Theorem 3.5, we know that the set-valued mapping RSPE(x) has a continuous
selection r(x). Thus, for any given β > 0, we can introduce the mapping Bβ : X → X by
setting

Bβ(x) = PX [x+ βF (x, r(x))] , ∀x ∈ X.
Since F (x, y) and r(x) are continuous and PX is non-expensive, we know that the map-
pingBβ is continuous. By Brouwer’s fixed point theorem,Bβ(x) has a fixed point x∗ ∈ X .
It is easy see that x∗ ∈ SSPV and so Theorem 3.2 implies that x∗ ∈ SSPE . Thus, SSPE 6=
∅. �

Theorem 3.7. Under the assumptions of Theorem 3.6, the Stackelberg-population competition
model has a Nash equilibrium.
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Proof. Clearly, Theorem 3.6 shows that there is x∗ ∈ X such that x∗ ∈ SSPE . Let y∗ =
r(x∗). Then it is easy to see that (x∗, y∗) is a Nash equilibrium of the Stackelberg-population
competition model. �

At the end of this section, we give a realistic example to comprehend how the Stackelberg-
population competition model works in economics. In order to describe an industry struc-
ture, Cournot competition model is a valid economic model in which firms compete on
the quantities of output they will produce at the same time. Sandholm turn the model
to the population case (see Example 3.1.3 in [28]), following from this we can also use
our model to describe the production competition in a two-level society. There is a leader
population of firms that choose production quantities from the set S0 = {1, · · · ,m} and
a follower population of firms choose production quantities from S1 = {1, · · · , n}. The
firms’ aggregate production is denoted as

a(x, y) =
∑
i∈S0

ixi +
∑
j∈S1

jyj .

The inverse demand function of aggregate production p : R+ → R+ is decreasing. What’s
more, let c0 : S0 → R and c1 : S1 → R be the leader and follower firms’ production cost
functions respectively. Then the payoff to a firm of leader population producing quantity
i ∈ S0 at product state X × Y is

Fi(x, y) = ip(a(x, y))− c0(i),

and the payoff to a follower firm producing quantity j ∈ S1 is

Gj(x, y) = jp(a(x, y))− c1(j).

Assume that the inverse demand function p and two cost functions c0 and c1 are con-
tinuous. Now we check that G(x, y) is monotone with respect to y. In fact, for any given
y, z ∈ Y , one has

〈G(x, y)−G(x, z), y − z〉 = [p(a(x, y))− p(a(x, z))]
∑
j∈S1

j(yj − zj).

We consider two cases. In the first case, assume that∑
j∈S1

j(yj − zj) ≥ 0.

Then
a(x, y)− a(x, z) =

∑
j∈S1

jyj −
∑
j∈S1

jzj ≥ 0.

Notice that the inverse demand function p is decreasing. We know that

p(a(x, y))− p(a(x, z)) ≤ 0

and so
〈G(x, y)−G(x, z), y − z〉 ≤ 0.

The same result we will get in the other case
∑
j∈S1

j(yj − zj) < 0. Therefore, −G(x, y) is

monotone with respect to y. By Theorem 3.7, we can obtain the existence of the Nash
equilibrium for the Stackelberg-population competition model. In other words, the firms
in both leader population and follower population have the optimal production.
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4. CONCLUSIONS

This paper is devoted to investigate Nash equilibrium for a new Stackelberg-population
competition model by employing the variational inequality technique and Brouwer’s
fixed point theorem. In order to describe optimal behavior of the leader and follower pop-
ulations, the Stackelberg-population equilibrium response set and Stackelberg-population
equilibrium leader set are introduced. The main contributions of this paper are as fol-
lows: (i) the traditional population game is generalized to Stackelberg-population com-
petition model which captures the desired features of both population games and Stack-
elberg competition model within the same framework; (ii) some characterization results
are given for the Stackelberg-population equilibrium response set and the Stackelberg-
population equilibrium leader set by using the variational inequality technique and the
Brouwer fixed point theorem; (iii) An existence theorem of Nash equilibria for Stackelberg-
population competition model is proved under some mild conditions.

We would like to mention that the variational inequality technique and the fixed point
theorem play important roles for obtaining our main results. Thus, it is would be in-
teresting to propose some algorithms for computing Nash equilibrium of Stackelberg-
population competition model by applying some known algorithms for solving varia-
tional inequalities and fixed point problems [9, 10, 11]. Moreover, turning our eyes to
the social states and the payoff functions, it would be important to study Stackelberg-
population quasi-equilibrium problems, nonsmooth Stackelberg-population equilibrium
problems and stochastic Stackelberg-population equilibrium problems.
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tion of China (11471230, 11671282).
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