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Quantitative approximation by nonlinear convolution
operators of Landau-Choquet type

SORIN G. GAL and IONUŢ T. IANCU

ABSTRACT. By using the concept of Choquet nonlinear integral with respect to a monotone set function, we
introduce the nonlinear convolution operators of Landau-Choquet type, with respect to a family of submodular
set functions. Quantitative approximation results in terms of the modulus of continuity are obtained with respect
to some particular possibility measures. For some subclasses of functions we prove that these Landau-Choquet
type operators can have essentially better approximation properties than their classical correspondents.

1. INTRODUCTION

In 1885, Karl Weierstrass obtained in [18] his famous result regarding the uniform ap-
proximation of continuous functions on a compact interval, by polynomial sequences.
His proof is heavily based on the the sequence of singular convolution integrals (what we
today call as Gauss-Weierstrass operators)

Wn(f)(x) =
1

n
√
π

∫
R
f(s) · e−((s−x)/n)

2

ds, n ∈ N, x ∈ R.

In 1908, Edmund Landau recaptured in [15] the Weierstrass’ result by using the sequence
of convolution operators defined by (what we today call as Landau operators)

Ln(f)(x) =

√
n√
π

∫ 1

0

f(s)[1− (s− x)2]nds, n ∈ N, x ∈ [0, 1].

In a very recent paper [7], in essence by replacing in the expression of the Gauss-Weier-
strass operators defined just above, the usual linear Lebesgue integral with the nonlinear
Choquet integral, the first author has introduced and studied nice approximation proper-
ties of the so-called now Gauss-Weierstrass-Choquet operators.

The main goal of the present paper is to use the same idea for the above Landau opera-
tors and to introduce and study the approximation properties of the now called Landau-
Choquet operators.

It is worth mentioning here that the well-known Feller’s probabilistic scheme in con-
structing linear and positive approximation operators (see [4], Chapter 7), was extended
in [5] by replacing the classical linear integral with respect to a measure, with the nonlin-
ear Choquet integral with respect to a monotone set-valued function (capacity). Also, in
the papers [5]-[13], approximation results for various nonlinear approximation operators
based on the Choquet integral with respect to a family of submodular set functions were
obtained.

In the present paper, for the Landau-Choquet integral operators with respect to some
particular possibility measures, we obtain quantitative approximation results in terms of
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the modulus of continuity ω1(f ; ·) and, for some subclasses of functions we get essentially
better approximation properties than their classical correspondents.

2. PRELIMINARIES

In order to give the reader a flavor on the topic, firstly in this section we present some
concepts and results concerning the Choquet integral.

Definition 2.1. Let (Ω, C) be a measurable space, i.e. Ω is a nonempty set and C be a σ-ring
(or σ-algebra) of subsets in Ω with ∅ ∈ C.

(i) (see, e.g., [17], p. 63) The set function µ : C → [0,+∞] is called a monotone measure
(or capacity) if µ(∅) = 0 and A,B ∈ C, with A ⊂ B, implies µ(A) ≤ µ(B). The monotone
measure µ is called normalized if Ω ∈ C and µ(Ω) = 1.

(ii) (see [1], or, e.g., [16], or, e.g., [17], p. 179) Let µ be a normalized monotone measure
and consider G = {X : Ω → R+;X is measurable on (Ω, C)}. Recall that X : Ω → R is
measurable (or more precisely C-measurable), if for any B, Borelian subset in R, we have
X−1(B) ∈ C.

For A ∈ C and X ∈ G, the Choquet integral of X on A with respect to a monotone
measure µ is defined by

(C)

∫
A

Xdµ =

∫ ∞
0

µ(Fα(X)
⋂
A)dα,

where
Fα(X) = {ω ∈ Ω;X(ω) ≥ α}.

If
(C)

∫
A

Xdµ < +∞

then X is called Choquet integrable on A.
If X : Ω → R is of arbitrary sign, then the Choquet integral is defined by (see [17], p.

233)

(C)

∫
A

Xdµ =

∫ +∞

0

µ(Fα(X)
⋂
A)dα+

∫ 0

−∞
[µ(Fα(X)

⋂
A)− µ(A)]dα.

When µ is the Lebesgue measure, then the Choquet integral (C)
∫
A
Xdµ reduces to the

Lebesgue integral.
(iii) A possibility measure is a set function P : P(Ω) → [0, 1], satisfying the axioms

P (∅) = 0, P (Ω) = 1 and P (
⋃
i∈I Ai) = sup{P (Ai); i ∈ I} for all Ai ⊂ Ω, and any I , an

at most countable family of indices. Note that if A,B ⊂ Ω, A ⊂ B, then the last property
easily implies that P (A) ≤ P (B) and that

P (A
⋃
B) ≤ P (A) + P (B).

A function λ : Ω→ [0, 1] is called possibility distribution if sup{λ(ω);ω ∈ Ω} = 1. Any
possibility distribution λ on Ω, induces the possibility measure Pλ : P(Ω) → [0, 1], given
by the formula Pλ(A) = sup{λ(s); s ∈ A}, for all A ⊂ Ω, Pλ(∅) = 0 (see, e.g., [3], Ch. 1).

Some known properties of the Choquet integral are expressed by the following.

Remark 2.1. Let us suppose that µ is a monotone measure. Then, the following properties
hold :

(i) (C)
∫
A

is non-additive (i.e. (C)
∫
A

(f + g)dµ 6= (C)
∫
A
fdµ + (C)

∫
A
gdµ) but it is

positive homogeneous, i.e. for all a ≥ 0 we have (C)
∫
A
afdµ = a · (C)

∫
A
fdµ (for f ≥ 0

see, e.g., [17], Theorem 11.2, (5), p. 228 and for f of arbitrary sign, see, e.g., [2], p. 64,
Proposition 5.1, (ii)).
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If f ≤ g on A then the Choquet integral is monotone, that is (C)
∫
A
fdµ ≤ (C)

∫
A
gdµ

(see, e.g., [17], p. 228, Theorem 11.2, (3) for f, g ≥ 0 and p. 232 for f, g of arbitrary sign).
If µ is submodular too (i.e. µ(A

⋃
B) + µ(A

⋂
B) ≤ µ(A) + µ(B) for all A,B) then the

Choquet integral is subadditive, that is (C)
∫
A

(f + g)dµ ≤ (C)
∫
A
fdµ+ (C)

∫
A
gdµ, for all

f, g of arbitrary sign (see, e.g., [2], p. 75, Theorem 6.3).
If µ denotes the dual measure of µ (that is µ(A) = µ(Ω)− µ(Ω \ A), for all A ∈ C), then

for all f of arbitrary sign we have (C)
∫
A

(−f)dµ = −(C)
∫
A
fd µ (see, e.g., [17], Theorem

11.7, p. 233).
If c ∈ R and f is of arbitrary sign, then (C)

∫
A

(f + c)dµ = (C)
∫
A
fdµ + c · µ(A) (see,

e.g., [17], pp. 232-233, or [2], p. 65).
By the definition of the Choquet integral, if F ≥ 0 and µ is subadditive, then it is

immediate that

(C)

∫
A

⋃
B

Fdµ ≤ (C)

∫
A

Fdµ+ (C)

∫
B

Fdµ.

Note that if µ is submodular then it is clear that it is subadditive too.
(ii) Simple concrete examples of monotone and submodular set functions µ, can be

obtained from a probability measure M on P(X) (i.e. M(∅) = 0, M(X) = 1 and M is
countable additive), by the formula µ(A) = γ(M(A)), where γ : [0, 1] → [0, 1] is an in-
creasing and concave function, with γ(0) = 0, γ(1) = 1 (see, e.g., [2], pp. 16-17, Example
2.1). Concrete examples for γ(x) are γ(x) =

√
x, γ(x) = 2x

1+x , so on. If, in addition, M is
the Lebesgue measure, then µ are called distorted Lebesgue measures.

Also, any possibility measure µ is monotone and submodular. While the monotonicity
is immediate from the axiom µ(A

⋃
B) = max{µ(A), µ(B)}, the submodularity is imme-

diate from the property µ(A
⋂
B) ≤ min{µ(A), µ(B)}.

(iii) Many other properties of the Choquet integral can be found in, e.g., Chapter 11 in
[17], or in [2].

Now, we present the following general approximation result which will be used in the
next sections.

Theorem 2.1. ([5], Theorem 3.3 and Remark 3.5) Denoting by P(R) the class of all subsets of
R, let (R, C) be a measurable space with C ⊂ P(R) and µn,x : C → [0,+∞), be a monotone and
submodular family of set functions.

For λn,x : R → R+, n ∈ N, x ∈ R, Choquet densities with respect to µn,x, (that is,
(C)

∫
R λn,x(t)dµn,x(t) = 1), let us define by UC(R), the class of all functions f : R → R+,

uniformly continuous on R, such that f · λn,x are C-measurable and Tn(f)(x) < +∞, for all
n ∈ N, x ∈ R, where

Tn(f)(x) = (C)

∫
R
f(t) · λn,x(t)dµn,x(t).

Then, denoting ϕx(t) = |t− x|, for all x ∈ R, n ∈ N and δ > 0 we have

|Tn(f)(x)− f(x)| ≤
[
1 +

Tn(ϕx)(x)

δ

]
· ω1(f ; δ)R.

Also, choosing above δ = Tn(ϕx)(x), it follows

|Tn(f)(x)− f(x)| ≤ 2ω1(f ;Tn(ϕx)(x))R.

Remark 2.2. The above Theorem 2.1 remains valid for functions and operators defined
on compact intervals too. Indeed, analysing the proof of Theorem 3.3 in [5], it is easily
seen that it remains valid for λn,x : I → R+, f : I → R+ and Tn(f)(x) = (C)

∫
I
f(t) ·

λn,x(t)dµn,x(t), where I ⊂ R is a compact subinterval. In fact, for I = [0, 1], Theorem
3.3 in [5] was implicitly used in the case of Bernstein-Durrmeyer-Choquet operators (see
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the proof of Theorem 3.1, (i) in [11]) and in the case of Bernstein-Kantorovich-Choquet
operators (see the proof of Theorem 3.3 in [6]).

3. LANDAU-CHOQUET OPERATORS

The classical Landau linear operators Ln(f)(x) defined in Introduction can be general-
ized to the nonlinear Landau-Choquet operators by the formula

Ln,µn,x
(f)(x) =

1

c(n, x, µn,x)
(C)

∫ 1

0

f(s)[1− (s− x)2]ndµn,x(s),

where f : [0, 1] → R+, {µn,x}, n ∈ N, x ∈ R, is a family of monotone and submodular set
functions depending on n and x too, Fα([1− (s− x)2]n) = {s ∈ [0, 1]; [1− (s− x)2]n ≥ α}
and

c(n, x, µn,x) =

∫ ∞
0

µn,x[Fα([1− (· − x)2]n)]dα.

In this section we study the approximation properties of the Landau-Choquet operators
in the case when the family {µn,x} is defined as the possibility measures induced by the
possibility distributions λn,x(t) = [1− (t− x)2]n, that is

µn,x(A) = sup{λn,x(s); s ∈ A} = sup{[1− (s− x)2]n; s ∈ A}, for all A ⊂ [0, 1],

(see Definition 2.1, (iii)).
It is easy to see that any possibility measure µn,x is bounded, monotone and submod-

ular, therefore we are under the hypothesis of Theorem 2.1.
We have the following.

Theorem 3.2. Let µn,x for all n ∈ N, x ∈ [0, 1] as above. If f : [0, 1] → R+ is continuous on
[0, 1], then

|Ln,µn,x(f)(x)− f(x)| ≤ 2ω1

(
f ; 1/

√
2n+ 1

)
[0,1]

,

for all n ∈ N and x ∈ [0, 1], where

ω1(f ; δ)[0,1] = sup{|f(x)− f(y)|; |x− y| ≤ δ, x, y ∈ [0, 1]}
represents the modulus of continuity of f .

Proof. By Theorem 2.1 and Remark 2.2, for all n ∈ N and x ∈ [0, 1] we get the estimate

(3.1) |Ln,µn,x
(f)(x)− f(x)| ≤ 2ω1(f ;Ln,µn,x

(ϕx)(x))[0,1],

Therefore, the convergence of Ln,µn,x
(f) to f one relies on the convergence to zero, as

n→∞, of the quantity

Ln,µn,x
(ϕx)(x) =

1

c(n, x, µn,x)
· (C)

∫ 1

0

|t− x| · [1− (t− x)2]ndµn,x(t)

=
1

c(n, x, µn,x)
·
∫ ∞
0

µn,x[{t ∈ [0, 1]; |t− x| · [1− (t− x)2]n ≥ α}]dα.

Firstly, we calculate c(n, x, µn,x). We get

c(n, x, µn,x) = (C)

∫ 1

0

[1− (t− x)2]ndµn,x(t) =

∫ ∞
0

µn,x({t ∈ [0, 1]; [1− (t− x)2]n ≥ α})dα∫ 1

0

µn,x({t ∈ [0, 1]; [1− (t− x)2]n ≥ α})dα+

∫ ∞
1

µn,x({t ∈ [0, 1]; [1− (t− x)2]n ≥ α})dα

=

∫ 1

0

µn,x({t ∈ [0, 1]; [1− (t− x)2]n ≥ α})dα
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=

∫ 1

0

sup{[1− (t− x)2]n; t ∈ [0, 1], [1− (t− x)2]n ≥ α}dα =

∫ 1

0

1dα = 1.

In what follows, we calculate

(C)

∫ 1

0

|t− x| · [1− (t− x)2]ndµn,x(t).

For that purpose, taking into account that

|t− x| · [1− (t− x)2]n ≤ sup{t ∈ [0, 1]; |t− x| · [1− (t− x)2]n},
we will calculate

An,x := sup{t ∈ [0, 1]; |t− x| · [1− (t− x)2]n}.
We have

An,x = max{sup{(t− x)[1− (t− x)2]n; t ∈ [x, 1]}, sup{(x− t)[1− (t− x)2]n; t ∈ [0, x]}}.
Denote

Hn,x(t) = (t− x)[1− (t− x)2]n, t ∈ [x, 1].

We get
H ′n,x(t) = [1− (t− x)2]n−1[1− (t− x)2(2n+ 1)],

which by H ′n,x(t) = 0 implies (t− x)2 = 1
2n+1 and therefore

t = x+
1√

2n+ 1

is a maximum point of Hn,x. Therefore, the maximum value of Hn,x(t) for t ∈ [x, 1] is

Hn,x(x+ 1/
√

2n+ 1) =
1√

2n+ 1

[
1− 1

2n+ 1

]n
≤ 1√

2n+ 1
.

Also, denoting
Gn,x(t) = (x− t)[1− (t− x)2]n, t ∈ [0, x],

by
G′n,x(t) = [1− (t− x)2]n−1(−1 + (2n+ 1)(x− t)2) = 0,

it follows that t = x− 1√
2n+1

is a maximum pount forGn,x(t) and using similar reasonings
as above, has the maximum value

Gn,x(x− 1/
√

2n+ 1) ≤ 1√
2n+ 1

.

Therefore,

(C)

∫ 1

0

|t−x|·[1−(t−x)2]ndµn,x(t) ≤ (C)

∫ 1

0

1√
2n+ 1

dµn,x(t) =
1√

2n+ 1
·(C)

∫ 1

0

1dµn,x

=
1√

2n+ 1
· µn,x([0, 1]) =

1√
2n+ 1

· sup{[1− (s− x)2]n; s ∈ [0, 1]} =
1√

2n+ 1
.

Concluding, by (3.1) it immediately follows the estimate in the statement. �

Remark 3.3. Note that the positivity of function f in Theorem 3.2 is necessary because
of the positive homogeneity of the Choquet integral used in its proof. However, if f is
of arbitrary sign on [0, 1] and lower bounded, then the statement of Theorem 3.2 can be
restated for the slightly modified operator defined by

Ln,µn,x(f)(x) = Ln,µn,x(f − c)(x) + c,

where f(x) ≥ c, for all x ∈ [0, 1].
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Indeed, this is immediate from the fact that ω1(f − c; δ)[0,1] = ω1(f ; δ)[0,1] and from the
equality

Ln,µn,x
(f)(x)− f(x) = Ln,µn,x

(f − c)(x)− (f(x)− c).

Remark 3.4. Following the lines in [14], p. 312, it easily follows that the order of approxi-
mation of f by the classical Landau operators defined in Introduction is ω1(f ; 1/

√
n)[0,1].

Therefore, by Theorem 3.2 it follows that the Landau-Choquet operators give the same
order of approximation. However, for large classes of functions, the Landau-Choquet
operators can give the essential better approximation order ω1(f ; 1/n)[0,1].

In this sense, let us consider f : [0, 1] → R+, with the properties 0 < f(x), for all
x ∈ [0, 1], f is nondecreasing on [0, 1] and ln(f(x)) is a Lipschitz function on [0, 1] with the
Lipschitz constant 2. Keeping the same notation, we can extend f on [1, 2] by continuity,
taking f(x) = f(1), for all x ∈ [1, 2], such that f remains nondecreasing and that ln[f(x)]
remains Lipschitz function with the Lipschitz constant 2, on the larger interval [0, 2].

We will show that we have

f(x) ≤ Ln,µn,x
(f)(x) ≤ f

(
x+

1

n

)
,

for all x ∈ [0, 1]. Then, for the order of approximation we will get

(3.2) 0 ≤ Ln,µn,x
(f)(x)− f(x) ≤ f

(
x+

1

n

)
− f(x) ≤ ω1

(
f ;

1

n

)
[0,1]

, for all x ∈ [0, 1],

which is essentially better than the order O(ω1(f ; 1/
√
n)[0,1]) given by Theorem 3.2 and

by the classical Landau operator.
Indeed, let x ∈ [0, 1] be fixed. By the definition of the Choquet integral in the formula

for the Landau-Choquet operators, we easily obtain

Ln,µn,x
(f)(x) =

∫ ∞
0

sup{[1− (s− x)2]n; s ∈ [0, 1], f(s) · [1− (s− x)2]n ≥ α}dα.

We firstly show that for all s ∈ [0, 1], we have

f(s) · [1− (s− x)2]n ≤ f
(
x+

1

n

)
.

If s ≤ x then

f(s) ≤ f(x) ≤ f
(
x+

1

n

)
,

which implies

f(s) · [1− (s− x)2]n ≤ f
(
x+

1

n

)
.

Also, when s > x, let us denote s = x+ h, with h > 0. We have two cases : (i) h ≤ 1
n ; (ii)

h > 1
n .

In the case (i), since

f(x+ h) ≤ f
(
x+

1

n

)
,

we immediately get

f(s) · [1− (s− x)2]n ≤ f
(
x+

1

n

)
.

Let us consider now the case (ii). The inequality required to be proved is evidently
equivalent to

0 ≤ ln[f(x+ h)]− ln[f(x+ 1/n)] ≤ −n ln(1− h2), for all x ∈ [0, 1], 1 > h >
1

n
.
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By hypothesis, we also have

0 ≤ ln(f(x+ h))− ln(f (x+ 1/n)) ≤ 2(h− 1

n
).

Therefore, if we would prove that

2(h− 1/n) ≤ −n ln(1− h2),

then that would lead again to the above required inequality.
For this goal, denoting

G(h) = 2(h− 1/n) + n ln(1− h2), 1 > h ≥ 1

n
,

we get
G(1/n) = n ln(1− 1/n2) < 0

and

G′(h) =
2

1− h2
(1− h2 − nh) ≤ 2

1− h2
[1− 1

n2
− 1] =

2

1− h2
[− 1

n2
] < 0,

for all 1
n ≤ h < 1. This means that G is nonincreasing and therefore

G(h) ≤ 0, for all
1

n
≤ h < 1,

which implies the required inequality.
In continuation, we easily get

Ln,µn,x
(f)(x) =

∫ +∞

0

sup{[1− (s− x)2]n; s ∈ [0, 1], f(s) · [1− (s− x)2]n ≥ α}dα

=

∫ f(x+1/n)

0

sup{[1− (s− x)2]n; s ∈ [0, 1], f(s)[1− (s− x)2]n ≥ α}dα

+

∫ +∞

f(x+1/n)

sup{[1− (s− x)2]n; s ∈ [0, 1], f(s) · [1− (s− x)2]n ≥ α}dα

=

∫ f(x+1/n)

0

sup{[1− (s− x)2]n; s ∈ [0, 1], f(s) · [1− (s− x)2]n ≥ α}dα := En,x(f).

Now, it is easy to see that
En,x(f) ≤ f(x+ 1/n)

and that

En,x(f)(x) ≥
∫ f(x)

0

sup{[1− (s− x)2]n; s ∈ [0, 1], f(s) · [1− (s− x)2]n ≥ α}dα

=

∫ f(x)

0

1dα = f(x).

It is clear that all the strictly positive, differentiable and non-decreasing functions, with

0 ≤ f ′(x)

f(x)
≤ 2, for all x ∈ [0, 1],

belong to the above class of functions.
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Remark 3.5. It is of interest to study quantitative estimates in approximation by Landau-
Choquet integra operators with respect to other submodular set functions, like for ex-
ample the distorted Lebesgue measures defined by Remark 2.1, (ii). A generic example
would be

µ(A) =
√
M(A),

where M is the Lebesgue measure. Also, the method used in this paper suggests to in-
troduce and study the approximation properties for Choquet variants of other integral
operators, different from those studied by the papers mentioned in References.

Acknowledgement. We thank the referees for their useful comments.
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