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Uniformly supported sets and fixed points properties

ANDREI ALEXANDRU and GABRIEL CIOBANU

ABSTRACT. The theory of finitely supported algebraic structures is a reformulation of Zermelo-Fraenkel set
theory in which every set-based construction is finitely supported according to a canonical action of a group of
permutations of some basic elements named atoms. In this paper we study the properties of finitely supported
sets that contain infinite uniformly supported subsets, as well as the properties of finitely supported sets that do
not contain infinite uniformly supported subsets. Particularly, we focus on fixed points properties.

1. INTRODUCTION

Finitely supported structures are related to the recent development of the Fraenkel-
Mostowski (FM) axiomatic set theory that represents an axiomatization of the Fraenkel
Basic Model of the Zermelo-Fraenkel set theory with atoms (ZFA). Its axioms are the ZFA
axioms together with a new axiom of finite support claiming that any set-theoretical con-
struction has to be finitely supported modulo a canonical hierarchically defined permuta-
tion action. Therefore, FM sets are actually hereditary finitely supported ZFA sets. Nom-
inal sets [6] represent a Zermelo-Fraenkel set theory (ZF) alternative to the non-standard
FM set theory since a nominal set is defined as a usual ZF set endowed with a group action
of the group of (finitary) permutations over a certain fixed countable ZF set A (formed by
elements whose internal structure is ignored, and called the set of atoms by analogy with
the FM approach) satisfying a finite support requirement. This finite support requirement
states that for any element in a nominal set there should exist a finite set of atoms such
that any permutation fixing pointwise this set of atoms also leaves the element invariant
under the related group action. Nominal sets are used to study the binding, scope, fresh-
ness and renaming in programming languages and related formal systems. Furthermore,
this framework admits a notion of structural recursion for defining syntax-manipulating
functions and a notion of proof by structural induction. Certain generalizations of nom-
inal sets are involved in the study of automata, programming languages or Turing ma-
chines over infinite alphabets; for this, a relaxed notion of finiteness called ‘orbit finite-
ness’ was defined; it means ‘having a finite number of orbits (equivalence classes) under
a certain group action’ [5]. Actually, the theory of finitely supported sets (that are finitely
supported elements in the powerset of a nominal set) allows the computational study of
structures which are possibly infinite, but contain enough symmetries such that they can
be clearly/concisely represented and manipulated.

Finitely supported mathematics (shortly, FSM) is focused on the foundations of struc-
tures with finite supports (rather than on applications in computer science). In order to
describe FSM as a theory of finitely supported algebraic structures, we refer to the theory
of nominal sets (with the mention that the requirement regarding the countability of A is
irrelevant). We call these sets invariant sets, using the motivation of Tarski regarding log-
icality (more precisely, a logical notion is defined by Tarski as one that is invariant under
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the permutations of the universe of discourse). FSM is actually represented by finitely
supported subsets of invariant sets together with finitely supported internal algebraic op-
erations or with finitely supported relations (that should be finitely supported as subsets
in the Cartesian product of two invariant sets). Formally, FSM contains both the family
of ‘non-atomic’ (i.e., ordinary) ZF sets which are proved to be trivial FSM sets (i.e., their
elements are left unchanged under the effect of the canonical permutation action) and the
family of ‘atomic’ sets (i.e., sets that contain at least an element of A somewhere in their
structure) with finite supports (hierarchically constructed from the empty set and the fixed
ZF setA of atoms). Our purpose is to analyze whether a classical ZF result (obtained in the
framework of non-atomic sets) can be adequately reformulated by replacing ‘non-atomic
ZF element/set/structure’ with ‘atomic and finitely supported element/set/structure’ in
order to be valid also for atomic sets with finite supports. The translation of the results
from a non-atomic framework into an atomic framework (such as ZFA) is not an easy task.
Results from ZF may lose their validity when reformulating them in ZFA. For example,
it is known that multiple choice principle and Kurepa’s maximal antichain principle are
both equivalent to the axiom of choice in ZF. However, multiple choice principle is valid
in the Fraenkel Second Model, while the axiom of choice fails in this model. Furthermore,
Kurepa’s maximal antichain principle is valid in the Fraenkel Basic Model, while the ax-
iom of choice fails in this model. This means that the following two statements that are
valid in ZF, namely ‘Kurepa’s principle implies axiom of choice’ and ‘Multiple choice principle
implies axiom of choice’ fail in ZFA. Similarly, there are examples of ZF results that cannot
be reformulated into FSM; we particularly mention choice principles (that are proved to
be independent from ZF axioms, but inconsistent in FSM) and Stone duality.

A proof of an FSM result should be internally consistent in FSM and not retrieved
from ZF, that means it should involve only finitely supported constructions (even in the
intermediate steps). The meta-theoretical techniques for the translation of a result from
non-atomic structures to atomic structures are based on a refinement of the finite support
principle from [6] called ‘S-finite supports principle’ claiming that for any finite set S of
atoms, anything that is definable in higher-order logic from S-supported structures by using S-
supported constructions is also S-supported. The formal involvement of the S-finite support
principles actually implies a hierarchical constructive method for defining the support
of a structure by employing, step-by-step, the supports of the substructures of a related
structure. This method was used, for example, to study in a discrete manner the (atomic,
finitely supported) fuzzy sets over possibly infinite alphabets [2].

Uniformly supported sets are particularly of interest because they involve bounded-
ness properties of supports, meaning that the support of each element in an uniformly
supported set is contained in the same finite set of atoms. In this way, all the individuals in
an infinite uniformly supported family can be characterized by involving only finitely
many characteristics. In this paper we characterize finitely supported sets containing
infinite uniformly supported subsets. FSM sets that do not contain infinite uniformly
supported subsets are also of interest because they are related to surprising fixed point
properties. For particular finitely supported (injective, surjective and order preserving)
mappings on the finite powersets of A, we have specific properties that allow to prove
the existence of infinitely many fixed points. This paper represents the revised extended
version of the conference paper (extended abstract) [3] that continues the approach in [4].

2. PRELIMINARY RESULTS

A finite set is referred to a set of the form {x1, . . . , xn}. Consider a fixed ZF infinite
(not finite) set A of entities whose internal structure is ignored. The elements of A are
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called ’atoms’. A transposition is a function (a b) : A → A that interchanges only a and
b. A permutation of A in FSM is a bijection of A generated by composing finitely many
transpositions. We denote by SA the group of all permutations of A. According to Prop.
2.6 in [1], an arbitrary bijection on A is finitely supported if and only if it is a permutation.

Definition 2.1. (1) LetX be a ZF set. An SA-action onX is a mapping · : SA×X → X
having the properties Id · x = x and π · (π′ · x) = (π ◦ π′) · x for all π, π′ ∈ SA and
x ∈ X . An SA-set is a pair (X, ·), where X is a ZF set, and · is an SA-action on X .

(2) Let (X, ·) be an SA-set. We say that S ⊂ A supports xwhenever for each π ∈ Fix(S)
we have π · x = x, where Fix(S) = {π |π(a) = a,∀a ∈ S}. The least finite set
(w.r.t. the inclusion relation) supporting x (which exists according to [6]) is called
the support of x and is denoted by supp(x). An empty supported element is called
equivariant.

(3) Let (X, ·) be an SA-set. We say that X is an invariant set if for each x ∈ X there
exists a finite set Sx ⊂ A which supports x.

Proposition 2.1. [1, 6] Let (X, ·) and (Y, �) be SA-sets.
(1) The set A of atoms is an invariant set with the SA-action · : SA × A → A defined by

π · a := π(a) for all π ∈ SA and a ∈ A. Furthermore, supp(a) = {a} for each a ∈ A.
(2) Let π ∈ SA. If x ∈ X is finitely supported, then π·x is finitely supported and supp(π·x) =
{π(u) |u ∈ supp(x)} := π(supp(x)).

(3) The Cartesian product X × Y is an SA-set with the SA-action ⊗ defined by π ⊗ (x, y) =
(π · x, π � y) for all π ∈ SA and all x ∈ X , y ∈ Y . If (X, ·) and (Y, �) are invariant sets,
then (X × Y,⊗) is also an invariant set.

(4) The powerset ℘(X) = {Z |Z ⊆ X} is also an SA-set with the SA-action ? defined by
π ? Z := {π · z | z ∈ Z} for all π ∈ SA, and all Z ⊆ X . For each invariant set
(X, ·), we denote by ℘fs(X) the set of elements in ℘(X) which are finitely supported
according to the action ? . (℘fs(X), ?|℘fs(X)) is an invariant set. The finite powerset of
X denoted by ℘fin(X) = {Y ⊆ X |Y finite} and the cofinite powerset of X denoted by
℘cofin(X) = {Y ⊆ X |X \ Y finite} are both SA-sets with the SA-action ?. If X is an
invariant set, then both ℘fin(X) and ℘cofin(X) are invariant sets.

(5) We have ℘fs(A) = ℘fin(A) ∪ ℘cofin(A). If X ∈ ℘fin(A), then supp(X) = X . If
X ∈ ℘cofin(A), then supp(X) = A \X .

(6) The disjoint union of X and Y defined by X + Y = {(0, x) |x ∈ X} ∪ {(1, y) | y ∈ Y }
is an SA-set with the SA-action ? defined by π ? z = (0, π · x) if z = (0, x) and π ? z =
(1, π � y) if z = (1, y). If (X, ·) and (Y, �) are invariant sets, then (X + Y, ?) is also an
invariant set.

(7) Any ordinary (non-atomic) ZF-setX is an invariant set with the single possible SA-action
· : SA ×X → X defined by π · x := x for all π ∈ SA and x ∈ X .

From Definition 2.1, a subset Y of an SA-set (X, ·) is finitely supported by a set S ⊆ A
if and only if it is supported as an element in the SA-set ℘(X), i.e. if and only if π ? Y = Y
for all π ∈ Fix(S), where ? is the canonical action on the powerset of X described as in
Proposition 2.1(4). For a fixed π, the relation π ? Y = Y is equivalent with π ? Y ⊆ Y (i.e.
with π · y ∈ Y for all y ∈ Y ). This is because any permutation of atoms has a finite order.

An FSM set Y is defined as a finitely supported subset Y of an invariant set X . Its FSM
powerset ℘fs(Y ) is formed by those finitely supported subsets of X that are contained
in Y , and it is a finitely supported subset of ℘(X) (supported by supp(Y )) according to
Proposition 2.1(2).

A subset Z of an FSM set is called uniformly supported if all the elements of Z are sup-
ported by the same set S (and so Z is itself supported by S). Due to Proposition 2.1(2),
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whenever Y is a finitely supported subset of an invariant set X , the uniform powerset
of Y denoted by ℘us(Y ) = {Z ⊆ Y |Z uniformly supported} is a subset of ℘fs(X) sup-
ported by supp(Y ). This is because, whenever Z ⊆ Y is uniformly supported by S and
π ∈ Fix(supp(Y )), we have π ? Z ⊆ π ? Y = Y and π ? Z is uniformly supported by
π(S). Similarly, ℘fin(Y ) and ℘cofin(Y ) are subsets of ℘fs(X) supported by supp(Y ). We
consider that ∅, being a finite subset of X , belongs to ℘us(Y ).

Definition 2.2. Let X and Y be invariant sets. Let Z be a finitely supported subset of
X and T a finitely supported subset of Y . A function f : Z → T is finitely supported if
f ∈ ℘fs(X × Y ). The set of all finitely supported functions from Z to T is denoted by TZfs.

Proposition 2.2. [1] Let (X, ·) and (Y, �) be two invariant sets.

(1) Y X (i.e. the set of all functions from X to Y ) is an SA-set with the SA-action ?̃ defined by
(π?̃f)(x) = π � (f(π−1 ·x)) for all π ∈ SA, f ∈ Y X and x ∈ X . A function f : X → Y
is finitely supported w.r.t. Def. 2.2 if and only if it is finitely supported with respect to ?̃.

(2) Let Z be a finitely supported subset of X and T a finitely supported subset of Y . A
function f : Z → T is supported by a finite set S ⊆ A if and only if for all x ∈ Z and all
π ∈ Fix(S) we have π · x ∈ Z, π � f(x) ∈ T and f(π · x) = π � f(x).

3. UNIFORM SUPPORTS AND FIXED POINTS

Lemma 3.1. Let X be a uniformly supported subset of an invariant set (Y, ·). Then X is finitely
supported and supp(X) = ∪{supp(x) |x ∈ X}.

Proof. Since X is uniformly supported, there exists a finite subset of atoms T such that T
supports every x ∈ X , i.e. supp(x) ⊆ T for all x ∈ X . Thus, ∪{supp(x) |x ∈ X} ⊆ T .
Clearly, supp(X) ⊆ ∪{supp(x) |x ∈ X}. Conversely, let a ∈ ∪{supp(x) |x ∈ X}. Thus,
there exists x0 ∈ X such that a ∈ supp(x0). Let b be an atom such that b /∈ supp(X) and
b /∈ T . Such an atom exists because A is infinite, while supp(X) and T are both finite.
We prove by contradiction that (b a) · x0 /∈ X . Indeed, suppose that (b a) · x0 = y ∈ X .
Since a ∈ supp(x0), by Proposition 2.1(2), we have b = (b a)(a) ∈ (b a)(supp(x0)) =
supp((b a) · x0) = supp(y). Since supp(y) ⊆ T , we get b ∈ T : a contradiction! Therefore,
(b a) ? X 6= X , where ? is the canonical SA-action on ℘(Y ). Since b /∈ supp(X), we prove
by contradiction that a ∈ supp(X). Indeed, suppose that a /∈ supp(X). We have that
(b a) ∈ Fix(supp(X)). Since supp(X) supports X , it follows that (b a) ? X = X which is a
contradiction. Thus, a ∈ supp(X) and the result follows. �

Lemma 3.2. Let X be a finitely supported subset of an invariant set (Y, ·) such that X does not
contain an infinite uniformly supported subset. Then the set ℘us(X) does not contain an infinite
uniformly supported subset.

Proof. Suppose by contradiction that the set ℘us(X) contains an infinite subsetF such that
all the elements of F are different and supported by the same finite set S. By convention,
without assuming that i 7→ Xi is finitely supported, we understand F as F = (Xi)i∈I
with the properties that Xi 6= Xj whenever i 6= j and supp(Xi) ⊆ S for all i ∈ I . Let us
fix an arbitrary j ∈ I . From Lemma 3.1, because Xj is an uniformly supported subset of
the invariant set Y , we have supp(Xj) = ∪

x∈Xj

supp(x). Therefore,Xj has the property that

supp(x) ⊆ S for all x ∈ Xj , and so ∪
i∈I
Xi is an uniformly supported subset of X (all its

elements being supported by S). Furthermore, ∪
i∈I
Xi is infinite since the family (Xi)i∈I is

infinite and Xi 6= Xj whenever i 6= j. This contradicts the hypothesis. �
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Lemma 3.3. Let X be a finitely supported subset of an invariant set (Y, ·) such that X does not
contain an infinite uniformly supported subset. Then the set ℘fin(X) does not contain an infinite
uniformly supported subset.

Proof. We always have that ℘fin(X) ⊆ ℘us(X) because any finite subset of X of form
{x1, . . . , xn} is uniformly supported by supp(x1) ∪ . . . ∪ supp(xn). Since ℘us(X) does not
contain an infinite uniformly supported subset, it follows that neither ℘fin(X) contains
an infinite uniformly supported subset. �

A finitely supported partially ordered set (X,v, ·) is a finitely supported subset X of an
invariant set (Y, ·), equipped with a partial order relation v that is finitely supported as a
subset of X ×X . If v is a lattice order, then (X,v, ·) is called finitely supported lattice.

Invariant (empty-supported) partially ordered sets and lattices were treated by the au-
thors in [4], where we focused on the construction of some invariant complete lattices such
as the lattice of finitely supported L-fuzzy sets or the lattice of finitely supported (fuzzy)
subgroups. Here we extend the framework by replacing ‘invariant (empty-supported)’
with the more general ‘finitely supported’, and by adding new fixed point properties for
mappings on FSM sets having specific properties related to uniformly supported subsets.
Studying FSM infinite (non-)uniformly supported sets is our main goal.

Theorem 3.1. Let (X,v, ·, 0) be a finitely supported partially ordered set, with a least element
0, containing no infinite uniformly supported subset. Each finitely supported order preserv-
ing function f : X → X possesses a least fixed point lfp(f) which has the properties that
supp(lfp(f)) ⊆ supp(f) ∪ supp(X) ∪ supp(v) and lfp(f) = fn(0) for some n ∈ N.

Proof. Since 0 v f(0) and f is order preserving, we have that (fn(0))n∈N is an ascending
chain. By definition, we have 0 v π · 0 and 0 v π−1 · 0 for each π ∈ Fix(supp(X)),
which means 0 = π · 0 when π additionally fixes supp(v) pointwise, and so supp(0) ⊆
supp(X) ∪ supp(v). By induction, we prove supp(fn(0)) ⊆ supp(f) ∪ supp(X) ∪ supp(v)
for all n ∈ N. Clearly, supp(f0(0)) = supp(0) ⊆ supp(f) ∪ supp(X) ∪ supp(v). Let us
suppose that supp(fk(0)) ⊆ supp(f) ∪ supp(X) ∪ supp(v) for some k ∈ N. We have to
prove that supp(fk+1(0)) ⊆ supp(f) ∪ supp(X) ∪ supp(v). So, we have to prove that each
permutation π which fixes supp(f) ∪ supp(X) ∪ supp(v) pointwise also fixes fk+1(0). Let
π ∈ Fix(supp(f) ∪ supp(X) ∪ supp(v)). From the inductive hypothesis, we have that
supp(fk(0)) ⊆ supp(f) ∪ supp(X) ∪ supp(v), and so π · fk(0) = fk(0). According to
Proposition 2.2, since π fixes supp(f) pointwise we have π · fk+1(0) = π · f(fk(0)) =
f(π · fk(0)) = f(fk(0)) = fk+1(0). Therefore, (fn(0))n∈N is uniformly supported, and
so it has to be finite according to theorem’s hypothesis. Since it is an ascending chain it
follows that there exists n0 ∈ N such that fn(0) = fn0(0) for all n ≥ n0. Thus, f(fn0(0)) =
fn0+1(0) = fn0(0), and so fn0(0) is a fixed point of f , and, furthermore, it is supported by
supp(f). If x is another fixed point of f , it follows from the monotony of f and from the
relation 0 v x that fn0(0) = t

n∈N
fn(0) v x, and so fn0(0) = lfp(f). �

From Theorem 3.1, Lemma 3.2 and Lemma 3.3, and using the fact that the inclusion
relation on the powerset of a finitely supported set X is supported by supp(X), we have:

Corollary 3.1. Let X be a finitely supported subset of an invariant set (Y, ·) having the property
that it does not contain an infinite uniformly supported subset. Then:

(1) Any finitely supported order preserving function f : ℘us(X)→ ℘us(X) has a least fixed
point supported by supp(f) ∪ supp(X).

(2) Any finitely supported order preserving function f : ℘fin(X) → ℘fin(X) has a least
fixed point supported by supp(f) ∪ supp(X).
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Theorem 3.2. Let (L,v, ·) be a finitely supported lattice having the property that every finitely
supported subset X ⊆ L has a least upper bound tX with respect to the order relation v. Then
each finitely supported order preserving function f : L → L possesses a least fixed point lfp(f)
and a greatest fixed point gfp(f) which are both supported by supp(f) ∪ supp(v) ∪ supp(L).
Proof. Firstly, we remark that every finitely supported subset ofL also has a greatest lower
bound w.r.t. v. Let U ∈ ℘fs(L). Let V = ∩{↓ x |x ∈ U}, where ↓ x = {y ∈ L | y v x}. We
claim that V is finitely supported by supp(U)∪ supp(v)∪ supp(L). Let π ∈ Fix(supp(U)∪
supp(v)∪supp(L)). Let v ∈ V , that is, v v x for all x ∈ U . We claim that π ·v ∈ V . Indeed,
let y ∈ U be an arbitrary element from U . Since π ? U = U , for our y ∈ U there exists
x ∈ U such that π · x = y. However, v v x, and because π fixes supp(v) pointwise we also
have π · v v π · x = y. Hence π · v ∈ V , and so π ? V ⊆ V . We prove by contradiction
that π ? V = V . Let us suppose that π ? V ( V . By induction, we get πn ? V ( V for all
n ≥ 1. However, π is a finite permutation, and so it has a finite order. We obtain V ( V , a
contradiction. Clearly, tV is the greatest lower bound of U .

Let Z = {z ∈ L | z v f(z)}. Firstly, we remark that Z is non-empty because the
least element of L belongs to Z. We claim that supp(f) ∪ supp(v) supports Z. Let π ∈
Fix(supp(f) ∪ supp(v)) and z ∈ Z be arbitrarily chosen. Then z v f(z) (or, equivalently
(z, f(z)) ∈v)), and because v is supported by supp(v), we also have π ⊗ (z, f(z)) ∈v,
that is π · z v π · f(z), where ⊗ represents the canonical action on Z × Z defined as in
Proposition 2.1. Since π ∈ Fix(supp(f)) and supp(f) supports f , according to Proposition
2.2, we have π · z v π · f(z) = f(π · z), and so π · z ∈ Z. Thus, π ?Z ⊆ Z, and so π ?Z = Z.
Therefore, supp(f) ∪ supp(v) supports Z, and so there exists the least upper bound of Z,
namely z0 = tZ. As in ZF, we get f(z0) = z0 and z0 is the greatest fixed point of f .

We prove that z0 is supported by supp(f) ∪ supp(v) ∪ supp(L). Let π ∈ Fix(supp(f) ∪
supp(v) ∪ supp(L)) and X ∈ ℘fs(L). According to Proposition 2.1(2), we have that π ? X
is finitely supported, and since π ? X ⊆ π ? L = L, there exists t(π ? X). Let x ∈ X . We
have x v tX , and so π · x v π · tX because π fixes supp(v) pointwise. Thus, we have
t(π ? X) v π · tX (1). We can apply (1) firstly for π and Z, and, secondly, for π−1 ∈
Fix(supp(f) ∪ supp(v) ∪ supp(L)) and π ? Z from which we obtain tZ v π−1 · t(π ? Z).
Since π fixes supp(v) pointwise, we get π·tZ = t(π?Z). Since supp(f)∪supp(v)∪supp(L)
supports Z, we have π ? Z = Z, and so π · z0 = z0. Similarly, f has a least fixed point
which is the greatest lower bound of the finitely supported set {z ∈ L | f(z) v z}. �

Corollary 3.2. Let X be a finitely supported subset of an invariant set (Y, ·). Any finitely sup-
ported order preserving (w.r.t. the inclusion relation) function f : ℘fs(X) → ℘fs(X) has a least
fixed point and a greatest fixed point supported by supp(f) ∪ supp(X).

Proof. Let F = (Xi)i∈I be a finitely supported family of finitely supported subsets of X .
We have to prove that ∪

i∈I
Xi ∈ ℘fs(X). We claim that supp(F) supports ∪

i∈I
Xi. Let us

consider π ∈ Fix(supp(F)). Let x ∈ ∪
i∈I
Xi. There exists j ∈ I such that x ∈ Xj . Since

π ∈ Fix(supp(F)), we have π ? Xj ∈ F , that there exists k ∈ I such that π ? Xj = Xk.
Therefore, π · x ∈ π ? Xj = Xk, and so π · x ∈ ∪

i∈I
Xi. We obtain π ? ∪

i∈I
Xi = ∪

i∈I
Xi. Since ⊆

is supported by supp(X), the result follows from Theorem 3.2. �

Related to Theorem 3.2, the existence of fixed points can be proved even when relaxing
the requirement “there exists a least upper bound for each finitely supported subset X ⊆
L”, but in this case we cannot prove the existence of least or greatest fixed points.

Theorem 3.3. Let (X,v, ·) be a finitely supported partially ordered set having the property that
every uniformly supported subset has a least upper bound. Then each finitely supported, order
preserving function f : X → X for which there is x0 ∈ X such that x0 v f(x0) has a fixed point.
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Proof. Let Z = {z ∈ X | z v f(z) and supp(z) ⊆ supp(x0)∪ supp(f)∪ supp(v)∪ supp(X)}.
We remark that Z is non-empty since x0 ∈ Z. By definition, Z is uniformly supported and
there is z0 = tZ. We claim z0 is supported by supp(x0)∪supp(f)∪supp(v)∪supp(X). Let
π ∈ Fix(supp(x0)∪ supp(f)∪ supp(v)∪ supp(X)) and Y ∈ ℘us(X). We have that π ? Y ∈
℘us(X), and so there exists t(π ? Y ). Let y ∈ Y . We have y v tY , and so π · y v π · tY
because π fixes supp(v) pointwise. Thus, we have t(π ? Y ) v π · tY (1). We can apply (1)
firstly for π and Z, and, secondly, for π−1 ∈ Fix(supp(f)∪ supp(x0)∪ supp(v)∪ supp(X))
and π ? Z ∈ ℘us(X) from which we obtain tZ v π−1 · t(π ? Z). Since π fixes supp(v)
pointwise, we finally get π · tZ = t(π ?Z). Since supp(x0)∪ supp(f)∪ supp(v)∪ supp(X)
supports Z, we have π ? Z = Z, and so π · z0 = z0. For each z ∈ Z we have z v z0, and so
z v f(z) v f(z0), from which z0 v f(z0), which means that z0 ∈ Z. However, because f
is order-preserving and supp(f(z)) ⊆ supp(f)∪ supp(z) ⊆ supp(f)∪ supp(x0)∪ supp(f)∪
supp(v) ∪ supp(X) for all z ∈ Z, we have f(z) ∈ Z for each z ∈ Z, and so, f(z0) v z0. �

Theorem 3.4. Let (X,v, ·) be a finitely supported partially ordered set containing no infinite
uniformly supported subset. Let f : X → X be a finitely supported function with the property
that x v f(x) for all x ∈ X . Then for each x ∈ X , there exists some m ∈ N such that fm(x) is a
fixed point of f .

Proof. Let us fix an arbitrary element x ∈ X . We consider the ascending sequence (xn)n∈N
which has the first term x0 = x and the general term xn+1 = f(xn) for all n ∈ N. We
prove by induction that supp(xn) ⊆ supp(f) ∪ supp(x) for all n ∈ N. Clearly, supp(x0) =
supp(x) ⊆ supp(f) ∪ supp(x). Assume that supp(xk) ⊆ supp(f) ∪ supp(x). Let π ∈
Fix(supp(f) ∪ supp(x)). Thus, π · xk = xk according to the inductive hypothesis. Ac-
cording to Proposition 2.2, because π fixes supp(f) pointwise and supp(f) supports f ,
we get π · xk+1 = π · f(xk) = f(π · xk) = f(xk) = xk+1. Since supp(xk+1) is the least
set supporting xk+1, we obtain supp(xk+1) ⊆ supp(f) ∪ supp(x). Thus, (xn)n∈N ⊆ X
is uniformly supported, and so (xn)n∈N must be finite. Since, by hypothesis we have
x0 v x1 v . . . v xn v . . ., there should exist m ∈ N such that xm = xm+1, i.e.
fm(x) = fm+1(x) = f(fm(x)), and so the result follows. �

Theorem 3.5. Let (X,v, ·) be a finitely supported partially ordered set with the property that
every uniformly supported subset has a least upper bound. If f : X → X is a finitely supported
function having the properties that f(tY ) = tf(Y ) for every uniformly supported subset Y of X
and there exist x0 ∈ X and k ∈ N∗ such that x0 v fk(x0), then f has a fixed point.

Proof. As in the proof of Theorem 3.4, the sequence (fn(x0))n∈N is uniformly supported
by supp(f) ∪ supp(x0). Thus, there exists t

n∈N
fn(x0) supported by supp(f) ∪ supp(x0) ∪

supp(v). Since x0 v fk(x0), we get t
n∈N

fn+1(x0) = t
n∈N

fn(x0), and so f( t
n∈N

fn(x0)) =

t
n∈N

f(fn(x0)) = t
n∈N

fn+1(x0) = t
n∈N

fn(x0), which means t
n∈N

fn(x0) is a fixed point. �

Lemma 3.4. Let (X1, ·), . . . , (Xn, ·) be invariant sets (equipped with possibly different SA-actions).
Then supp((x1, . . . , xn)) = supp(x1) ∪ . . . ∪ supp(xn) for all xi ∈ Xi, i ∈ {1, . . . , n}.

Proof. Let U = (x1, . . . , xn) and S = supp(x1) ∪ . . . ∪ supp(xn). Obviously, S supports U .
Indeed, let us consider π ∈ Fix(S). We have that π ∈ Fix(supp(xi)) for all i ∈ {1, . . . , n}.
Therefore, π · xi = xi for all i ∈ {1, . . . , n}, and so π ⊗ (x1, . . . , xn) = (π · x1, . . . , π ·
xn) = (x1, . . . , xn). Thus, supp(U) ⊆ S. It remains to prove that S ⊆ supp(U). Fix
π ∈ Fix(supp(U)). Since supp(U) supportsU , we have π⊗(x1, . . . , xn) = (x1, . . . , xn), and
so (π·x1, . . . , π·xn) = (x1, . . . , xn), from which we get π·xi = xi for all i ∈ {1, . . . , n}. Thus,
supp(U) supports xi for all i ∈ {1, . . . , n}, and so supp(xi) ⊆ supp(U) for all i ∈ {1, . . . , n}.
Therefore, S = supp(x1) ∪ . . . ∪ supp(xn) ⊆ supp(U). �
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Theorem 3.6. (1) Let X be an infinite, finitely supported subset of an invariant set Y . Then
the sets ℘fs(℘fin(X)) and ℘fs(℘fs(X)) contain infinite uniformly supported subsets.

(2) Let X and Y be two finitely supported subsets of an invariant set Z. If neither X nor
Y contain infinite uniformly supported subsets, then X × Y does not contain an infinite
uniformly supported subset.

(3) Let X and Y be two finitely supported subsets of an invariant set Z. If neither X nor
Y contain infinite uniformly supported subsets, then X + Y does not contain an infinite
uniformly supported subset.

Proof. 1. Obviously, ℘fin(X) is a finitely supported subset of the invariant set ℘fs(Y ),
supported by supp(X). This is because whenever Z ∈ ℘fin(X) and π ∈ Fix(supp(X)),
we have that π ? Z ∈ ℘fin(X). The family ℘fs(℘fin(X)) represents the family of those
subsets of ℘fin(X) which are finitely supported as subsets of the invariant set ℘fs(Y ).
As above, according to Proposition 2.1, we have that ℘fs(℘fin(X)) is a finitely supported
subset of the invariant set ℘fs(℘fs(Y )), supported by supp(℘fin(X)) ⊆ supp(X). Let Xi

be the set of all i-sized subsets from X , i.e. Xi = {Z ⊆ X | |Z| = i}. Since X is infinite,
it follows that each Xi, i ≥ 1 is non-empty. Obviously, we have that any i-sized subset
{x1, . . . , xi} of X is finitely supported (as a subset of Y ) by supp(x1) ∪ . . . ∪ supp(xi).
Therefore, Xi ⊆ ℘fin(X) and Xi ⊆ ℘fs(Y ) for all i ∈ N. Since · is a group action, the
image of an i-sized subset of X under an arbitrary permutation is an i-sized subset of Y .
However, any permutation of atoms that fixes supp(X) pointwise also leavesX invariant,
and so for any permutation π ∈ Fix(supp(X)) we have that π ? Z is an i-sized subset
of X whenever Z is an i-sized subset of X . Thus, each Xi is a subset of ℘fin(X) finitely
supported by supp(X), and so the family (Xi)i∈N is uniformly supported and infinite.

2. Suppose by contradiction that there is an infinite injective family ((xi, yi))i∈I ⊆ X×Y
and a finite S ⊆ A with the property that supp((xi, yi)) ⊆ S for all i ∈ I . According to
Lemma 3.4, we obtain supp(xi)∪supp(yi) ⊆ S for all i ∈ I . Thus, supp(xi) ⊆ S for all i ∈ I
and supp(yi) ⊆ S for all i ∈ I . Since the family ((xi, yi))i∈I is infinite and injective, then at
least one of the uniformly supported families (xi)i∈I and (yi)i∈I is infinite, a contradiction.

3. Suppose by contradiction thatX+Y contains an infinite uniformly supported subset.
Thus, there exists an infinite injective family (zi)i∈I ⊆ X × Y and a finite S ⊆ A such that
supp(zi) ⊆ S for all i ∈ I . According to the construction of the disjoint union of two SA-
sets (see Proposition 2.1), there should exist an infinite family of (zi)i of form ((0, xj))xj∈X
which is uniformly supported by S, or an infinite family of form ((1, yk))yk∈Y which is
uniformly supported by S. Since 0 and 1 are constants, this means there should exist at
least an infinite uniformly supported family of elements from X , or an infinite uniformly
supported family of elements from Y , a contradiction. �

Example 3.1. The following invariant sets do not contain infinite uniformly supported
subsets:

(1) The set A of atoms, because there are at most |S| atoms supported by a certain
finite set S ⊆ A, namely the elements of S.

(2) The set ℘fs(A), because there are at most 2|S|+1 subsets ofA supported by a certain
finite set S ⊆ A, namely the subsets of S and the supersets of A \ S.

Proposition 3.3. The set ℘fs(A)Afs does not contain infinite uniformly supported subsets.

Proof. The result follows by involving the proof of Corollary 58 in [4]. �

Corollary 3.3. (1) The set AAfs does not contain an infinite uniformly supported subset.
(2) The set (An)Afs does not contain an infinite uniformly supported subset.
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Proof. The first item follows directly from Proposition 3.3. The second item follows from
item 1 and Theorem 3.6(2) since there exists an equivariant bijection between (An)Afs and
(AAfs)

n defined as below. If f : A → An is finitely supported with f(a) = (a1, . . . , an), we
associate to f the Cartesian pair (f1, . . . , fn) where for each i ∈ N, fi : A → A is a finitely
supported function (supported by supp(f)) defined by fi(a) = ai for all a ∈ A. �

Theorem 3.7. (1) Let X be a finitely supported subset of an invariant set. If X does not con-
tain an infinite uniformly supported subset, then each finitely supported injective mapping
f : X → X should be surjective.

(2) Let X be a finitely supported subset of an invariant set. If ℘fs(X) does not contain
an infinite uniformly supported subset, then each finitely supported surjective mapping
f : X → X should be injective. The converse does not hold.

Proof. 1. Assume by contradiction that f : X → X is a finitely supported injection with
the property that Im(f) ( X . This means that there exists x0 ∈ X such that x0 /∈ Im(f).
We can form a sequence of elements from X which has the first term x0 and the general
term xn+1 = f(xn) for all n ∈ N. Since x0 /∈ Im(f) it follows that x0 6= f(x0). Since f
is injective and x0 /∈ Im(f), by induction we obtain that fn(x0) 6= fm(x0) for all n,m ∈
N with n 6= m. Furthermore, xn+1 is supported by supp(f) ∪ supp(xn) for all n ∈ N.
Indeed, let π ∈ Fix(supp(f) ∪ supp(xn)). According to Proposition 2.2, π · xn+1 = π ·
f(xn) = f(π · xn) = f(xn) = xn+1. Since supp(xn+1) is the least set supporting xn+1, we
obtain supp(xn+1) ⊆ supp(f) ∪ supp(xn) for all n ∈ N. By induction, we have supp(xn) ⊆
supp(f) ∪ supp(x0) for all n ∈ N. Thus, all xn are supported by the same set of atoms
supp(f) ∪ supp(x0), which means the family (xn)n∈N is infinite and uniformly supported,
contradicting the hypothesis.

2. Let f : X → X be a finitely supported surjection. Since f is surjective, we can
define the function g : ℘fs(X) → ℘fs(X) by g(Y ) = f−1(Y ) for all Y ∈ ℘fs(X) which
is finitely supported by supp(f) ∪ supp(X) (according to the S-finite support principle)
and injective. Alternatively, we can provide a direct proof that g is finitely supported.
Let Y be an arbitrary element from ℘fs(X). We claim that f−1(Y ) ∈ ℘fs(X). Let π fix
supp(f) ∪ supp(Y ) ∪ supp(X) pointwise, and y ∈ f−1(Y ). This means f(y) ∈ Y . Since π
fixes supp(f) pointwise and supp(f) supports f , we have f(π · y) = π · f(y) ∈ π ? Y = Y ,
and so π ·y ∈ f−1(Y ). Therefore, f−1(Y ) is finitely supported, and so the function g is well
defined. We claim that g is supported by supp(f) ∪ supp(X). Let π fix supp(f) ∪ supp(X)
pointwise. For any arbitrary Y ∈ ℘fs(X) we get π ? Y ∈ ℘fs(X) and π ? g(Y ) ∈ ℘fs(X).
Furthermore, π−1 fixes supp(f) pointwise, and so f(π−1 · x) = π−1 · f(x) for all x ∈ X .
For any arbitrary Y ∈ ℘fs(X), we have that z ∈ g(π ? Y ) = f−1(π ? Y )⇔ f(z) ∈ π ? Y ⇔
π−1 ·f(z) ∈ Y ⇔ f(π−1 ·z) ∈ Y ⇔ π−1 ·z ∈ f−1(Y )⇔ z ∈ π?f−1(Y ) = π?g(Y ). If follows
that g(π ? Y ) = π ? g(Y ) for all Y ∈ ℘fs(X), and so g is finitely supported. Now, since
℘fs(X) does not contain an infinite uniformly supported subset, it follows from item 1
that g is surjective.

Now let us consider two elements a, b ∈ X such that f(a) = f(b). We prove by contra-
diction that a = b. Suppose that a 6= b. Let us consider Y = {a} and Z = {b}. Obviously,
Y,Z ∈ ℘fs(X). Since g is surjective, for Y and Z there is Y1, Z1 ∈ ℘fs(X) such that
f−1(Y1) = g(Y1) = Y and f−1(Z1) = g(Z1) = Z. We know that f(Y ) ∩ f(Z) = {f(a)}.
Thus, f(a) ∈ f(Y ) = f(f−1(Y1)) ⊆ Y1. Similarly, f(a) = f(b) ∈ f(Z) = f(f−1(Z1)) ⊆ Z1,
and so f(a) ∈ Y1 ∩ Z1. Thus, a ∈ f−1(Y1 ∩ Z1) = f−1(Y1) ∩ f−1(Z1) = Y ∩ Z. However,
since we assumed that a 6= b, we have that Y ∩Z = ∅, which represents a contradiction. It
follows that a = b, and so f is injective.

In order to prove the invalidity of the reverse implication, we prove that any finitely
supported surjective mapping f : ℘fin(A)→ ℘fin(A) is also injective, while ℘fs(℘fin(A))
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contains an infinite uniformly supported subset (see Theorem 3.6(1)). Let us consider a
finitely supported surjection f : ℘fin(A)→ ℘fin(A). LetX ∈ ℘fin(A). Then supp(X) = X
and supp(f(X)) = f(X). Since supp(f) supports f and supp(X) supports X , for any π
fixing pointwise supp(f)∪ supp(X) = supp(f)∪X we have π ? f(X) = f(π ?X) = f(X),
and so supp(f) ∪X supports f(X), that is f(X) = supp(f(X)) ⊆ supp(f) ∪X (claim 1).

For a fixed m ≥ 1, let us fix m (arbitrarily chosen) atoms b1, . . . , bm ∈ A \ supp(f). Let
us consider U = {{a1, . . . , an, b1, . . . , bm} | a1, . . . , an ∈ supp(f), n ≥ 1} ∪ {{b1, . . . , bm}}.
The set U is finite since supp(f) is finite and b1, . . . , bm ∈ A \ supp(f) are fixed. Let us
consider Y ∈ U , that is Y \ supp(f) = {b1, . . . , bm}. There exists Z ∈ ℘fin(A) such that
f(Z) = Y . According to (claim 1), Z must be either of form Z = {c1, . . . , ck, bi1 , . . . , bil}
with c1, . . . , ck ∈ supp(f) and bi1 , . . . , bil ∈ A \ supp(f) or of form Z = {bi1 , . . . , bil} with
bi1 , . . . , bil ∈ A \ supp(f). In both cases we have {b1, . . . , bm} ⊆ {bi1 , . . . , bil}. We should
prove that l = m. Assume by contradiction that there exists bij with j ∈ {1, . . . , l} such
that bij /∈ {b1, . . . , bm}. Then (bij b1) ? Z = Z since both bij , b1 ∈ Z and Z is a finite
subset of A (bij and b1 are interchanged in Z under the effect of the transposition (bij b1),
while the other atoms belonging to Z are left unchanged, meaning that the whole Z is left
invariant under ?). Furthermore, since bij , b1 /∈ supp(f) we have that (bij b1) fixes supp(f)
pointwise, and, because supp(f) supports f , we get f(Z) = f((bij b1) ? Z) = (bij b1) ?
f(Z) which is a contradiction because b1 ∈ f(Z) while bij /∈ f(Z). Thus, {bi1 , . . . , bil} =
{b1, . . . , bm}, and so Z ∈ U . Therefore, U ⊆ f(U) which means |U| ≤ |f(U)|. However,
since f is a function and U is finite, we get |f(U)| ≤ |U|. We obtain |U| = |f(U)| and,
because U is finite with U ⊆ f(U), we get U = f(U) (claim 2) which means that f |U :
U → U is surjective. Since U is finite, f |U should be injective, i.e. f(U1) 6= f(U2) whenever
U1, U2 ∈ U with U1 6= U2 (claim 3).

Whenever d1, . . . , dv ∈ A \ supp(f) with{d1, . . . , dv} 6= {b1, . . . , bm}, v ≥ 1, and con-
sidering V = {{a1, . . . , an, d1, . . . , dv} | a1, . . . , an ∈ supp(f), n ≥ 1} ∪ {{d1, . . . , dv}}, we
conclude that U and V are disjoint. Whenever U1 ∈ U and V1 ∈ V we have f(U1) ∈ U
and f(V1) ∈ V by using the same arguments used to prove (claim 2), and so f(U1) 6=
f(V1) (claim 4). If T = {{a1, . . . , an} | a1, . . . , an ∈ supp(f)} and Y ∈ T , then there is
T ′ ∈ ℘fin(A) such that Y = f(T ′). Similarly as in (claim 2), we should have T ′ ∈ T .
Otherwise, if T ′ belongs to some V considered above, i.e. if T ′ contains an element out-
side supp(f), we get the contradiction Y = f(T ′) ∈ V , and so T ⊆ f(T ) from which
T = f(T ) since T is finite (using similar arguments as those involved to prove (claim 3)
from U ⊆ f(U)). Thus, f |T : T → T is surjective. Since T is finite, f |T should be also
injective, namely f(T1) 6= f(T2) whenever T1, T2 ∈ T with T1 6= T2 (claim 5). The case
supp(f) = ∅ is contained in the above analysis; it leads to f(∅) = ∅ and f(X) = X for all
X ∈ ℘fin(A). We also have f(T1) 6= f(V1) whenever T1 ∈ T and V1 ∈ V since f(T1) ∈ T ,
f(V1) ∈ V and T and V are disjoint (claim 6). Since b1, . . . , bm and d1, . . . , dv are arbitrarily
chosen from A \ supp(f), the injectivity of f leads from the claims (3), (4), (5), (6). �

Proposition 3.4. Let X be a finitely supported subset of an invariant set (Y, ·). If X contains a
finitely supported, totally ordered subset (Z,≤), then Z is uniformly supported.

Proof. We claim that Z is uniformly supported by supp(≤) ∪ supp(Z). Let us consider
π ∈ Fix(supp(≤) ∪ supp(Z)) and let z ∈ Z. Since π fixes supp(Z) pointwise and supp(Z)
supports Z, we obtain that π · z ∈ Z, and so we should have either z < π · z, or z = π · z, or
π ·z < z. If z < π ·z, then, since π fixes supp(≤) pointwise and since the mapping u 7→ π ·u
is bijective from Z to π ? Z, we get z < π · z < π2 · z < . . . < πn · z < . . . for all n ∈ N.
However, there is m ∈ N such that πm = Id, and so we get z < z which is a contradiction.
Similarly, the assumption π · z < z, leads to the relation . . . < πn · z < . . . < π · z < z for
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all n ∈ N which is also a contradiction since π has finite order. Therefore, π · z = z, and
because z was arbitrary chosen form Z, Z should be a uniformly supported. �

Theorem 3.8. Let X be a finitely supported subset of an invariant set (Y, ·). If there exists a
finitely supported bijection between X and X + X , then X contains an infinite uniformly sup-
ported subset. The converse does not hold.

Proof. Let us consider an element y1 belonging to an invariant set (whose action is also
denoted by ·) with y1 /∈ X (such an element can be a non-empty element in ℘fs(X) \X ,
for instance). Fix y2 ∈ X . One can define a mapping f : X ∪ {y1} → X × {0, 1} by

f(x) =

{
(x, 0) for x ∈ X
(y2, 1) for x = y1

. Clearly, f is injective and it is supported by S = supp(X)∪

supp(y1) ∪ supp(y2) because for all π fixing S pointwise we have f(π · x) = π · f(x) for all
x ∈ X ∪ {y1}. Therefore, since X +X is actually X × {0, 1}, there is a finitely supported
injection g : X ∪ {y1} → X . The mapping h : X → X defined by h(x) = g(x) is injective,
supported by supp(g) ∪ supp(X), and g(y1) ∈ X \ h(X), which means h is not surjective.
According to Theorem 3.7(1), X should contain an infinite uniformly supported subset.

Let us denote Z = A∪N ∼= A+N. Clearly, Z is an invariant set that contains an infinite
uniformly supported subset. Assume by contradiction that there is a finitely supported
bijection between Z and Z + Z (denote this by |Z| = |Z + Z|), that is |A ∪ N| = |A +
A + N| = |({0, 1} × A) ∪ N| (obviously, N + N ∼= N). Thus, there is a finitely supported
injection f ′ : ({0, 1} × A) ∪ N → A ∪ N, and so there exists a finitely supported injection
f : ({0, 1}×A)→ A∪N. We prove that whenever ϕ : A→ A∪N is finitely supported and
injective, we have ϕ(a) ∈ A for a /∈ supp(ϕ). Let us assume by contradiction that there
is a /∈ supp(ϕ) such that ϕ(a) ∈ N. Since supp(ϕ) is finite, there is b /∈ supp(ϕ), b 6= a.
Thus, (a b) fixes supp(ϕ) pointwise, and so ϕ(b) = ϕ((a b)(a)) = (a b) � ϕ(a) = ϕ(a) since
(N, �) is a trivial invariant set. This contradicts the injectivity of ϕ. We can consider the
mappings ϕ1, ϕ2 : A→ A ∪ N defined by ϕ1(a) = f(0, a) for all a ∈ A and ϕ2(a) = f(1, a)
for all a ∈ A, that are injective and supported by supp(f). Therefore, f({0} × A) = ϕ1(A)
contains at most finitely many element from N, and f({1} × A) = ϕ2(A) also contains at
most finitely many element from N. Thus, f is an injection from ({0, 1}×A) toA∪T where
T is a finite subset of N. It follows that f({0} × A) contains an infinite finitely supported
subset of atoms U , and f({1} ×A) contains an infinite finitely supported subset of atoms
V . Since f is injective, it follows that U and V are infinite disjoint finitely supported
subsets of A, contradicting the fact that any subset of A is either finite or cofinite. �

4. PARTICULAR PROPERTIES OF THE FINITE POWERSET OF ATOMS

Proposition 4.5. Let f : A → A be a finitely supported function. If Im(f) \ supp(f) 6= ∅ or
|Im(f |A\supp(f))| > 1, then f has infinitely many fixed points.

Proof. Let f : A → A be a function that is finitely supported. If there exists a /∈ supp(f)
with f(a) = a, then for each b /∈ supp(f) we have that (a b) ∈ Fix(supp(f)), and from
Proposition 2.2, f(b) = f((a b)(a)) = (a b)(f(a)) = (a b)(a) = b. Thus, f |A\supp(f) =
Id, where Id is the identity mapiing on A. If for all a /∈ supp(f) we have f(a) 6= a,
then we prove that f(a) ∈ supp(f) for all a /∈ supp(f). Assume by contradiction that
f(a) = b ∈ A \ supp(f) for a certain a /∈ supp(f). Then (a b) ∈ Fix(supp(f)), and so
f(b) = f((a b)(a)) = (a b)(f(a)) = (a b)(b) = a. Let us consider c ∈ A \ supp(f), c 6= a, b
(which exists since A is infinite, while supp(f) is finite). Thus, (a c) ∈ Fix(supp(f)) and
so f(c) = f((a c)(a)) = (a c)(f(a)) = (a c)(b) = b. Furthermore, (b c) ∈ Fix(supp(f))
and so f(b) = f((b c)(c)) = (b c)(f(c)) = (b c)(b) = c, contradicting the functionality of f
(we also obtained f(b) = a). Thus, f(a) ∈ supp(f) for any a /∈ supp(f). Furthermore, if
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u, v /∈ supp(f), then we have f(u), f(v) ∈ supp(f), and because (u v) ∈ Fix(supp(f)),
we get f(u) = f((u v)(v)) = (u v)(f(v)) = f(v). Thus, there is u0 ∈ supp(f) such
that Im(f |A\supp(f)) = {u0}. We conclude that either f |A\supp(f) = Id or the image
of f |A\supp(f) is an one-element subset of supp(f). If Im(f) \ supp(f) 6= ∅, let us as-
sume by contradiction that we are not in the case f |A\supp(f) = Id, which means that
Im(f |A\supp(f)) is an one-element subset of supp(f). Now let us consider an arbitrary el-
ement x ∈ supp(f). Then for each π ∈ Fix(supp(f) ∪ {x}) we have π(f(x)) = f(π(x)) =
f(x) which means f(x) is supported by supp(f) ∪ {x}, and so f(x) ∈ supp(f) ∪ {x} =
supp(f). This means Im(f |supp(f)) ⊆ supp(f), and so Im(f) ⊆ supp(f) which contradicts
the hypothesis that Im(f) \ supp(f) 6= ∅. Thus, f |A\supp(f) = Id, and so f has infinitely
many fixed points, namely all the elements in A \ supp(f). If the image of f |A\supp(f)
contains more than one element, then we are necessarily in the case f |A\supp(f) = Id. �

Theorem 4.9. Let f : ℘fin(A)→ ℘fin(A) be finitely supported and injective. Then for eachX ∈
℘fin(A) we have X \ supp(f) 6= ∅ if and only if f(X) \ supp(f) 6= ∅. Moreover, X \ supp(f) =
f(X) \ supp(f). Additionally, if f is order preserving, then X \ supp(f) = f(X \ supp(f)) for
all X ∈ ℘fin(A), and f(supp(f)) = supp(f).

Proof. Let Y ∈ ℘fin(A). According to Proposition 2.1(5), we have supp(Y ) = Y and
supp(f(Y )) = f(Y ). According to Proposition 2.2, for any permutation π ∈ Fix(supp(f)∪
supp(Y )) = Fix(supp(f)∪Y ) we have π?f(Y ) = f(π?Y ) = f(Y ) which means supp(f)∪Y
supports f(Y ), that is f(Y ) = supp(f(Y )) ⊆ supp(f)∪Y (claim 1). If Y ⊆ supp(f), we get
f(Y ) ⊆ supp(f) (claim 2). Let X ∈ ℘fin(X) with X ⊆ supp(f). According to (claim 2) we
get f(X) ⊆ supp(f).

Conversely, assume f(X) ⊆ supp(f). Applying (claim 2) by induction we get fn(X) ⊆
supp(f) for all n ∈ N∗ (claim 3). Since supp(f) is finite, it should exist m, k ∈ N∗ with
m 6= k such that fm(X) = fk(X). Assume m > k. Due to the injectivity of f , we get
fm−k(X) = X which by (claim 3) leads to X ⊆ supp(f). Therefore, X ⊆ supp(f) if and
only if f(X) ⊆ supp(f), and so X \ supp(f) 6= ∅ if and only if f(X) \ supp(f) 6= ∅.

Let be Z ∈ ℘fin(A) such that f(Z) \ supp(f) 6= ∅ or equivalently Z \ supp(f) 6= ∅. Thus,
Z has the form Z = {a1, . . . , an, b1, . . . , bm} with a1, . . . , an ∈ supp(f) and b1, . . . , bm ∈
A \ supp(f), m ≥ 1, or the form Z = {b1, . . . , bm} with b1, . . . , bm ∈ A \ supp(f), m ≥ 1.
According to (claim 1), f(Z) should be f(Z) = {c1, . . . , ck, bi1 , . . . , bil} with c1, . . . , ck ∈
supp(f) and bi1 , . . . , bil ∈ A \ supp(f), or f(Z) = {bi1 , . . . , bil} with bi1 , . . . , bil ∈ A \
supp(f). In both cases we have the property that {bi1 , . . . , bil} is non-empty (i.e. it should
contain at least one element, say bi1 ) and {bi1 , . . . , bil} ⊆ {b1, . . . , bm}. If m = 1, then
l = 1 and bi1 = b1. Now let consider m > 1. Assume by contradiction that there exists
j ∈ {1, . . . ,m} such that bj /∈ {bi1 , . . . , bil}. Then (bi1 bj) ? Z = Z since both bi1 , bj ∈ Z
and Z is a finite subset of atoms (bi1 and bj are interchanged in Z under the effect of the
transposition (bi1 bj), while the other atoms belonging to Z are left unchanged, meaning
that the whole Z is left invariant under ?). Furthermore, since bi1 , bj /∈ supp(f) we have
(bi1 bj) ∈ Fix(supp(f)), and by Proposition 2.2 we get f(Z) = f((bi1 bj) ? Z) = (bi1 bj) ?
f(Z) which is a contradiction because bi1 ∈ f(Z) while bj /∈ f(Z). Thus, {bi1 , . . . , bil} =
{b1, . . . , bm}, and so Z \ supp(f) = f(Z) \ supp(f). The case supp(f) = ∅ is included in the
above analysis; it leads to f(∅) = ∅ and f(X) = X for all X ∈ ℘fin(A).

Assume now that f is order preserving. Let us fix X ∈ ℘fin(A). Consider the case
X \ supp(f) 6= ∅, that is either X = {a1, . . . , an, b1, . . . , bm} with a1, . . . , an ∈ supp(f) and
b1, . . . , bm ∈ A\ supp(f), m ≥ 1, or X = {b1, . . . , bm}with b1, . . . , bm ∈ A\ supp(f), m ≥ 1.
Therefore, we get X \ supp(f) = {b1, . . . , bm}, and by involving the above arguments we
have either f(X \ supp(f)) = {u1, . . . , ui, b1, . . . , bm} with u1, . . . , ui ∈ supp(f) or f(X \
supp(f)) = {b1, . . . , bm}. In both cases we have X \ supp(f) ⊆ f(X \ supp(f)), and since f
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is order preserving we can construct an ascending chain X \ supp(f) ⊆ f(X \ supp(f)) ⊆
. . . ⊆ fn(X\supp(f)) ⊆ . . .. Since for any n ∈ N we have that fn(X\supp(f)) is supported
by supp(f)∪supp(X \supp(f)) = supp(f)∪supp(X) (this follows by induction on n using
Proposition 2.2 and the proving method presented in Theorem 3.1(1)) and ℘fin(A) does
not contain an infinite uniformly supported subset (the elements of ℘fin(A) supported by
supp(f)∪supp(X) are precisely the subsets of supp(f)∪supp(X)), the related chain should
be stationary, that is there exists m ∈ N such that fm(X \ supp(f)) = fm+1(X \ supp(f)).
Due to the injectivity of f , this leads to X \ supp(f) = f(X \ supp(f)).

The remaining case is X ⊆ supp(f). Then X \ supp(f) = ∅ and f(∅) ⊆ supp(f). In the
finite set supp(f) we can define the chain ∅ ⊆ f(∅) ⊆ f2(∅) ⊆ . . . ⊆ fn(∅) ⊆ . . . which
is uniformly supported by supp(f). Therefore, there exists m ∈ N such that fm(∅) =
fm+1(∅). According to the injectivity of f , we getX\supp(f) = ∅ = f(∅) = f(X\supp(f)).

According to (claim 2) we have f(supp(f)) ⊆ supp(f), and since f is order preserving
we can construct in supp(f) the chain . . . ⊆ fn(supp(f)) ⊆ . . . ⊆ f(supp(f)) ⊆ supp(f).
Since supp(f) is finite, the chain should be stationary and fm+1(supp(f)) = fm(supp(f))
for some positive integer m. Since f is injective, this leads to f(supp(f)) = supp(f). �

Corollary 4.4. Let f : ℘fin(A) → ℘fin(A) be finitely supported and surjective. Then for each
X ∈ ℘fin(A) we have X \ supp(f) 6= ∅ if and only if f(X) \ supp(f) 6= ∅. In either of these
cases we have X \ supp(f) = f(X) \ supp(f). Furthermore, if f is order preserving, then
X \ supp(f) = f(X \ supp(f)) for all X ∈ ℘fin(A), and f(supp(f)) = supp(f).

Proof. According to Theorem 3.7(2) a finitely supported surjective mapping f : ℘fin(A)→
℘fin(A) should be also injective. Then the results follow according to Theorem 4.9. �

We prove that there exist two incomparable (via injections) atomic FSM sets such that
no one of them contains an infinite uniformly supported subset, as well as two incom-
parable atomic FSM sets such that one of them contains an infinite uniformly supported
subset and the other one does not contain an infinite uniformly supported subset.

Theorem 4.10. (1) The sets ℘fin(A) and Tfin(A) are incomparable via finitely supported
injections, where Tfin(A) is the set of all finite injective tuples of atoms.

(2) The sets ℘fin(A) and T δfin(A) are incomparable via finitely supported injections, where
T δfin(A) = ∪

n∈N
An is the set of all finite tuples of atoms (not necessarily injective).

Proof. Each An is an invariant set, and so their union T δfin(A) is an invariant set that con-
tains an uniformly supported subset (by {a}), namely (a), (a, a), . . . , (a, a, . . . , a), . . ., with
a a fixed atom. Tfin(A) is an equivariant subset of T δfin(A) that does not contain an infinite
uniformly supported subset. Let us assume by contradiction that f : ℘fin(A) → T δfin(A)

is finitely supported and injective. Let X ∈ ℘fin(A). Since the support of a finite sub-
set of atoms coincides with the related subset, and the support of a finite tuple of atoms
is represented by the set of atoms forming the related tuple (see the proof of Theorem
3.6(2)), according to Proposition 2.2, for any permutation π ∈ Fix(supp(f) ∪ supp(X)) =
Fix(supp(f) ∪X) we have π ⊗ f(X) = f(π ? X) = f(X), where ⊗ is the canonical action
on T δfin(A) constructed as in Proposition 2.1. This means supp(f)∪X supports f(X), that
is supp(f(X)) ⊆ supp(f)∪X , and so the atoms forming f(X) are contained in supp(f)∪X
(claim 1). Let us take two distinct atoms b1, b2 ∈ A \ supp(f). We consider the cases:

Case 1. The tuple f({b1, b2}) contains only elements from supp(f). Let c1 ∈ A \ supp(f)
distinct from b1, b2. Then c1 does not appear in the tuple f({b1, b2}), and so the transpo-
sition (b2 c1) fixes the tuple f({b1, b2}). Since (b2 c1) ∈ Fix(supp(f)) according to Propo-
sition 2.2, we get f({b1, c1}) = f((b2 c1) ? {b1, b2}) = (b2 c1) ⊗ f({b1, b2}) = f({b1, b2}),
contradicting the injectivity of f .
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Case 2. The tuple f({b1, b2}) contains an element outside supp(f). Connecting this
assertion with (claim 1), we have that at least b1 or b2 appear (possibly multiple times)
in the tuple f({b1, b2}). Say b1 is in the tuple f({b1, b2}). Since (b1 b2) ∈ Fix(supp(f)),
from Proposition 2.2 we get f({b1, b2}) = f((b1 b2) ? {b1, b2}) = (b1 b2) ⊗ f({b1, b2}) =
(b1 b2)(f({b1, b2})), which is a contradiction because b2 replaces b1 in the (ordered) tuple
f({b1, b2}) under the effect of the transposition (b1 b2).

Now, let us assume by contradiction that f : Tfin(A) → ℘fin(A) is finitely supported
and injective. Let X ∈ Tfin(A). For any permutation π ∈ Fix(supp(f) ∪ supp(X)) we
have π ? f(X) = f(π ⊗X) = f(X). This means supp(f) ∪ supp(X) supports f(X), that is
f(X) = supp(f(X)) ⊆ supp(f)∪ supp(X), and so f(X) is contained in the union between
supp(f) and the set of atoms forming X (claim 1). Since f is injective and supp(f) is finite,
there exist two distinct atoms b1, b2 ∈ A\supp(f) such that f((b1, b2)) contains at least one
atom outside supp(f). Connecting this assertion with (claim 1), we have that at least b1 or
b2 belong to f((b1, b2)). We distinguish two cases.

Case 1. b1, b2 ∈ f((b1, b2)). This means the transposition (b1 b2) interchanges b1 and b2 in
the finite set f((b1, b2)), but leaves the set f((b1, b2)) unchanged, that is (b1 b2)?f((b1, b2)) =
f((b1, b2)). Then, because (b1 b2) ∈ Fix(supp(f)), from Proposition 2.2 we get f((b2, b1)) =
f((b1 b2)⊗ (b1, b2)) = (b1 b2) ? f((b1, b2)) = f((b1, b2)), contradicting the injectivity of f .

Case 2. b1 ∈ f((b1, b2)) and b2 /∈ f((b1, b2)). According to (claim 1), all the other
elements in f((b1, b2)) (if they exist) belong to supp(f) (claim 2). Let c1 ∈ A \ supp(f)
distinct from b1, b2. According to (claim 2) c1 /∈ f((b1, b2)), and so the transposition (b2 c1)
fixes f((b1, b2)) pointwise. Since (b2 c1) ∈ Fix(supp(f)) according to Proposition 2.2, we
get f((b1, c1)) = f((b2 c1) ⊗ (b1, b2)) = (b2 c1) ? f((b1, b2)) = f((b1, b2)), contradicting the
injectivity of f . Analogously we treat the case b2 ∈ f((b1, b2)) and b1 /∈ f((b1, b2)). �
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