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A generalized class of integral operators

VIJAY GUPTA

ABSTRACT. We introduce in the present note a unified approach to define integral operators, which include
many well-known operators viz. Durrmeyer type operators, mixed hybrid operators as special cases. We also
obtain the quantitative estimates between the difference of such integral operators with the discrete operators
having same and different basis functions. Our operators proposed here give a very large class of integral
operators, which have been discussed and proposed by several researchers in past seven decades.

1. THE OPERATORS

Miheşan in [15, (4.3)] proposed a discrete sequence of linear positive operators, which
reproduce linear functions as follows

Mn,γ(f, x) =

∞∑
k=0

mγ
n,k(x)Fn,k(f),(1.1)

where

mγ
n,k(x) =

(γ)k
k!

(
nx
γ

)k
(

1 + nx
γ

)γ+k , Fn,k(f) = f

(
k

n

)
.

These operators provide some of the well known operators as particular cases for dif-
ferent values of γ. Some operators of integral type and their approximation properties
have been discussed in the book [10]. Also, very recently author in [7] and [8] propo-
sed large families of linear positive operators for functions discretely defined at f(0) and
the link operators respectively. This paper is a continuation of these two article, here we
propose generalized sequence of integral operators of usual Durrmeyer type operators,
which include many well-known operators, including actual Durrmeyer and several hy-
brid operators as special cases. For x ∈ R+ ≡ [0,∞) and α, β non-zero real numbers or a
function of n (as indicated below), we introduce

Vn,α,β(f, x) =

∞∑
k=0

mα
n,k(x)Gβn,k(f)(1.2)

where Gβn,k(f) = n(β−1)
β 〈mβ

n,k, f〉with 〈f, g〉 =
∫∞
0
f(t)g(t)dt and mα

n,k(x) defined in (1.1).

(1) If α = β = n/c, c ∈ N0, we get the well known operators due to Heilmann–Müller
(see [14]),

(2) If α = β = n, we get Baskakov-Durrmeyer operators considered in [18],
(3) If α = β →∞, we get the Szász-Durrmeyer operators (see [16]),
(4) If α = β = −n, we get the Bernstein-Durrmeyer polynomials introduced in [4], in

this case x ∈ [0, 1] and summation is for 0 ≤ k ≤ n,
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(5) If α 6= β and α = n, β →∞, we get Baskakov-Szász operators [12],
(6) If α 6= β and α→∞, β = n, we get the Szász-Baskakov operators [17],
(7) If α 6= β and α = nx, β = n, we get the Lupaş -Baskakov operators [5] for the case

d = 1, c = 1,
(8) If α 6= β and α = nx, β → ∞, we get the Lupaş -Szász operators [5] for the case

d = 0, c = 1,
(9) α 6= β and α = nx, β = nt, we get the Lupaş -Durrmeyer operators considered by

Agratini [2], but in this case the weight i.e. integral
∫∞
0
mβ
n,k(t)dt is not indepen-

dent of k as considered in all above cases, here this integral depends on k, which
cause problem in finding moments. Agratini in [2] calculated this integral in terms
of Stirling number of first kind. Using Agratinis result, the operator can be written
as follows:

Vn,α,β(f, x) =

∞∑
k=0

mα
n,k(x)

〈mβ
n,k, f〉

〈mβ
n,k, 1〉

=

∞∑
k=0

mα
n,k(x)(

(n2k.k!)−1
∑k
i=0(−1)k−isk,i.i!(log 2)−i−1

) 〈mβ
n,k, f〉,

due to such complicated form of the operators, such operators are not appropriate
as far as convergence is concerned. In a similar way if α 6= β and α = n, β = nt,
one can define the hybrid Baskakov–Lupaş operators, and the similar problem
arise for the weights under integral sign. So in all above cases, if β = nt such
problem arise. This can be considered as open problem for researchers, as far as
the moment estimations of the operators are concerned.

We can write kernel of our operators as

Kn,α,β(x, t) =

∞∑
k=0

mα
n,k(x)mβ

n,k(t)

=

∞∑
k=0

(α)k
k!

.

(
nx
α

)k(
1 + nx

α

)α+k (β)k
k!

.

(
nt
β

)k
(

1 + nt
β

)β+k
=

(
1 +

nx

α

)−α(
1 +

nt

β

)−β ∞∑
k=0

(α)k(β)k
(1)k.k!

.

(
n2xt

)k
[(α+ nx) (β + nt)]k

=
(

1 +
nx

α

)−α(
1 +

nt

β

)−β
2F1

(
α, β; 1;

n2xt

(α+ nx) (β + nt)

)
,

where 2F1(a, b; c;x) =
∑∞
r=0

(a)r(b)r
(c)r

xr

r! , |x| < 1 and (p)r is the Pochhammer symbol (rising
factorial). This kernel can be linked with some special functions by assigning different
values to α and β although such link can be found in different places separately, but for
readers ready reference, we mention here for general case as follows:

(1) If α = β →∞, we get the Szász-Durrmeyer operators

lim
α,β→∞

Kn,α,β(x, t) = lim
α,β→∞

(
1 +

nx

α

)−α(
1 +

nt

β

)−β
2F1

(
α, β; 1;

n2xt

(α+ nx) (β + nt)

)
= e−n(x+t)

∞∑
v=0

(n2xt)v

v!Γ(v + 1)
= e−n(x+t)I0(2n

√
xt),
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where I0 is the modified Bessel’s function of first kind of zero order (see also [3]).
(2) If α = n, β →∞, we get the Baskakov-Szász operators

lim
α→n,β→∞

Kn,α,β(x, t) = lim
α→n,β→∞

(
1+

nx

α

)−α(
1+

nt

β

)−β
2F1

(
α, β; 1;

n2xt

(α+nx) (β+ nt)

)

= (1 +x)−ne−nt
∞∑
v=0

(n)v
v!

(
nxt
1+x

)v
v!

= (1+ x)−ne−nt 1F1

(
n; 1;

nxt

1 +x

)
= (1 + x)−ne−nte

nxt
1+x 1F1

(
1− n; 1;

−nxt
1 + x

)
,

where 1F1(a; b;x) =
∑∞
r=0

(a)r
(b)r

xr

r! is the confluent hypergeometric function of the
first kind and we have applied Kummer’s transformation

1F1(b− a; b; z) = ez 1F1 (a, b;−z) .

Thus in case of Baskakov-Szász operators, kernel takes the following form

(1 + x)−ne
−nt
1+xL0

n−1

(
−nxt
1 + x

)
,

where L0
n(x) is the generalized Laguerre function.

(3) If α → ∞, β = n, we get the Szász-Baskakov operators and it can be represented
in terms of generalized Laguerre function as follows

lim
α→∞,β→n

Kn,α,β(x, t) = (1 + t)−ne
−nx
1+t L0

n−1

(
−nxt
1 + t

)
.

(4) If α = nx, β → ∞, we get the Lupaş -Szász operators, which can be written in
terms of generalized Laguerre function as

lim
α→nx,β→∞

Kn,α,β(x, t) = 2−nxe−nt/2L0
nx−1

(
−nt

2

)
.

Lemma 1.1. The r-th (r ∈ N) order moment with er(t) = tr (except the above case (9)) can be
represented as

Vn,α,β(er, x) =
Γ(β − r − 1)Γ(r + 1)

Γ(β − 1)

(
β

n

)r
2F1

(
α,−r; 1;

−nx
α

)
.

In particular

Vn,α,β(e0, x) = 1, Vn,α,β(e1, x) =
β(1 + nx)

n(β − 2)
,

Vn,α,β(e2, x) =
β2[2α+ 4αnx+ (α+ 1)n2x2]

αn2(β − 2)(β − 3)
.
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Proof. We have

Vn,α,β(er, x) =
n(β − 1)

β

∞∑
k=0

mα
n,k(x)

∫ ∞
0

mβ
n,k(t)trdt

=
n(β − 1)

β

∞∑
k=0

mα
n,k(x)

∫ ∞
0

(β)k
k!

.

(
nt
β

)k
(

1 + nt
β

)β+k trdt
=

n(β − 1)

β

∞∑
k=0

mα
n,k(x)

(β)k
k!

.B(k + r + 1, β − r − 1)

(
β

n

)r+1

= (β − 1)

(
β

n

)r ∞∑
k=0

mα
n,k(x)

Γ(k + β)

Γ(β).k!
.
Γ(k + r + 1)Γ(β − r − 1)

Γ(β + k)

= (β − 1)Γ(β − r − 1).

(
β

n

)r ∞∑
k=0

(α)k
k!

(
nx
α

)k(
1 + nx

α

)α+k Γ(k + r + 1)

Γ(β).k!

=
Γ(β − r − 1)Γ(r + 1)

Γ(β − 1)

(
β

n

)r ∞∑
k=0

(α)k(r + 1)k
k!(1)k

(
nx
α

)k(
1 + nx

α

)α+k
=

Γ(β − r − 1)Γ(r + 1)

Γ(β − 1)

(
β

n

)r (
1 +

nx

α

)−α
2F1

(
α, r + 1; 1;

nx

nx+ α

)
.

Applying the well-known Kummer’s transformation

2F1(a, b; c; z) = (1− z)−a 2F1

(
a, c− b; c; z

z − 1

)
,

we immediately get

Vn,α,β(er, x) =
Γ(β − r − 1)Γ(r + 1)

Γ(β − 1)

(
β

n

)r
2F1

(
α,−r; 1;

−nx
α

)
.

The other consequences follow from the above hypergeometric representation. �

The main motivation to study and define these operators based on two parameters α
and β is that, one may have an idea of many Durrmeyer type and hybrid operators at
one place, rather than studying several papers independently. Although approximation
properties hold good for cases (1)-(8), but for case (9) still its not possible. Actually mo-
ments play an important role in order to determine the convergence estimates. One can
easily obtain the moments of different operators, using Lemma 1.1, by assigning different
values to α and β.

From Lemma 1.1, we observe that the convergence takes place (except the case (9)) for
the general operators, by the well-known theorem due to Korovkin, when α = αn,x, β =
βn and n is large enough. The values of α, β are indicated in cases (1)-(8) above. Also,
the quantitative difference estimates between these integral operators and the discrete
operators are estimated in next section.
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2. DIFFERENCE ESTIMATES

Let Un, Vn,Wn : D(R+)→ C(R+) be three positive linear operators

Un(f ;x) : =

∞∑
k=0

un,k(x)Fn,k(f),

Wn(f ;x) : =

∞∑
k=0

un,k(x)Gn,k(f),

Vn(f ;x) : =

∞∑
k=0

vn,k(x)Gn,k(f),

where D(R+) be the set of all f ∈ C(R+) for which the above operators preserve the
constant functions only. Here the operators Un,Wn have same basis function namely
un,k(x), while the operator Vn has different basis function vn,k(x). We use the notation
(Jn,k = {Fn,k, Gn,k})

bJn,k := Jn,k(e1), µ
Jn,k
m = Jn,k(e1 − bJn,ke0)m,m ∈ N.

Also, for f ∈ CB(R+), the class of bounded and continuous functions on the interval R+,
the norm is defined as ||f || = sup {|f(x)| : x ∈ R+} < ∞. Recently Acu-Rasa [1], Gupta
[6], Gupta-Tachev [13] and Gupta et al [11] etc. established/presented some results for
the difference of operators.

For the operators having same basis functions, the following theorem was provided by
the author:

Theorem 2.1. [6] Let f (s) ∈ CB(R+), s ∈ {0, 1, 2} and x ∈ R+, then for n ∈ N, we have

|(Un −Wn)(f, x)| ≤ A(x)

2
||f ′′||+ ω(f ′′, η1)

2
(1 +A(x)) + 2ω(f, η2(x)),

where

A(x) =

∞∑
k=0

un,k(x)(µ
Fn,k
2 + µ

Gn,k
2 )

and

η21 =

∞∑
k=0

un,k(x)(µ
Fn,k
4 + µ

Gn,k
4 ), η22 =

∞∑
k=0

un,k(x)(bFn,k − bGn,k)2.

For the operators having different basis functions, we have the following theorem:

Theorem 2.2. [9] If f ∈ D(R+) with f ′′ ∈ CB(R+), then

|(Un − Vn)(f ;x)| ≤ B(x)‖f ′′‖+ 2ω(f ; δ1(x)) + 2ω(f ; δ2(x)),

where ω(f, .) denotes the usual modulus of continuity and

B(x) =
1

2

∞∑
k=0

(
un,k(x)µ

Fn,k
2 + vn,k(x)µ

Gn,k
2

)
,

δ21(x) =

∞∑
k=0

un,k(x)
(
bFn,k − x

)2
, δ22(x) =

∞∑
k=0

vn,k(x)
(
bGn,k − x

)2
.

The above two theorems can be applied for the operators (1.2) and (1.1), except for the
cases α = β = −n and β = nt. We provide below the exact quantitative estimates, which
hold for difference of many operators.



428 Vijay Gupta

Remark 2.1. Obviously for the operators (1.1), we have

bFn,k = Fn,k(e1) =
k

n
,

µ
Fn,k
m := Fn,k(e1 − bFn,ke0)m = 0,m ∈ N.

For x ≥ 0, n ∈ N, we have

Mn,γ(e0, x) = 1,Mn,γ(e1, x) = x,Mn,γ(e2, x) =
x2(γ + 1)

γ
+
x

n
,

Mn,γ(e3, x) =
x3(γ + 1)(γ + 2)

γ2
+

3x2(γ + 1)

nγ
+

x

n2
,

Mn,γ(e4, x) =
x4(γ + 1)(γ + 2)(γ + 3)

γ3
+

6x3(γ + 1)(γ + 2)

nγ2
+

7x2(γ + 1)

n2γ
+

x

n3
.

Remark 2.2. For the weights of our generalized operators (1.2), we have

Gβn,k(er) =
n(β − 1)

β

∫ ∞
0

mβ
n,k(t)trdt

=

(
β

n

)r
Γ(β − r − 1)(k + r)!

Γ(β − 1).k!
.

Thus, we have

bG
β
n,k = Gn,k(e1) =

(k + 1)β

n(β − 2)
,

µ
Gβn,k
2 = Gβn,k(e1 − bG

β
n,ke0)2

=
β2[k2 + kβ + β − 1)]

n2(β − 2)2(β − 3)
.

and similarly

µ
Gβn,k
4 = Gβn,k(e1 − bG

β
n,ke0)4

=
β4(k + 4)(k + 3)(k + 2)(k + 1)

n4(β − 2)(β − 3)(β − 4)(β − 5)
− 4

β4(k + 3)(k + 2)(k + 1)2

n4(β − 2)2(β − 3)(β − 4)

+6
β4(k + 2)(k + 1)3

n4(β − 2)3(β − 3)
− 3

β4(k + 1)4

n4(β − 2)4
.

Corresponding to Theorem 2.1, we have the following quantitative estimate for diffe-
rences having same basis

Proposition 2.1. Let f (s) ∈ CB(R+), s ∈ {0, 1, 2} and x ∈ [0,∞), then for n ∈ N, we have

|(Mn,α − Vn,α,β)(f, x)| ≤ A(x)

2
||f ′′||+ ω(f ′′, η1)

2
(1 +A(x)) + 2ω(f, η2(x)),

where

A(x) =
β2

(β − 2)2(β − 3)

[
x2 +

x(nx+ α)

nα

]
+

β3x

n(β − 2)2(β − 3)
+

β2(β − 1)

n2(β − 2)2(β − 3)
,

η21(x) =
3β4

α3n4(β − 2)4(β − 3)(β − 4)(β − 5)

[
n4(α+ 1)(α+ 2)(α+ 3)(β + 4)x4

+ 2n3α(α+ 1)(α+ 2)(β + 3)(β + 4)x3 + n2α2(α+ 1)(β3 + 14β2 + 29β + 28)x2

+ nα3(β + 1)(5β2 + 3β + 4)x+ α3(β − 1)(3β2 − 5β + 4)
]
,
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and

η22 =
(
x2 +

x

α
+
x

n

) 4

(β − 2)2
+

β2

n2(β − 2)2
− 4βx

n(β − 2)2
.

Proof. Applying Remark 2.1 and Remark 2.2, we have

A(x) =

∞∑
k=0

(
mα
n,k(x)µ

Fn,k
2 +mα

n,k(x)µ
Gβn,k
2

)

=

∞∑
k=0

mα
n,k(x)

β2[k2 + kβ + β − 1)]

n2(β − 2)2(β − 3)

=
β2

(β − 2)2(β − 3)

[
x2 +

x(nx+ α)

nα

]
+

β3x

n(β − 2)2(β − 3)
+

β2(β − 1)

n2(β − 2)2(β − 3)
.

Next, by Remark 2.1, we have

η21(x) =

∞∑
k=0

mα
n,k(x)(µ

Fn,k
4 + µ

Gβn,k
4 )

=

∞∑
k=0

mα
n,k(x)

[
β4(k + 4)(k + 3)(k + 2)(k + 1)

n4(β − 2)(β − 3)(β − 4)(β − 5)
− 4

β4(k + 3)(k + 2)(k + 1)2

n4(β − 2)2(β − 3)(β − 4)

+ 6
β4(k + 2)(k + 1)3

n4(β − 2)3(β − 3)
− 3

β4(k + 1)4

n4(β − 2)4

]
=

3β4

α3n4(β − 2)4(β − 3)(β − 4)(β − 5)

[
n4(α+ 1)(α+ 2)(α+ 3)(β + 4)x4

+ 2n3α(α+ 1)(α+ 2)(β + 3)(β + 4)x3 + n2α2(α+ 1)(β3 + 14β2 + 29β + 28)x2

+ nα3(β + 1)(5β2 + 3β + 4)x+ α3(β − 1)(3β2 − 5β + 4)
]
.

Finally by Remark 2.2 and Remark 2.1, we get

η22(x) =

∞∑
k=0

mα
n,k(x)(bFn,k − bG

β
n,k)2

=

∞∑
k=0

mα
n,k(x)

(
k

n
− (k + 1)β

n(β − 2)

)2

=
(
x2 +

x

α
+
x

n

) 4

(β − 2)2
+

β2

n2(β − 2)2
− 4βx

n(β − 2)2
.

�

Remark 2.3. We can immediately obtain the difference between different discrete opera-
tors and the Durrmeyer variants having same basis by assigning different values to α and
β in above Proposition 2.1. For example if we take α → ∞, β → ∞, we immediately get
the difference estimate between Szász operators and Szász-Durrmeyer operators (see [6,
Th. 5]). Similarly one can obtain many results using our operators for different values.

Based on Theorem 2.2, we have the following quantitative estimate for the difference
between the operators (1.1) and (1.2).
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Proposition 2.2. Let f ∈ CB(R+) and x ∈ [0,∞). Then for n ∈ N, we have

|(Mn,γ − Vn,α,β)(f, x)| ≤ B(x)‖f ′′‖+ 2ω(f ; δ1(x)) + 2ω(f ; δ2(x)),

where

B(x) =
β2

2(β − 2)2(β − 3)

[
x2 +

x(nx+ α)

nα

]
+

β3x

2n(β − 2)2(β − 3)
+

β2(β − 1)

2n2(β − 2)2(β − 3)
,

δ21(x) =
x(nx+ γ)

nγ
,

δ22(x) = x2
[

β2

(β − 2)2
+

β2

α(β − 2)2
+ 1− 2β

(β − 2)

]
+ x

[
3β2

n(β − 2)2
− 2β

n(β − 2)

]
+

β2

n2(β − 2)2
.

Proof. Applying Remarks 2.1 and 2.2, we have

B(x) =
1

2

∞∑
k=0

(
mγ
n,k(x)µ

Fn,k
2 +mα

n,k(x)µ
Gβn,k
2

)

=
1

2

∞∑
k=0

mα
n,k(x)

β2[k2 + kβ + β − 1)]

n2(β − 2)2(β − 3)

=
β2

2(β − 2)2(β − 3)

[
x2 +

x(nx+ α)

nα

]
+

β3x

2n(β − 2)2(β − 3)
+

β2(β − 1)

2n2(β − 2)2(β − 3)
.

Next, by Remark 2.1, we have

δ21(x) =

∞∑
k=0

mγ
n,k(x)

(
bFn,k − x

)2
=
x(nx+ γ)

nγ
.

Finally by Remark 2.2 and Remark 2.1, we get

δ22(x) =

∞∑
k=0

mα
n,k(x)

(
bG

β
n,k − x

)2
= x2

[
β2

(β − 2)2
+

β2

α(β − 2)2
+ 1− 2β

(β − 2)

]
+ x

[
3β2

n(β − 2)2
− 2β

n(β − 2)

]
+

β2

n2(β − 2)2
.

�

Remark 2.4. One can obtain the difference between different operators having different
basis in summation by assigning different values to α, β and γ in Proposition 2.2. For ex-
ample if we take γ = n, α→∞, β = n, we may get the difference estimate between Baska-
kov operators and Szász-Baskakov operators (see [9, Prop.3.9]). Similarly if we consider
γ = nx, α→∞, β →∞, we may get the difference estimate between Lupaş operators and
Szász-Durrmeyer operators (see [9, Prop. 3.12]).

Remark 2.5. Miheşan in [15, (4.3)] claimed that the operators (1.1) are valid for x ≥ 0, γ ∈
R, γ + nx > 0. We point out here that this condition holds good for Baskakov, Szász and
Lupaş operators, but in case of Bernstein polynomials if γ = −n, then one has nx > n,
which is not true for x ∈ [0, 1], in which interval the Bernstein polynomials are defined.
Therefore it is sufficient to assume that γ is non-zero real number or a function of n.

Acknowledgement. The author is thankful to the reviewers for making valuable com-
ments leading to overall improvements in the paper.
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