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A novel genetic algorithm for solving the clustered
shortest-path tree problem

OVIDIU COSMA, PETRICĂ C. POP and IOANA ZELINA

ABSTRACT. The clustered shortest-path tree problem is an extension of the classical single-source shortest-
path problem, in which, given a graph with the set of nodes divided into a predefined, mutually exclusive and
exhaustive set of clusters, we want to determine a shortest-path spanning tree from a given source to all the other
nodes of the graph, with the property that each cluster should induce a connected subtree. The investigated
problem proved to be NP-hard and therefore we proposed an efficient genetic algorithm in order to solve it. The
preliminary computational results reported on a set of benchmark instances from the literature proved that our
proposed solution approach yields high-quality solutions within reasonable running times.

1. INTRODUCTION

The clustered shortest-path tree problem (CluSPTP) generalizes the classical single-
source shortest-path problem and looks for a spanning tree of a given graph with the
property that all the sub-graphs induced by each of the clusters are connected and such
that the total cost of the paths from a given source node to all the other nodes of the graph
is minimized.

The current literature is rather scarce. The problem was introduced by D’Emidio et
al. [4] justified by some practical applications in communication networks. The same au-
thors, in an extended version of their paper [5], investigated the computational hardness
and provided some approximation results for both cases of the problem: unweighted and
weighted. Binh et al. [1] and Thanh et al. [17] presented two multifactorial evolution-
ary algorithms that use different ways to encode feasible solutions of the CluSPTP: one
based on the Cayley code and the other one using an edge set representation. Thanh et al.
[18] described a random heuristic search algorithm that combines a randomized greedy
algorithm with a shortest path tree algorithm. Recently, Binh et al. [2] proposed a so-
lution approach based on the reduction of the solution space of a genetic algorithm by
decomposing the CluSPTP into two smaller sub-problems which are solved separately.

The clustered shortest-path tree problem belongs to the class of generalized combinato-
rial optimization problems. This category of problems naturally generalizes the classical
combinatorial optimization problems, having the following primary features: the nodes
of the underlying graph are partitioned into a certain number of clusters and, when con-
sidering the feasibility constraints of the initial problem, these are expressed in relation to
the clusters rather than as individual nodes. A closely related problem to CluSPTP was
introduced by Myung et al. [10] and was called the Generalized Minimum Spanning Tree
Problem, whose objective is to find a minimum cost tree spanning a subset of nodes that
includes exactly one node from each cluster. For more information regarding the general-
ized minimum spanning tree problem and its variants, we refer to Pop et al. [14, 16]. Some
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other generalized combinatorial optimization problems that have been investigated, are:
the generalized traveling salesman problem and its variants [7, 13], the generalized vehi-
cle routing problem and its variants [8, 11, 15], the selective graph coloring problem [3, 6],
etc. For further reference on the class of generalized combinatorial optimization problems
we refer to [12].

In this paper, we propose a novel genetic algorithm for solving the general CluSPTP
and an exact algorithm that solves efficiently the euclidean instances defined on complete
graphs. The proposed algorithms outperform the ones existing in literature in terms of
speed and accuracy.

The present paper is organized as follows: the second section provides a formal defi-
nition of the clustered shortest-path tree problem, Section III presents the novel solution
approach based on genetic algorithms. The next section (Section IV) provides a compar-
ative analysis of the performance of our proposed genetic algorithm with the existing
solution approaches from the literature, while in Section V some concluding results, as
well as further research directions are presented.

2. DEFINITION OF THE CLUSTERED SHORTEST-PATH TREE PROBLEM

We consider an undirected connected graph G = (V,E) with the set of nodes V =
{v1, v2, ..., vn} and the set of edges E, E ⊆ {{vi, vj}| vi, vj ∈ V, i 6= j ∈ {1, 2, ..., n}}.

The set of nodes V is partitioned into k mutually exclusive nonempty subsets denoted
C1, ..., Ck and called clusters. The following conditions hold:

1. V = C1 ∪ C2 ∪ ... ∪ Ck

2. Cl ∩ Cp = ∅ for all l, p ∈ {1, ..., k} and l 6= p.
The edges of the graph are classified into two categories: edges which connect vertices

belonging to the same cluster, called intra-cluster edges and edges which connect vertices
belonging to different clusters, called inter-cluster edges. In addition we define a cost
function c : E → R+ which attaches to each edge e ∈ E a positive cost ce.

If S is a subset of nodes, S ⊆ V , then by G[S] we will denote the subgraph induced by
S. Given a spanning tree T of the graph G and two nodes vi, vj ∈ V , the length of the
shortest path between vi and vj will be denoted by dT (vi, vj). Given a source node s ∈ V ,
we will denote by

∑
v∈V

dT (s, v) the total cost of the paths from the given source node s to

all the other nodes of the graph.
The clustered shortest-path tree problem aims for finding a tree T with the following prop-

erties:
1. T spans all the nodes of the graph G;
2. The induced subgraphs T [Ci], ∀i ∈ {1, ..., k} are connected.

and such that the total cost of the paths from a given source node to all the other nodes of
the graph is minimized, i.e.

(2.1)
∑
v∈V

dT (s, v)→ min .

In Figure 1 the CluSPTP defined on an undirected graph with 19 vertices divided into 6
clusters is illustrated. A feasible solution of the problem is presented in Figure 9.

Our genetic algorithm solves the general CluSPTP which is NP -hard, but there exist
four particular cases in which the problem can be solved differently, obtaining the exact
solution efficiently, in polynomial time. We propose as well an exact algorithm for the
particular case when the graph is euclidean and complete.
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FIGURE 1. CluSPTP instance example

1. Considering |Vi| = 1 for all i ∈ {1, ..., k}, the CluSPTP is trivially reduced to the
classical single-source shortest-path problem, which can be solved in polynomial
time.

2. If k = 1, then the problem is the classical single-source shortest-path problem for
the nodes belonging to the only existing cluster.

3. Considering that the number of clusters k is fixed then the CluSPTP can be solved
in polynomial time (in the number of nodes n). In this case, a polynomial time
procedure which solves the problem, based on dynamic programming, can be
developed quite easily.

4. When the CluSPTP is defined on complete and euclidean graphs, the problem can
be solved optimally in polynomial time. In this case, the shortest path between
two nodes in the graph G is always the edge that connects them, so dG(v, u) = cv,u,
where cv,u is the cost of the edge {v, u} ∈ E (we consider cv,v = 0, v ∈ V ). The
optimal solution for such a graph is a rooted tree that connects directly the root
(source) node of the graph to the root node of each cluster in the graph, and all
the nodes within each cluster are directly linked to the root node of the cluster,
such that the total cost of the paths from a given source node to all the other nodes
of the graph is minimized. The optimal solution can be obtained using a greedy
algorithm to determine the source node for each cluster. If s ∈ Cr is the root of the
spanning tree and si is the root of Ci, i ∈ {1, 2, ..., k} \ {r}, the cost of reaching the
nodes in Ci from s in the spanning tree is

(2.2) costi = cs,si · |Ci|+
∑
v∈Ci

csi,v.

The optimal solution is obtained when all costi are minimized

(2.3) TC =

k∑
i=1

min
u∈Ci

{ |Ci| · cs,u +
∑
v∈Ci

cu,v}.

and can be efficiently found using a greedy algorithm as follows:
a) TC = costr.
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b) For each i ∈ {1, 2, ..., k} \ {r}
choose si ∈ Ci that minimizes costi;
TC = TC + costi.

If the source node s is not given, only the root cluster Cr, we choose the minimum
value of TC obtained for every node v ∈ Cr.

D’Emidio et al. [5] showed that in general the CluSPTP isNP -hard, that is why in order
to solve the investigated problem we propose an efficient genetic algorithm.

3. DESCRIPTION OF THE PROPOSED GENETIC ALGORITHM

In this section, we present our proposed genetic algorithm whose main feature is an
innovative representation scheme that enables us to construct easily feasible CluSPTP so-
lutions and to explore efficiently the solution space of the problem.

3.1. The chromosome structure. Let G = (V,E) be the considered graph, as described in
Section II. The genes of a chromosome contain a complete set of inter-cluster edges, one
for each pair of clusters. Thus, for an instance with k clusters, the total number of genes
that define a chromosome is k × (k − 1)/2. The gene corresponding to the pair of clusters
Cx, Cy will be denoted gxy for all x > y, x, y ∈ {1, .., k}. The gene gxy corresponds to an
edge between clusters Cx and Cy , if there is at least an edge {vi, vj} ∈ E, vi ∈ Cx , vj ∈
Cy , x > y, otherwise the gene gxy is void.

The genes of a chromosome can be stored in a triangular array having the structure
shown in Figure 2. The gene that connects the clusters Cx and Cy with x > y, is found on
line x and column y in the genes array.

FIGURE 2. The structure of a chromosome gene array

In our GA, a chromosome A is defined as follows:

A = {gxy , x ∈ {1, ..., k} , y ∈ {1, ..., k} , x > y}
Such a chromosome defines a subgraph GA = (V,A) of G, where the set of edges corre-
sponds to the set of genes.

In Figure 3, we illustrate a chromosome gene array corresponding to the CluSPTP in-
stance in Figure 1. The subgraph defined by the chromosome in Figure 3 is presented in
Figure 4. This subgraph corresponds to a CluSTSP subproblem, in which the graph G is
replaced by GA.
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FIGURE 3. A chromosome gene array for the instance in Figure 1

FIGURE 4. The subgraph defined by the chromosome illustrated in Fig-
ure 3

3.2. Solving the CluSTSP subproblem. We solve the CluSTSP subproblem defined by
GA, the subgraph built using chromosome A, using an efficient heuristic algorithm in five
steps that speculates the fact that any two clusters of the instance are connected by at most
an edge.

The first step of the algorithm is to build a skeleton SA of the GA subgraph in which
every cluster is reduced to a single node. The skeleton of the subgraph in Figure 4 is
shown in Figure 5. The source node of the skeleton is the node corresponding to the
cluster that contains the source node of the instance. We will call this cluster the source
cluster.

The second step is running the Shortest Path First (SPF) algorithm on the skeleton. The
SPF algorithm produces a spanning tree that contains the optimal inter-cluster routes. The
result of applying the SPF algorithm on the skeleton in Figure 5 is shown in Figure 6. This
spanning tree is kept in a parent array that has k elements. The parent array for the tree
in Figure 6 is shown in Figure 7.

In the third step, the source nodes for each of the clusters are determined, using the
parent array Parent of the skeleton tree and the genes array, as follows:

• The source node of the source cluster is the source node of the instance.
• For finding the source node of cluster Cb, its parent Ca, a = Parent[b] is consid-

ered in the parent array of the skeleton tree. The source node of cluster Cb is the
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FIGURE 5. The skeleton of the subgraph in Figure 4

FIGURE 6. Spanning tree of the skeleton shown in Figure 5

FIGURE 7. The parent array for the tree in Figure 6

extremity in Cb of the edge represented by the gene gxy with x 6= y ∈ {a, b} in the
chromosome gene array.
• If b > a the gene is found on line b and column a of the chromosome gene array,

otherwise the gene is found on line a and column b.

The result of this step is shown in Figure 8. All inter-cluster edges of the instance graph
have been removed except those appearing in the skeleton tree in Figure 6. The source
nodes in each cluster are represented with double line.

In the fourth step, the SPF algorithm is run for each cluster, thus the spanning trees
inside the clusters are determined. A spanning tree for the entire instance is generated by
connecting the cluster spanning trees with the edges of the skeleton tree. This instance
spanning tree depends on the genes of the chromosome and satisfies the conditions of the
CluSPTP.

For the instance in Figure 1, the spanning tree generated using the chromosome gene
array from Figure 3 is shown in Figure 9.

The final step determines the total cost of the solution, TC, using the following relation
on the instance spanning tree:
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FIGURE 8. Inter-cluster tree of the subgraph in Figure 4

FIGURE 9. The spanning tree of the instance from Figure 1 generated us-
ing the chromosome from Figure 3

(3.4) TC =

k∑
x=1

( |Cx| · dT (s, sx) + clx ),

where |Cx| is the number of nodes in cluster Cx, sx is the source node of cluster Cx and
clx is the total cost of the routes inside cluster Cx. We will name clx the total internal cost
of cluster Cx and we have that

(3.5) clx =
∑
v∈Cx

dT (sx, v)

For the instance illustrated in Figure 9, the values of the operands in the formula of the
total cost are shown in Figure 10.



408 Ovidiu Cosma, Petrică C. Pop and Ioana Zelina

FIGURE 10. The costs of the solution presented in Figure 9

3.3. Efficiency issues. Since the optimization process may require the evaluation of a
large number of chromosoms, the algorithm should avoid repeating the same opera-
tions. Thus, it is preferable to run the SPF algorithm within each cluster, for each possible
source node, in the initialization phase of the algorithm, and to keep the results in a bi-
dimensional array at cluster level. This operation performed for cluster 5 of the instance
in Figure 1 is depicted in Figure 11, and the results are shown in Figure 12.1.

The costs of the routes from each node to the source node of the cluster they belong to,
can be also evaluated only once, in the initialization phase, and kept in an array of costs
at cluster level. The main diagonal of these arrays keeps the total internal costs of the
clusters. The costs array for cluster 5 of the instance in Figure 1 is shown in Figure 12.2.

FIGURE 11. Spanning trees for cluster 5 of the instance from Figure 1

3.4. Initial population. The initial population is composed of random chromosomes.
The genes array of these chromosomes are created element-by-element as follows: the
element on line x and column y, x > y is a randomly chosen edge from the instance,
edge that connects a node in cluster Cx with a node in cluster Cy . If the instance does not
contain such an edge, then this gene will be void. This generating mechanism has the ad-
vantage that it creates only valid chromosomes that can be used to create valid solutions
of the CluSPTP.
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FIGURE 12. Parent array and costs array associated to cluster 5 in the case
of the instance presented in Figure 1

The fitness of each new created chromosome throughout the optimization process is
evaluated by solving the CluSPTP subproblem defined by its genes.

We will denote by D the dimension of the current population. The number of chromo-
somes generated for the initial population is 3×D. The initial population is processed by
the selection mechanism, resulting the current population.

3.5. Crossover. The crossover mechanism selects from the current population two par-
ents p1 and p2, which are used to create an offspring. The first parent is allways chosen
randomly from the best 20% chromosomes in the current population, and the second par-
ent is chosen randomly from the entire population. This is a combination between elitist
and random selection strategies. The genes of the offspring are selected, according to the
uniform crossover mechanism, either from p1 or from p2 with equal probabilitiers.

The number of crossover operations performed for completing a new generation of
chromosomes is 3×D. The new generation of chromosomes is processed by the selection
mechanism, resulting a new current population.

3.6. Selection. The selection mechanism merges the newly created population with the
current population, removes the duplicates, then sorts the resulting population by fitness
value. Then the best D chromosomes are selected for the new current population. All the
rest are discarded.

3.7. Mutation. We used uniform mutation. The mutation operator randomly selects one
of the chromosome genes and replaces it with another edge that connects nodes from the
same two clusters as the original gene. If the original gene is void or there is a single edge
between the two clusters, then the mutation operator ends and the chromosome remains
unchanged.

Typically, a mutation operator performs significant changes to the chromosome data,
but is applied with a low probability. Our proposed mutation operator performs small
changes to the chromosomes and there is a good probability that these changes do not
affect in any way the built CluSPTP solutions. For this reason, we apply the mutation
operator to each new chromosome created by the crossover mechanism. This way, the
diversity of the generated chromosomes is improved.

3.8. Genetic parameters. The genetic parameters have an important impact on the per-
formance of the GAs. That is why in our developed GA the values of the parameters have
been chosen based on computational experiments and statistical analysis. The parameters
have been chosen as follows: the dimension of the current population D ranges between
1500 and 5000, depending on instance dimensions, the initial population contains 3 × D
individuals, the algorithm is stopped when the best known solution is not improved over
the last 30 generations of chromosomes, the number of crossover operations performed



410 Ovidiu Cosma, Petrică C. Pop and Ioana Zelina

for completing each new generation of chromosomes is 3×D and the mutation probability
is 0.5.

4. COMPUTATIONAL RESULTS

This section contains the preliminary computational results achieved by our novel so-
lution approach. In order to asses the performance of the proposed genetic algorithm,
we tested our solution approach on two sets of instances: one that contains euclidean in-
stances and the other one containing non-euclidean instances. We must point out that all
the existing benchmark instances from the literature are euclidean and defined on com-
plete graphs and therefore can be solved optimally by the greedy algorithm described
in Chapter 2. For testing the performance of our proposed GA, we compared it to the
existing state-of-the-art algorithm for solving the CluSPTP, the evolutionary algorithm
developed by Binh et al. [2]. Our proposed algorithms: the exact polynomial time algo-
rithm for euclidean and complete graphs described in Chapter 2 and the genetic algorithm
were implemented in Java 8 and have been tested on a PC with Intel Core i5-4590 3.3GHz,
16GB RAM, Windows 10 Education 64 bit operating system. In our GA for each instance
we carried out 10 independent trials.
4.1. Computational results on euclidean instances. In the case of euclidean instances
defined on complete graphs, we tested the performance of our proposed GA on a set of
40 benchmark instances from the total set of 250 euclidean instances generated by Binh
et al. [2]. In addition we delivered the optimal solutions obtained by the described exact
algorithm. The previously mentioned instances are based on the MOM-lib provided by
Mestria et al. [9] in the case of the Clustered Traveling Salesman Problem. The MOM-
lib contains six kinds of instances which were obtained using different algorithms, see for
more details [9] and classified into two groups according to the dimension: small instances
and large instances. The instances used in our computational experiments belong to the
Type 1 category of instances and have the following characteristics: the small euclidean
instances contain between 51 and 105 nodes partitioned within a number of clusters rang-
ing from 10 to 50 and the large instances contain between 262 and 1379 nodes partitioned
within a number of clusters ranging from 10 to 100. The source node was selected ran-
domly for each of the considered instances.

Tables 1 – 2 display the optimal solutions achieved by our exact algorithm, the results
obtained by our GA for solving the considered instances of the CluSPTP and in addition
the reported results by Binh et al. [2] for solving the problem with their evolutionary
algorithm. The first two columns indicate the number of the instance and its name, the
third and the fourth column show the cost of the optimal solutions achieved by our exact
algorithm and the necessary computational times in seconds in order to achieve them, the
next three columns contain the best and average solutions obtained by the evolutionary
algorithm developed by Binh et al. [2] and the necessary average computational times
reported in minutes in order to achieve the corresponding solutions and the last columns
contain the best and average solutions obtained by our proposed GA and the necessary
average computational times reported in minutes in order to achieve the corresponding
solutions. The simbol ”-” means that the corresponding results were not provided by Binh
et al. [2]. The winning result among the one published in [2] and the proposed is marked
with bold font.

Analyzing the computational results displayed in Table 1, one can notice that: the ex-
act algorithm delivered the optimal solution in less than 1 millisecond; the evolutionary
algorithm developed by Binh et al. [2] provided sub-optimal solutions within at most 0.08
minutes, but did not obtain in any of the instances the optimal solution and our proposed
solution approach obtained the optimal solutions in 14 out of 20 small instances of Type
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TABLE 1. Experimental results in the case of small euclidean instances of
Type 1

Instance Our Exact Algorithm Evolutionary Algorithm [2] Our Genetic Algorithm
No. Size Optimal Time Best Average Time Best Average Time

solution (seconds) solution solution (minutes) solution solution (minutes)
1. 10berlin52 43724.0 < 0.001 43954.0 44237.6 0.02 43724.0 43724.0 0.02
2. 10eil51 1713.2 < 0.001 1741.5 1770.6 0.02 1713.2 1713.2 0.02
3. 10eil76 2203.2 < 0.001 2264.5 2315.6 0.02 2203.2 2203.2 0.02
4. 10kroB100 140522.2 < 0.001 143108.6 147539.7 0.02 140522.2 140522.2 0.02
5. 10rat99 7520.2 < 0.001 7697.8 7899.4 0.02 7520.2 7520.2 0.02
6. 10st70 3095.2 < 0.001 3098.7 3191.1 0.02 3095.2 3095.2 0.02
7. 15berlin52 26311.9 < 0.001 26463.1 26867.8 0.03 26311.9 26311.9 0.08
8. 15eil51 1306.4 < 0.001 1313.4 1336.5 0.03 1306.4 1306.4 0.03
9. 15eil76 2909.0 < 0.001 2955.3 3047.8 0.03 2909.0 2909.0 0.08
10. 15pr76 704600.5 < 0.001 714652.2 728128.0 0.03 704600.5 704600.5 0.07
11. 15st70 4120.0 < 0.001 4145.8 4230.1 0.03 4120.0 4120.0 0.06
12. 25eil101 4678.9 < 0.001 4826.6 4885.5 0.03 4678.9 4687.3 0.68
13. 25kroA100 147195.0 < 0.001 150157.7 153155.6 0.03 147195.0 147195.0 0.50
14. 25lin105 97944.7 < 0.001 98991.8 100615.8 0.03 97957.0 97958.1 0.54
15. 25rat99 6841.4 < 0.001 7056.0 7162.3 0.03 6841.4 6841.4 0.64
16. 50eil101 3825.2 < 0.001 3890.7 3919.7 0.07 3834.8 3839.8 6.62
17. 50kroA100 159647.2 < 0.001 160547.4 161889.6 0.07 160479.2 160522.1 4.89
18. 50kroB100 133104.5 < 0.001 134077.5 135332.2 0.07 133104.5 133104.5 1.57
19. 50lin105 145829.0 < 0.001 146367.1 147175.4 0.07 146130.5 146284.2 8.83
20. 50rat99 8007.4 < 0.001 8104.5 8132.4 0.08 8007.4 8011.6 7.85

1. Our novel GA provided the optimal solution in all the ten runs in 15 out of 20 in-
stances. Our algorithm outperforms the evolutionary algorithm developed by Binh et al.
[2] from the point of the quality of the achieved solutions: providing better solutions and
smaller average percentage gaps in comparison to the evolutionary algorithm developed
by Binh et al. [2] for each of the 20 instances. The computation times of our algorithm are
similar to those of Binh et al. [2] in 7 out of 20 instances. Our algorithm needed longer
computation times for the other instances, but that is explicable because our algorithm
found better solutions for those instances and the algorithm proposed in [2] explores only
a tiny subspace of the solutions space, in which the root node of each cluster is directly
connected to the root nodes of all descendants, while our GA explores the entire solution
space.

When taking a closer look at the computational results shown in Table 2, we can ob-
serve that: the exact algorithm delivered the optimal solution in less than 1 millisecond;
the evolutionary algorithm developed by Binh et al. [2] has been able to solve only the
first 14 instances providing sub-optimal solutions within at most 0.10 minutes, but did not
obtain in none of the instances the optimal solution and our proposed solution approach
obtained the optimal solutions in 10 out of 20 instances, in 5 of these instances being able
to provide the optimal solution in all the ten runs. Our proposed GA outperforms the
evolutionary algorithm developed by Binh et al. [2] w.r.t. the quality of the achieved so-
lutions, providing better solutions and smaller average percentage gaps in comparison to
the evolutionary algorithm developed by Binh et al. [2] for each instance. Concerning the
running time, our algorithm needed longer computation time for solving the instances,
but that is explicable because our algorithm found better solutions than those provided
by Binh et al. [2] and explores the entire space of solutions.

4.2. Computational results on non-euclidean instances. The euclidean instances reported
on Tables 1 – 2 were transformed into non-euclidean instances, as follows:

a) for each edge e of G
if ce 6= 0
r ← random value ∈ [−0.5 · ce, 0.5 · ce]
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TABLE 2. Experimental results in the case of large euclidean instances of
Type 1

Instance Our Exact Algorithm Evolutionary Algorithm [2] Our Genetic Algorithm
No. Size Optimal Time Best Average Time Best Average Time

solution (seconds) solution solution (minutes) solution solution (minutes)
1. 10a280 27925.2 < 0.001 28690.9 29664.8 0.02 27925.2 27925.2 0.03
2. 10gil262 27637.4 < 0.001 29075.0 29568.4 0.02 27637.4 27637.4 0.08
3. 10lin318 809749.9 < 0.001 832299.5 841893.2 0.02 809749.9 809749.9 0.07
4. 10pcb442 741195.8 < 0.001 765561.0 796960.4 0.02 741195.8 741195.8 0.07
5. 10pr439 1904690.2 < 0.001 1971633.0 2022257.4 0.02 1904690.2 1904690.2 0.04
6. 25a280 29902.4 < 0.001 31481.2 32020.2 0.03 29902.4 29909.7 0.99
7. 25gil262 30325.6 < 0.001 31579.5 31949.7 0.03 30325.6 30329.3 1.46
8. 25lin318 584554.0 < 0.001 607029.0 617399.9 0.03 584554.0 584590.4 1.28
9. 25pcb442 740892.5 < 0.001 794217.4 805896.7 0.03 740892.5 740910.2 1.10
10. 25pr439 1511168.9 < 0.001 1585283.0 1612334.7 0.03 1511168.9 1511275.5 1.02
11. 50a280 36266.9 < 0.001 37458.4 37828.6 0.10 36290.7 36322.6 7.96
12. 50gil262 26523.2 < 0.001 27647.5 27836.2 0.10 26524.4 26576.5 5.68
13. 50lin318 688724.6 < 0.001 706854.9 713744.5 0.10 688952.4 689357.2 8.08
14. 50pcb442 910478.6 < 0.001 949830.8 954169.0 0.10 911563.7 912364.6 8.56
15. 50nrw1379 1831566.9 < 0.001 - - - 1833381.3 1833926.0 12.27
16. 50pcb1173 1108183.7 < 0.001 - - - 1108602.6 1109313.6 11.30
17. 50pr1002 5243008.6 < 0.001 - - - 5245119.9 5246848.6 6.97
18. 100pr1002 6213697.0 < 0.001 - - - 6227722.6 6230444.8 53.81
19. 100rat783 175893.9 < 0.001 - - - 176430.7 176502.9 51.47
20. 100vm1084 8504736.0 < 0.001 - - - 8522466.4 8526639.9 48.73

ce ← max{bce + rc, 1}
b) for each cluster Cx

nx ← random integer ∈ [ 1, |Cx| · (|Cx| − 1)/2 ]
randomly choose nx intra-cluster edges from Cx

for each chosen edge e
if ce 6= 0
r ← random value ∈ [0, 0.75 · ce]
ce ← max{bce − rc, 1}

In Tables 3 – 4 we report the solutions achieved by our GA for solving 40 non-euclidean
instances of Type 1 of the CluSPTP. The first four columns indicate the number of the
instance, its name and information about its dimension, the next two columns contain the
best and average solutions obtained by our proposed GA, then we provide the percentage
gap calculated as follows: %gap = 100 × (Best sol. − Average sol.)/Best sol., where
Best sol. and Average sol. are the costs of the best respectively the average solutions
achieved by our algorithm in the ten runs of each instance, and the last column contains
the necessary average computational times reported in minutes in order to achieve the
corresponding solutions. The instances with no variation are marked with bold font.

Analyzing the results displayed in Tables 3 – 4, we can remark that:
1. In the case of the small instances of Type 1, our GA provided in 15 out of 20 in-

stances the same best solutions in all the ten runs, and for the other instances the
percentage gap is at most 0.21%. The necessary average computational time value
reported in minutes in order to achieve the corresponding solutions is at most 1.19
minutes.

2. In the case of the large instances of Type 1, our GA achieved in 2 out of 20 instances
the same best solutions in all the ten runs, and for the other instances the percent-
age gap is at most 2.83%. The necessary average computational time reported in
minutes in order to achieve the corresponding solutions are bellow 4.83 minutes
in 16 out of 20 instances and at most 42.54 minutes.

3. We can notice that the percentage gap is bellow 0.88% in 36 out of 40 instances and
at most 2.83%, fact that proves the stability of our proposed solution approach.
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TABLE 3. Experimental results in the case of small non-euclidean in-
stances of Type 1

Instance Our Genetic Algorithm
No. Name No. nodes No. clusters Best solution Average solution gap % Time (minutes)
1. Nec-10berlin52 52 10 28027 28027.00 0.00 0.01
2. Nec-10eil51 51 10 1009 1009.00 0.00 0.01
3. Nec-10eil76 76 10 1258 1258.00 0.00 0.01
4. Nec-10kroB100 100 10 76274 76274.00 0.00 0.01
5. Nec-10rat99 99 10 4111 4111.00 0.00 0.01
6. Nec-10st70 70 10 1628 1628.00 0.00 0.01
7. Nec-15berlin52 52 15 16836 16836.00 0.00 0.02
8. Nec-15eil51 51 15 867 867.00 0.00 0.01
9. Nec-15eil76 76 15 1578 1578.00 0.00 0.02
10. Nec-15pr76 76 15 404626 404626.00 0.00 0.03
11. Nec-15st70 70 15 2204 2204.00 0.00 0.02
12. Nec-25eil101 101 25 2514 2519.50 0.21 0.09
13. Nec-25kroA100 100 25 86971 87050.00 0.09 0.07
14. Nec-25lin105 105 25 56371 56393.50 0.04 0.10
15. Nec-25rat99 99 25 3742 3742.00 0.00 0.07
16. Nec-50eil101 101 50 2035 2036.00 0.04 1.19
17. Nec-50kroA100 100 50 92131 92203.50 0.07 0.88
18. Nec-50kroB100 100 50 78632 78632.00 0.00 0.60
19. Nec-50lin105 105 50 80785 80785.00 0.00 0.81
20. Nec-50rat99 99 50 4651 4651.00 0.00 0.66

TABLE 4. Experimental results in the case of large non-euclidean in-
stances of Type 1

Instance Our Genetic Algorithm
No. Name No. nodes No. clusters Best solution Average solution gap % Time (minutes)
1. Nec-10a280 280 10 13659 13659.00 0.00 0.02
2. Nec-10gil262 262 10 13804 13845.00 0.29 0.02
3. Nec-10lin318 318 10 347715 349190.75 0.42 0.02
4. Nec-10pcb442 442 10 289271 293341.50 1.40 0.03
5. Nec-10pr439 439 10 821867 826615.25 0.57 0.03
6. Nec-25a280 280 25 16115 16219.25 0.64 0.15
7. Nec-25gil262 262 25 15394 15434.00 0.26 0.15
8. Nec-25lin318 318 25 313801 314488.75 0.21 0.18
9. Nec-25pcb442 442 25 368212 369320.75 0.30 0.23
10. Nec-25pr439 439 25 724265 727710.50 0.47 0.19
11. Nec-50a280 280 50 19630 19634.00 0.02 2.71
12. Nec-50gil262 262 50 14234 14244.50 0.07 1.56
13. Nec-50lin318 318 50 363560 363572.50 0.00 2.10
14. Nec-50pcb442 442 50 492495 496873.25 0.88 2.81
15. Nec-50nrw1379 1379 50 741498 762543.75 2.83 8.27
16. Nec-50pcb1173 1173 50 462554 471152.00 1.85 4.83
17. Nec-50pr1002 1002 50 2604500 2637842.00 1.28 4.43
18. Nec-100pr1002 1002 100 3215011 3223283.75 0.25 35.62
19. Nec-100rat783 783 100 89422 89543.50 0.13 30.83
20. Nec-100vm1084 1084 100 4244669 4260804.00 0.38 42.54

5. CONCLUSIONS

In this paper, we described a novel genetic algorithm for solving the clustered shortest-
path tree problem and an exact algorithm that solves the investigated problem in the case
of euclidean instances defined on complete graphs. The proposed GA has two important
characteristics: the employment of an efficient representation scheme which saves com-
puter memory and allows us to explore as much of the solutions space as possible and the
use of a selection strategy which is a combination between random selection and elitist
selection.

We evaluated the performance of the proposed solution approach on two sets of bench-
mark instances: one set of 20 euclidean instances available in the literature and the other
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one containing 20 non-euclidean instances. In the case of the euclidean instances we pro-
vided the optimal solutions obtained by our developed exact algorithm and the results
achieved by our GA and we compared it with the evolutionary algorithm proposed by
Binh et al. [2] that constitutes the state-of-the-art for the CluSPTP with respect to solu-
tion quality and computation time. The computational results that we achieved prove the
efficiency of our developed GA in yielding high quality solutions within reasonable run-
ning times, besides its superiority as compared to the evolutionary algorithm proposed
by Binh et al. [2].

In future work, we plan to assess the generality and scalability of our developed solu-
tion approach by testing it on different types of instances.
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