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On an improved convergence analysis of a two-step
Gauss-Newton type method under generalized Lipschitz
conditions

I. K. ARGYROS, R. P. IAKYMCHUK, S. M. SHAKHNO and H. P. YARMOLA

ABSTRACT. We present a local convergence analysis of a two-step Gauss-Newton method under the gener-
alized and classical Lipschitz conditions for the first- and second-order derivatives. In contrast to earlier works,
we use our new idea using a center average Lipschitz conditions through which, we define a subset of the
original domain that also contains the iterates. Then, the remaining average Lipschitz conditions are at least as
tight as the corresponding ones in earlier works. This way, we obtain: weaker sufficient convergence criteria,
larger radius of convergence, tighter error estimates and more precise information on the location of the solu-
tion. These advantages are obtained under the same computational effort, since the new Lipschitz functions are
special cases of the ones in earlier works. Finally, we give a numerical example that confirms the theoretical
results, and compares favorably to the results from previous works.

1. INTRODUCTION

Let us consider the nonlinear least squares problem [8]:

(1.1) min
x∈IRn

1

2
F (x)TF (x),

where F is a Fréchet differentiable operator defined on IRn with its values on IRm , m ≥ n.
In case when m = n, this problem reduces to system of nonlinear equations. The basic
method for numerical solving the problem (1.1) is the Gauss-Newton method, which is
defined as

(1.2) xk+1 = xk − [F ′(xk)
TF ′(xk)]

−1F ′(xk)
TF (xk), k = 0, 1, 2, . . . .

Derivative free iterative methods are used to approximate a solution of nonlinear least
squares problems. The convergence analysis of the these methods in the case of zero as
well as nonzero residuals was conducted in [2, 6, 7, 12].

We consider a two-step modification of the Gauss-Newton method [3, 5, 9, 10] for solv-
ing the problem (1.1)

(1.3)

 zk = (xk + yk)/2,
xk+1 = xk − [F ′(zk)

TF ′(zk)]
−1F ′(zk)

TF (xk),
yk+1 = xk+1 − [F ′(zk)

TF ′(zk)]
−1F ′(zk)

TF (xk+1), k = 0, 1, 2, ...,

where initial approximations x0 and y0 are given. In case when m = n, this method
reduces to the method proposed by Bartish [4] and Werner [16]. The main feature of multi-
step methods for solving problem (1.1) is that the matrix of derivatives is calculated once
in a few steps. Therefore, the computational cost per iteration increases insignificantly.
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In this paper, we study the local convergence of the method (1.3) for the problem (1.1)
with zero as well as non-zero residuals. Furthermore, we compute a radius of conver-
gence, convergence order for this method, and a radius of uniqueness ball for the solution
of the problem (1.1).

2. LOCAL CONVERGENCE ANALYSIS OF METHOD (1.3)

For our study, we present some definitions of the Lipschitz conditions and lemmas. Let
D ⊆ IRn . Let us denote B(x∗, R) = {x ∈ D ⊆ IRn :‖x − x∗‖ < R} as an open ball in IRn .
Set R = sup{t ≥ 0 : B(x∗, t) ⊆ D} and ρ(x) = ‖x− x∗‖ .

Definition 2.1. We say that the Fréchet derivative F ′ satisfies the center-Lipschitz condi-
tion with L0 average on B(x∗, R), if

(2.4) ‖F ′(x)− F ′(x∗)‖ ≤
∫ ‖x−x∗‖
0

L0(u)du,

where L0 is an integrable, positive and non-decreasing function on the interval [0, 3R2 ].

Suppose that equation
βL0(t)t = 1,

where β = ‖(F ′(x∗)TF ′(x∗))−1F ′(x∗)T ‖, has at least one positive solution. Denote by d0
the smallest such solution. Set B0 = B(x∗, R) ∩B(x∗, d0) and d = min{d0, R}.
Definition 2.2. We say that the Fréchet derivative F ′ satisfies the restricted Lipschitz con-
dition with L average on B0, if

(2.5) ‖F ′(y)− F ′(x)‖ ≤
∫ ‖y−x‖
0

L(u)du,

where L is an integrable, positive and non-decreasing function on the interval [0, 3d2 ].

Definition 2.3. We say that the Fréchet derivative F ′ satisfies the Lipschitz condition with
L1 average on B(x∗, R), if

(2.6) ‖F ′(y)− F ′(x)‖ ≤
∫ ‖y−x‖
0

L1(u)du,

where L1 is an integrable, positive and non-decreasing function on the interval [0, 3R2 ].

Remark 2.1. We have that L0(t) ≤ L1(t) for each t ∈ [0, 3R2 ], L(t) ≤ L1(t) for each t ∈
[0, 3d2 ]. The full rank of F ′ is shown in [9] using L1 to obtain

(2.7) ‖(F ′(x∗)TF ′(x∗))−1F ′(x∗)T ‖‖F ′(x)− F ′(x∗)‖ ≤ β
∫ ρ(x)

0

L1(u)du,

(2.8) ‖(F ′(x)TF ′(x))−1F ′(x)T ‖ ≤ β

1− β
∫ ρ(x)
0

L1(u)du

and

(2.9) ‖(F ′(x)TF ′(x))−1F ′(x)T − (F ′(x∗)
TF ′(x∗))

−1F ′(x∗)
T ‖ ≤

√
2β2

∫ ρ(x)
0

L1(u)du

1− β
∫ ρ(x)
0

L1(u)du
.

However, by using condition (2.4), we obtain instead of (2.7)–(2.9) the more precise esti-
mates, respectively:

(2.10) ‖(F ′(x∗)TF ′(x∗))−1F ′(x∗)T ‖‖F ′(x)− F ′(x∗)‖ ≤ β
∫ ρ(x)

0

L0(u)du,
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(2.11) ‖(F ′(x)TF ′(x))−1F ′(x)T ‖ ≤ β

1− β
∫ ρ(x)
0

L0(u)du

and

(2.12) ‖(F ′(x)TF ′(x))−1F ′(x)T − (F ′(x∗)
TF ′(x∗))

−1F ′(x∗)
T ‖ ≤

√
2β2

∫ ρ(x)
0

L0(u)du

1− β
∫ ρ(x)
0

L0(u)du
.

Definition 2.4. We say that F ′′ satisfies the restricted Lipschitz condition with N average
on B0, if

(2.13) ‖F ′′(y)− F ′′(x)‖ ≤
∫ ‖y−x‖
0

N(u)du,

where N is an integrable, positive and non-decreasing function on the interval [0, 3d2 ].

Definition 2.5. We say thatF ′′ satisfies the Lipschitz condition withN1 average onB(x∗, R),
if

‖F ′′(y)− F ′′(x)‖ ≤
∫ ‖y−x‖
0

N1(u)du,

where L1 is an integrable, positive and non-decreasing function on the interval [0, 3R2 ].

Remark 2.2. It also follows that N(t) ≤ N1(t) for each t ∈ [0, 3d2 ]. The new convergence
analysis will be finer than the old one in [9]. We assume that L0(t) ≤ L(t) for each t ∈
[0, 3d2 ]. If L0(t) ≤ L(t) for each t ∈ [0, 3d2 ], then the results in this paper hold with L0

replacing L.
Let IRm×n , m ≥ n, denote a set of all m × n matrices. Then, for a full rank matrix

A ∈ IRm×n , its Moore-Penrose pseudo-inverse [8] is defined as A† = (ATA)−1AT .

Next, we present the local convergence analysis of method (1.3) utilizing the preceding
notation.

Theorem 2.1. Let F : IRn → IRm , m ≥ n, be a twice Fréchet differentiable operator on subset
D. Assume that the problem (1.1) has a solution x∗ ∈ D and a Fréchet derivative F ′(x∗) has full
rank. Suppose that Fréchet derivatives F ′(x) and F ′′(x) satisfy the Lipschitz conditions with L0,
L and N average, respectively

Furthermore, assume function

h0(p) = (β/8)

∫ p

0

N(u)(p− u)2du+ βp
(∫ (3/2)p

0

L(u)du+

∫ p

0

L0(u)du
)

+
√
2αβ2

∫ p

0

L0(u)du− p(2.14)

has a minimal zero r on [0, d], which also satisfies

(2.15) β

∫ r

0

L0(u)du < 1.

Then, for each x0, y0 ∈ B(x∗, r) the sequences {xk} and {yk}, which are generated by the
method (1.3), are well defined, remain in B(x∗, r) for all k ≥ 0, and converge to x∗ such that

ρ(xk+1) ≤ γρ(xk)
3 + ηρ(xk)ρ(yk) + θρ(zk),(2.16)

ρ(yk+1) ≤ γρ(xk+1)
3 + (η/3)(ρ(xk) + ρ(yk) + ρ(xk+1))ρ(xk+1) + θρ(zk),(2.17)

rk+1 = max{ρ(xk+1), ρ(yk+1)} ≤ qrk ≤ · · · ≤ qk+1r0,(2.18)
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where r0 = max{ρ(x0), ρ(y0)},
q = γρ(x0)

2 + θ + η,(2.19)

γ =
β
∫ ρ(x0)

0
N(u)(ρ(x0)− u)2du

8ρ(x0)3
(
1− β

∫ ρ(z0)
0

L0(u)du
) , θ = √

2αβ2
∫ ρ(z0)
0

L0(u)du

ρ(z0)
(
1− β

∫ ρ(z0)
0

L0(u)du
) ,(2.20)

η =
β
∫ ρ(x0)+ρ(y0)/2

0
L(u)du

(2ρ(x0) + ρ(y0))/3
(
1− β

∫ ρ(z0)
0

L0(u)du
) ,(2.21)

α = ‖F (x∗)‖, β = ‖(F ′(x∗)TF ′(x∗))−1F ′(x∗)T ‖.(2.22)

Proof. The proof of this theorem is carried out by induction and similar to the one in [9] but
there are some crucial differences, where L0, L, N replace L1, L1, N1, respectively. These
differences bring in the finer local convergence analysis. Indeed, see also the numerical
example. Let choose arbitrary x0, y0 ∈ B(x∗, r). For x1, y1 that are generated by (1.3), we
have

x1 − x∗ = x0 − x∗ −
[
F ′(z0)

TF ′(z0)
]−1

F ′(z0)
TF (x0)

=
[
F ′(z0)

TF ′(z0)
]−1

F ′(z0)
T [F ′(z0)(x0 − x∗)− F (x0) + F (x∗)]

+
[
F ′(x∗)

TF ′(x∗)
]−1

F ′(x∗)
TF (x∗)−

[
F ′(z0)

TF ′(z0)
]−1

F ′(z0)
TF (x∗)

=
[
F ′(z0)

TF ′(z0)
]−1

F ′(z0)
T

[(
F ′
(
x0 + x∗

2

)
(x0 − x∗)− F (x0) + F (x∗)

)
+

(
F ′(z0)− F ′

(
x0 + x∗

2

))
(x0 − x∗)

]
+
[
F ′(x∗)

TF ′(x∗)
]−1

F ′(x∗)
TF (x∗)−

[
F ′(z0)

TF ′(z0)
]−1

F ′(z0)
TF (x∗);

y1 − x∗ = x1 − x∗ −
[
F ′(z0)

TF ′(z0)
]−1

F ′(z0)
TF (x1)

=
[
F ′(z0)

TF ′(z0)
]−1

F ′(z0)
T [F ′(z0)(x1 − x∗)− F (x1) + F (x∗)]

+
[
F ′(x∗)

TF ′(x∗)
]−1

F ′(x∗)
TF (x∗)−

[
F ′(z0)

TF ′(z0)
]−1

F ′(z0)
TF (x∗)

=
[
F ′(z0)

TF ′(z0)
]−1

F ′(z0)
T

[(
F ′
(
x1 + x∗

2

)
(x1 − x∗)− F (x1) + F (x∗)

)
+

(
F ′(z0)− F ′

(
x1 + x∗

2

))
(x1 − x∗)

]
+
[
F ′(x∗)

TF ′(x∗)
]−1

F ′(x∗)
TF (x∗)−

[
F ′(z0)

TF ′(z0)
]−1

F ′(z0)
TF (x∗).

We can write according to Lemma 1 from [16] with the value ω = 1/2

F (x)− F (y)− F ′
(
x+ y

2

)
(x− y)

=
1

4

∫ 1

0

(1− t)
[
F ′′
(
x+ y

2
+
t

2
(x− y)

)
− F ′′

(
x+ y

2
+
t

2
(y − x)

)]
(x− y)2dt.

We get by setting x = x∗ and y = x0 in the equality above∥∥∥∥F (x∗)− F (x0)− F ′(x0 + x∗
2

)
(x∗ − x0)

∥∥∥∥
≤ 1

4

∫ 1

0

(1− t)
∫ t‖x0−x∗‖

0

N(u)du‖x0 − x∗‖2dt

=
1

8

∫ ρ(x0)

0

N(u)

(
1− u

ρ(x0)

)2

duρ(x0)
2 =

1

8

∫ ρ(x0)

0

N(u)(ρ(x0)− u)2du,∥∥∥∥F ′(x0 + y0
2

)
− F ′

(
x0 + x∗

2

)∥∥∥∥ ≤ ∫ ρ(y0)/20
L(u)du.
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By the monotonicity of L0(u), L(u) and N(u) with Lemmas 2.3 [14], 2.4 [11] functions
1

t

∫ t

0

L0(u)du,
1

t

∫ t

0

L(u)du and
1

t3

∫ t

0

N(u)(t − u)2du are non-decreasing by t. Hence,

from (2.14) and (2.15) it follows that

q ≤ 1

r0

[
β
∫ r0
0
N(u)(r0 − u)2du

8
(
1− β

∫ r0
0
L0(u)du

) +
βr0

∫ (3/2)r0
0

L(u)du+
√
2αβ2

∫ r0
0
L0(u)du

1− β
∫ r0
0
L0(u)du

]

<
1

r

[
β
∫ r
0
N(u)(r − u)2du

8
(
1− β

∫ r
0
L0(u)du

) + βr
∫ (3/2)r

0
L(u)du

1− β
∫ r
0
L0(u)du

+

√
2αβ2

∫ r
0
L0(u)du

1− β
∫ r
0
L0(u)du

]
≤ 1.

Thus, by Lemmas in [6, 11, 13, 14], conditions (2.4), (2.5), (2.13), and the afore-derived
estimates (2.10)-(2.12), we obtain

‖x1 − x∗‖ ≤
∥∥∥[F ′(z0)TF ′(z0)]−1 F ′(z0)T∥∥∥

×
∥∥∥∥(F ′(x0 + x∗

2

)
(x0 − x∗)− F (x0) + F (x∗)

)
+

(
F ′(z0)− F ′

(
x0 + x∗

2

))
(x0 − x∗)

∥∥∥∥
+
∥∥∥[F ′(x∗)TF ′(x∗)]−1 F ′(x∗)TF (x∗)− [F ′(z0)TF ′(z0)]−1 F ′(z0)TF (x∗)∥∥∥

≤
βρ(x0)

3
∫ ρ(x0)

0
N(u)(ρ(x0)− u)2du

8ρ(x0)3
(
1− β

∫ ρ(z0)
0

L0(u)du
)

+
βρ(x0)ρ(y0)

∫ ρ(y0)/2
0

L(u)du

ρ(y0)
(
1− β

∫ ρ(z0)
0

L0(u)du
) +

√
2αβ2ρ(z0)

∫ ρ(z0)
0

L0(u)du

ρ(z0)
(
1− β

∫ ρ(z0)
0

L0(u)du
)

< γρ(x0)
3 + ηρ(x0)ρ(y0) + θρ(z0) < qr0 < r.

Similarly,

‖y1 − x∗‖ =
∥∥∥[F ′(z0)TF ′(z0)]−1 F ′(z0)T∥∥∥

×
∥∥∥∥(F ′(x1 + x∗

2

)
(x1 − x∗)− F (x1) + F (x∗)

)
+

(
F ′(z0)− F ′

(
x1 + x∗

2

))
(x1 − x∗)

∥∥∥∥
+
∥∥∥[F ′(x∗)TF ′(x∗)]−1 F ′(x∗)TF (x∗)− [F ′(z0)TF ′(z0)]−1 F ′(z0)TF (x∗)∥∥∥

≤
βρ(x1)

3
∫ ρ(x1)

0
N(u)(ρ(x1)− u)2du

8ρ(x1)3
(
1− β

∫ ρ(z0)
0

L0(u)du
)

+
βρ(x1)ρ(z

′

0)
∫ ρ(z′0)
0

L(u)du

ρ(z
′
0)
(
1− β

∫ ρ(z0)
0

L0(u)du
) +

√
2αβ2ρ(z0)

∫ ρ(z0)
0

L0(u)du

ρ(z0)
(
1− β

∫ ρ(z0)
0

L0(u)du
)

≤ γρ(x1)3 + (η/3)ρ(x1)(ρ(x0) + ρ(y0) + ρ(x1)) + θρ(z0)
< γρ(x0)

3 + (η/3)ρ(x0)(2ρ(x0) + ρ(y0)) + θρ(z0) < qr0 < r,

where ρ(z
′

0) = (ρ(x0) + ρ(y0) + ρ(x1))/2. Therefore, x1, y1 ∈ B(x∗, r) and both (2.16) and
(2.17) follow for k = 0. Also, (2.18) is satisfied r1 = max{‖x1 − x∗‖, ‖y1 − x∗‖} ≤ qr0.

Similarly an induction step is carried out. �

In case of zero residual (α = ‖F (x∗)‖ = 0) the results of Theorem 2.1 are:

Corollary 2.1. Suppose that x∗ satisfies (1.1), F (x∗) = 0, F (x) is a twice Fréchet differentiable
operator in B(x∗, R), F ′(x∗) has full rank, and both F ′(x) and F ′′(x) satisfy the Lipschitz condi-
tions with L0, L and N average as in (2.4), (2.5) and (2.13), respectively, where L0, L and N are
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positive non-decreasing functions on [0, 3R/2]. Furthermore, assume function h0 has a minimal
zero r on [0, R], which also satisfies:

β

∫ r

0

L0(u)du < 1,

where

h0(p) = (β/8)

∫ p

0

N(u)(p− u)2du+ βp
(∫ (3/2)p

0

L(u)du+

∫ p

0

L0(u)du
)
− p.

Then, the Gauss-Newton type method (1.3) is convergent for each x0, y0 ∈ B(x∗, r) such that

ρ(xk+1) ≤ γρ(xk)
3 + ηρ(xk)ρ(yk),

ρ(yk+1) ≤ γρ(xk+1)
3 + (η/3)(ρ(xk) + ρ(yk) + ρ(xk+1))ρ(xk+1),

rk+1 = max{ρ(xk+1), ρ(yk+1)} ≤ qrk ≤ · · · ≤ qk+1r0.

Corollary 2.2. Convergence order of the iterative method (1.3) in case of zero residual is equal to
1 +
√
2.

Theorem 2.2. (The uniqueness of solution) Suppose x∗ satisfies (1.1) and F (x) has a conti-
nuous derivative F ′(x) in the ball B(x∗, r). Moreover, F ′(x∗) has full rank and F ′(x) satisfies
the Lipschitz condition with L0 average (2.4). Let r > 0 satisfy

(2.23)
β

r

∫ r

0

L0(u)(r − u)du+
αβ0
r

∫ r

0

L0(u)du ≤ 1,

where α and β are defined in (2.22) and β0 = ‖[F ′(x∗)TF ′(x∗)]−1‖. Then, x∗ is a unique solution
of the problem (1.1) in B(x∗, r).

The proof of this theorem is analogous to the one in [6].

Remark 2.3. If L0(t) = L(t) = L1(t) andN(t) = N1(t) then our results reduces to the ones
in [9].

Otherwise, the new results improve the old ones. We have as an example :

h0(p) ≤ hold(p), for each p ∈ [0,
3d

2
],

where hold(p) is defined as h0(p) but (L0, L), N are replaced by L1, N1, respectively. Es-
timate shows that

(2.24) rold ≤ r.
Moreover, if preceding inequality is strict, we obtain a wider choice of initial points x0.
The information on the solution is more precise, since by the new and old results we have,
in case L0, L, L1, N,N1 are constant functions (see also the numerical example)

r0 =
2(1− αβ0L0)

βL0
≤ rold0 =

2(1− αβ0L)
βL

.

Furthermore, the error bounds on the distances ‖xk − x∗‖ are more precise. Hence, fewer
iteration are needed to ahieve a desired error tolerance. The uniqueness of the solution is
improved by (2.23) and (2.24). Finally, notice β

∫ r
0
L1(u)du < 1 [9] ⇒ β

∫ r
0
L0(u)du < 1

but not necessarily vice versa unless if L1 = L0. Hence, the new sufficient convergence
criteria are weaker than the ones in [6, 9]. It is worth noticing that these advantages
are obtained under the same computational cost, since in practice the computation of
functionsL1 andN1 requires the computations of functions (L0, L) andN as special cases.
The same technique has been used by us to the Newton’s method [1], and can be used on
other methods too for the local as well as the semi-local case.
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3. NUMERICAL EXAMPLE

We provide example to confirm the theoretical results. Define function F on
D = B(0, 1) by F (x) = (x + µ, λx3 + x − µ)T , λ, µ ∈ IR. Then, we have x∗ = 0,
α =

√
2|µ|, β =

√
2/2, N(t) = N1(t) = 6|λ|, L0(t) = 6|λ|t, L(t) = 6|λ|(t + A),

L1(t) = 6|λ|(t + 1), where A = max
t∈B0

|t|, so L0(t) < L(t) ≤ L1(t), and N(t) = N1(t) for

each t ≥ 0. Hence, the new aforementioned advantages hold. We get rold < r.

TABLE 1. Value of radii.

λ = 0.3, µ = 0 λ = 0.2, µ = 0.3
r 0.3952 0.4717
rold 0.2668 0.2421

TABLE 2. Results for λ = 0.3, µ = 0.

k ρ(xk+1) RHS of (2.16) RHS [9] ρ(yk+1) RHS of (2.17) RHS [9]
0 4.1445e-03 1.2183e-01 1.9742e-01 1.0732e-04 1.4139e-03 2.2912e-03
1 2.2494e-09 9.4029e-07 1.5237e-06 4.5749e-15 6.7379e-12 1.0919e-11
2 0 2.1750e-23 3.5246e-23 0 0 0

TABLE 3. Results for λ = 0.2, µ = 0.3.

k ρ(xk+1) RHS of (2.16) RHS [9] ρ(yk+1) RHS of (2.17) RHS [9]
0 7.7749e-03 9.9377e-02 2.3756e-01 5.1442e-03 1.2579e-02 1.2786e-01
1 3.8056e-06 3.4768e-04 3.4522e-03 3.7553e-06 2.8613e-04 3.3744e-03
2 1.2863e-12 1.6746e-07 1.9749e-06 1.2863e-12 1.6744e-07 1.9748e-06
3 1.1816e-17 5.6971e-14 6.7192e-13 1.1816e-17 5.6971e-14 6.7192e-13

Let us show that estimates (2.16) and (2.17) are fulfilled. We choose x0 = 0.24 and
y0 = 0.2401. Obtained results for problem with zero and non-zero residuals are shown in
Tables 2 and 3, respectively. The ”RHS” columns show the values of the right-hand side
of the estimates (2.16), (2.17) and the corresponding ones from [9]. These results confirm
that our new technique gives tighter error estimates.

By comparing these tables, we see that our error estimates are more precise. By solving
(2.23), we find the uniqueness radius is τ = 2.1712 for λ = 0.3, µ = 0 and τ = 2.2470
for λ = 0.2, µ = 0.3. Then by also solving (2.23), but for L1 replacing L0 and L, we find
τold = 0.1497 for λ = 0.3, µ = 0 and τold = 0.7500 for λ = 0.2, µ = 0.3. Notice that
τold < τ .

4. CONCLUSION

The convergence ball of the iterative methods is very small in general. We introduce
the center Lipschitz condition to help us find a more precise location, where the iterates
lie, which in turn leads to at least as small as Lipschitz constants and functions. This
way we obtain a larger radius of convergence (so, a wider choice of initial points), tighter
error bounds on the ρ(xk), ρ(yk) (so, fewer iterates are needed to obtain a desired error
tolerance) and a better information on the uniqueness ball. These advantages are obtained
under the same computational cost as before, since in practice the new Lipschitz constants
and functions are special cases of the old ones.
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