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On optimality conditions for robust weak sharp solution in
uncertain optimizations

JUTAMAS KERDKAEW1, RABIAN WANGKEEREE∗,1,2 and GUE MYUNG LEE3

ABSTRACT. In this paper, we investigate the robust optimization problem involving nonsmooth and non-
convex real-valued functions. We firstly establish a necessary condition for the local robust weak sharp solution
of considered problem under a constraint qualification. These optimality conditions are presented in terms of
multipliers and Mordukhovich subdifferentials of the related functions. Then, by employing the robust version
of the (KKT) condition, and some appropriate generalized convexity conditions, we also obtain some sufficient
conditions for the global robust weak sharp solutions of the problem. In addition, some examples are presented
for illustrating or supporting the results.

1. INTRODUCTION

In reality, it is common that the input data associated with the objective function and
the constraints of programs are uncertain or incomplete due to prediction or measurement
errors, that is, they are not known precisely when the problem is solved (see [1]). Robust
optimization has come out as a noticeable determinism framework for investigating math-
ematical programming problems with uncertain data. Nowadays, theoretical and applied
aspects in the area of robust optimization such as issues related to optimality conditions-
for solutions and characterization of solution sets; see, e.g. [1, 2, 3, 14, 15, 16, 11, 22, 23, 24]
and other references therein.

On the other hand, the notion of a weak sharp minimizer in general mathematical pro-
gramming problems was first introduced in [13]. It is an extension of a sharp minimizer in
[20] to include the possibility of non-unique solution set. It has been acknowledged that
the weak sharp minimizer plays important roles in stability/sensitivity analysis and con-
vergence analysis of a wide range of numerical algorithms in mathematical programming
(see, e.g., [5, 6, 18, 7] and references therein). Much attention has been paid to concerning
sufficient and/or necessary conditions for weak sharp minimizers/solutions and charac-
terizing weak sharp solution sets in various types of problems (see, [8, 9, 10, 27, 25, 26]).
It might be seen, the study of optimality conditions for the weak sharp solution has been
popular in many optimization problems. “How about the issue of this study, particu-
larly, in a robust optimization?” According to this question, very recently, Kerdkaew and
Wangkeeree [17] introduce robust weak sharp and robust sharp solution to a convex pro-
gramming with the objective and constraint functions involved uncertainty. Then some
optimality conditions for the robust weak sharp solution and the characterizations of the
sets of all the robust weak sharp solutions were concerned.
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Motivated by above mentioned works, especially [17], we aim to to establish necessary
and sufficient optimality conditions for the robust weak sharp solutions of the robust op-
timization problem formulated by nondifferentiable/nonconvex functions. Our obtained
optimality conditions are presented in terms of multipliers and limiting/Mordukhovich
subdifferential of the related functions. In addition, some examples are also provided for
analyzing and illustrating the obtained results.

The rest of the paper is organized as follows. Section 2 contains some basic definitions
from variational analysis and several auxiliary results. In Section 3, some necessary op-
timality conditions for local robust weak sharp solutions of the considered problem are
presented. Some sufficient optimality conditions for robust weak sharp solutions of such
problem are contained in Section 4.

2. PRELIMINARIES

We begin this section by fixing notation and definitions including the notations gen-
erally used in variational analysis, the Mordukhovich generalized differentiation notions
(see more details in [21, 19]), which are the main tools for our study. Throughout this pa-
per, Rn denotes the Euclidean space with dimension n. The inner product and norm in Rn
are denoted by symbols 〈·, ·〉 and ‖ · ‖, respectively. The symbols Rn+,B and B(x0, r) stand
for the nonnegative orthant of Rn, closed unit ball in Rn, and the open ball with center at
x0 and radius r > 0 for any x0 ∈ Rn, respectively. For a nonempty subset S ⊆ Rn, the
closure, boundary and convex hull of S are denoted by clS, bdS and coS, respectively,
while the notation x S−→ x0 means that x→ x0 and x ∈ S.

Let a point x0 ∈ S be given. The set S is said to be closed around x0 if there is a
neighborhood U of x0 such that S ∩ U is closed. Moreover, the set S is said to be locally
closed if it is closed around every x0 ∈ S.

Let S be closed around x0. Recall that the contingent cone of S at x0 is denoted by
T (S, x0) and defined by

T (S, x0) := {v ∈ Rn : ∃vn → v,∃tn ↓ 0 s.t. x0 + tnvn ∈ S,∀n ∈ N} ,

while the Fréchet (or regular) normal cone of S at x0, which is a set of all the Fréchet
normals, N̂(S, x0) is defined by

N̂(S, x0) :=
{
x∗ ∈ Rn : lim sup

x
S−→x0

〈x∗, x− x0〉
‖x− x0‖

≤ 0
}
.

Note that N̂(S, x0) is a closed convex subset of Rn and we set N̂(S, x0) = ∅ if x0 /∈ S. The
notationN(S, x0) stands for the Mordukhovich (or basic, limiting) normal cone of S at x0.
It is defined by

N(S, x0) :=
{
x∗ ∈ Rn : ∃xn

S−→ x0,∃x∗n → x∗ with x∗n ∈ N̂(S, xn),∀n ∈ N
}
.

In the case that S is a convex set, then we obtain N̂(S, x0) = N(S, x0) = T (S, x0)◦ =
{x∗ ∈ Rn : 〈x∗, x− x0〉 ≤ 0,∀x ∈ S} .

Let h : Rn → R := R ∪ {±∞} be an extended real-valued function. The domain and
the epigraph of the fuction h, are defined respectively by

domh := {x ∈ Rn : h(x) < +∞} and epih := {(x, α) ∈ X × R |α ≥ h(x)}.
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For x0 ∈ domh and ε ≥ 0 be given, the analytic ε-subdifferential of function h at x0, which
has the form ∂̂εh(x0) is defined by

∂̂εh(x0) :=
{
x∗ ∈ Rn : lim inf

x→x0,
x 6=x0

h(x)− h(x0)− 〈x∗, x− x0〉
‖x− x0‖

≥ −ε
}
.

If ε = 0, then the analytic ε-subdifferential of h at x0 reduces to the general Fréchet sub-
differential of h at x0, which is denoted by ∂̂h(x0). Besides, ∂h(x0) denotes the Mor-
dukhovich subdifferential of h at x0. It is defined by

∂h(x0) :=
{
x∗ ∈ Rn : ∃xn

h−→ x0,∃x∗n → x∗ with x∗n ∈ ∂̂h(xn),∀n ∈ N
}

where xn
h−→ x0 means xn → x0 and h(xn) → h(x). If x /∈ domh, then we set ∂̂h(x0) =

∂h(x0) = ∅. It is obvious that for any x ∈ Rn, ∂̂h(x0) ⊆ ∂h(x0). Specially, if h is a convex
function, then ∂̂h(x0) = ∂h(x0) = {x∗ ∈ Rn : 〈x∗, x− x0〉 ≤ h(x)− h(x0),∀x ∈ Rn} .

The distance function d(·, S) : Rn → R and the indicator function δ(·, S) : Rn → R of S
are respectively defined by d(x, S) := infy∈S ‖x− y‖,∀x ∈ Rn, and

δ(x, S) =

{
0; x ∈ S,
+∞; x /∈ S.

By above notations and definitions, we get ∂̂δ(x0, S) = N̂(S, x0) and ∂δ(x0, S) = N(S, x0).

Simultaneously, ∂̂d(x0, S) = B ∩ N̂(S, x0) and ∂d(x0, S) ⊆ B ∩N(S, x0).

Next, we recall some useful and important propositions and definitions for this paper.

Lemma 2.1. [19, Corollary 1.81] If h : Rn → R is locally Lipschitz at x0, with modulus
l > 0, then we always have ‖x∗‖ ≤ l, ∀x∗ ∈ ∂h(x0).

Theorem 2.1 (The generalized Fermat rule). [21, 19] Let h : Rn → R be a proper lower
semicontinuous function. If h attains a local minimum at x0 ∈ Rn, then 0Rn ∈ ∂̂h(x0),
which implies 0Rn ∈ ∂h(x0).

Theorem 2.2 (fuzzy sum rule for the Fréchet subdifferential and the sum rule for the Mor-
dukhovich subdifferential). [21, 19] Let f, h : Rn → R ∪ {+∞} be proper lower semicon-
tinuous around x0 ∈ domf ∩ domh. If f is Lipschitz continuous around x0, then

(1) for every x∗ ∈ ∂̂(f + h)(x0) and every ε > 0, there exist x1, x2 ∈ B(x0, ε) such that

|f(x1)− f(x0)| < ε, |h(x2)− h(x0)| < ε and x∗ ∈ ∂̂f(x1) + ∂̂h(x2) + εB.

(2) ∂(f + h)(x0) ⊆ ∂f(x0) + ∂h(x0).

We conclude this section by the following problems and solution concepts.
Let Ω be a nonempty locally closed subset of Rn. For q0, qi ∈ N, i = 1, . . . ,m, let U and

Vi, i = 1, . . . ,m be nonempty compact subsets of Rq0 and Rqt , respectively. We consider
the following uncertain optimization problem:

(UP) Minimize f(x, u) subject to gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m, x ∈ Ω,

where f : Rn × U → R and gi : Rn × Vi → R, i = 1, . . . ,m are given real-valued func-
tions, x is the vector of decision variable, u and vi, i = 1, . . . ,m are uncertain parameters
belonging to the specified compact uncertainty sets U and Vi, respectively. In fact, the un-
certainty sets can be apprehended in the sense that the parameter vectors u and all vi are
not known exactly at the time of the decision. For examining the uncertain optimization
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problem (UP), one usually associates with it, namely robust counterpart, is the following
problem:

(RUP) Minimize max
u∈U

f(x, u) subject to gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m, x ∈ Ω.

The robust feasible set K is denoted by K := {x ∈ Ω : gi(x, vi) ≤ 0,∀vi ∈ Vi, i = 1, . . . ,m} .

The following concept of robust solutions can be found in the literature; see e.g.,[16].

Definition 2.1. A point x0 ∈ K is said to be a local robust solution for (UP) if it is a local
solution for (RUP) i.e., if there exists a neighborhood U of x0 such that maxu∈U f(x, u) −
maxu∈U f(x0, u) ≥ 0, ∀x ∈ K ∩ U. In addition, if U = Rn, then x0 ∈ K is said to be a
global robust solution for (UP).

In [17], a new concept of a solution, which is related to the weak sharpness, namely the
(local/global) robust weak sharp solution was introduced.

Definition 2.2. A point x0 ∈ K is said to be a local robust weak sharp solution for (UP) if it
is a local weak sharp solution for (RUP) i.e., there exist a neighborhood U of x0 and a real
number η > 0 such that

(2.1) max
u∈U

f(x, u)−max
u∈U

f(x0, u) ≥ ηd(x, K̃), ∀x ∈ K ∩ U,

where K̃ :=

{
x ∈ K : max

u∈U
f(x, u) = max

u∈U
f(x0, u)

}
. Specially, if U = Rn, then x0 ∈ K is

said to be a global robust weak sharp solution for (UP).

It is simple to see that every (local) robust weak sharp solution must be also a (local)
robust solution. In contrast, the converse implication need not to be true.

3. NECESSARY OPTIMALITY CONDITIONS FOR ROBUST WEAK SHARP SOLUTIONS

In this section, we focus our attention on establishing some optimality conditions for lo-
cal (global) robust sharp solutions in uncertain optimization problems in terms of the ad-
vanced tools of variational analysis and generalized differentiation. Given arbitrary x0 ∈
Ω, we set U(x0) := {u∗ ∈ U : f(x0, u

∗) =maxu∈U f(x0, u)} , Vi(x0) :={v∗i ∈ Vi : gi(x0, v
∗
i )=

maxvi∈Vi gi(x0, vi)} , and I(x0) := {i = 1, . . . ,m : gi(x0, vi) = 0, ∀vi ∈ Vi} .
In what follows, throughout this section, we assume gi : Rn × Vi → R is a function

such that for each fixed vi ∈ Vi, i = 1, . . . ,m, gi(·, vi) is locally Lipschitz continuous and
assume function f : Rn × U → R satisfies the following conditions:

(C1) For a fixed x0 ∈ Ω, there exists rx0 > 0 such that the function f(x, ·) : U → R is
upper semicontinuous for all x ∈ B(x0, rx0

) and f(·, u) is Lipschitz continuous in
x, uniformly for u ∈ U ; i.e., for some real number l > 0, for all x, y ∈ Ω and u ∈ U ,
one has ‖f(x, u)− f(y, u)‖ ≤ l‖x− y‖.

(C2) The multifunction ∂xf(·, ·) : Rn × U → 2R
n

is closed at (x0, u) for each u ∈ U(x0),
where the symbol ∂x stands for the Mordukhovich subdifferential operation with
respect to x.

In order to obtain the necessary and sufficient optimality condition for local robust
sharp solutions of (UP), the following constraint qualification is essential.

Definition 3.3. Given arbitrary x0 ∈ Ω, the constraint qualification (CQ) is said to be
satisfied at x0 if there do not exist µi ≥ 0 and vi ∈ Vi, i ∈ I(x0) such that

∑
i∈I(x0)

µi 6= 0

and 0Rn ∈
∑
i∈I(x0)

µi∂xgi(x0, vi) +N(Ω, x0).



On optimality conditions for robust weak sharp solution... 447

Remark 3.1. We can see that the (CQ) defined in Definition 3.3 reduces to the constraint
qualification defined in [12, Definition 3.2] when Ω = Rn. Also, it is reduces to the ex-
tended Mangasarian-Fromovitz constraint qualification (see [4]) in the smooth setting
when Ω = Rn.

The following necessary optimality condition for local robust weak sharp solutions of
(UP) is obtained under the (CQ).

Theorem 3.3. Let x0 ∈ K and the constraint qualification (CQ), defined in Definition 3.3,
be satisfied at x0. If x0 is a local robust weak sharp solution for (UP), then there exists a
real number η > 0 such that
(3.2)

ηB ∩ N̂(K,x0) ⊆ co

 ⋃
u∈U(x0)

∂xf(x0, u)

+
⋃

µi∈Mi(x0)

(
m∑
i=1

µi∂xgi(x0, vi)

)
+N(Ω, x0),

where Mi(x0) = {µi ≥ 0 : µigi(x0, vi) = 0, vi ∈ Vi} for all i = 1, . . . ,m.

Proof. Suppose that x0 is a local robust sharp solution for (UP). Then, there exist real
numbers η, r1 > 0 such that

max
u∈U

f(x, u)−max
u∈U

f(x0, u) ≥ ηd(x, K̃),∀x ∈ K ∩B(x0, r1).

Let x∗ ∈ B ∩ N̂(K,x0) be given. It follows from ∂̂d(x0,K) = B ∩ N̂(K,x0) that x∗ ∈
∂̂d(x0,K). By the definition of ∂̂d(·,K), for any ε > 0, there exists r2 ∈ (0, 12r1) such that

〈x∗, x− x0〉 ≤ d(x, K̃) + ε‖x− x0‖,∀x ∈ B(x0, r2).

It is obvious that B(x0, r2) ⊆ B(x0, r1), so we obtain maxu∈U f(x, u)−maxu∈U f(x0, u) +
ηε‖x − x0‖ ≥ η〈x∗, x − x0〉 for all x ∈ K ∩ B(x0, r2). Consider the following function
ϕ : Rn → R defined by

ϕ(x) := −η〈x∗, x− x0〉+ φ(x) + ηε‖x− x0‖+ δ(x,K),∀x ∈ Rn,
where φ(x) := max

u∈U
f(x, u) − max

u∈U
f(x0, u),∀x ∈ Rn. Observe that for each x ∈ K ∩

B(x0, r2), ϕ(x) ≥ 0, while ϕ(x0) = 0. This means the function ϕ attains its local mini-
mum point at x0. Further, we can get by the properties of f(·, u), ‖ · −x0‖ and δ(·,K) that
the function ϕ is lower semicontinuous around x0. Therefore, it follows from Theorem 2.1
that 0Rn ∈ ∂̂ϕ(x0). Moreover, from Theorem 2.2 (i), for each y ∈ ∂̂ϕ(x0) and each ε > 0,
there exist xε1, xε2, xε3 ∈ B(x0, ε), such that

|φ(xε1)| < ε, ηε‖xε2−x0‖ < ε, δ(xε3,K) < ε and y ∈ ∂̂φ(xε1)+ηε∂̂‖xε2−x0‖+∂̂δ(xε3,K)+εB.

Since 0Rn ∈ ∂̂ϕ(x0), ηx∗ ∈ ∂̂φ(xε1)+ηε∂̂‖xε2−x0‖+∂̂δ(xε3,K)+εB.Observe that xε3 ∈ K and
∂̂δ(xε3, F ) = N̂(K,xε3). It follows from the definition of φ that it is Lipschitz continuous
around x0 with a constant l. So, due to [19, Proposition 1.85], for all sufficiently small
ε > 0, one has ∂̂φ(xε1) ⊆ lB. Similarly, we also get ∂̂‖xε2 − x0‖ ⊆ B. According to these

inclusions, the compactness of B, and xε1, x
ε
2, x

ε
3 ∈ B(x0, ε) yields x1

φ−→ x0, xε2
‖·−x0‖−−−−→

x0, xε3
K−→ x0, as ε ↓ 0. It follows that

(3.3) ηx∗ ∈ ∂φ(x0) +N(K,x0).

As f satisfies (C1) and (C2), by the same fashion of proof in Theorem 3.3 of [11], we obtain

(3.4) ∂φ(x0) ⊆ co

 ⋃
u∈U(x0)

∂xf(x0, u)

 .
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On the other hand, Π := {x ∈ Rn : gi(x, vi) ≤ 0, vi ∈ Vi, i ∈ I} . Hence, K = Ω ∩ Π. As
0Rn ∈ N(Ω, x0), the following inclusion always holds:

⋃
µi∈Mi(x0)

 ∑
i∈I(x0)

µi∂xgi(x0, vi)

 ⊆ ⋃
µi∈Mi(x0)

 ∑
i∈I(x0)

µi∂xgi(x0, vi)

+N(Ω, x0).

Since the (CQ) is satisfied at x0, there do not exist µi ≥ 0 and vi ∈ Vi, i ∈ I(x0) such that∑
i∈I(x0)

µi 6= 0 and 0Rn ∈
∑
i∈I(x0)

µi∂xgi(x0, vi) + N(Ω, x0). Applying [19, Corollary
4.36], we have

N(Π, x0) ⊆
⋃

µi∈Mi(x0)

 ∑
i∈I(x0)

µi∂xgi(x0, vi)

 .

It follows from [19, Corollary 3.37] that N(K,x0) = N(Ω ∩ Π, x0) ⊆ N(Ω, x0) +N(Π, x0).
Setting µi = 0 for every i ∈ I \ I(x0), we arrive the following inclusion:

N(K,x0) ⊆
⋃

µi∈Mi(x0)

(∑
i∈I

µi∂xgi(x0, vi)

)
+N(Ω, x0).(3.5)

As x∗ ∈ B∩ N̂(K,x0) was arbitrary, we verify (3.2) by combining (3.3), (3.4) and (3.5). �

The following example shows that the (CQ) being satisfied around x0 ∈ K is essential
for Theorem 3.3.

Example 3.1. Let f : R× U → R and g : R× V → R be defined by

f(x, u) =

{
−u; x = 0,
x−2 − u; otherwise,

and g(x, v) := v − x3 where x ∈ R, u ∈ U := [0, 1] and v ∈ V := [−1, 0]. Take Ω := [−1, 1]
and consider the problem (UP). It is not hard to see that f satisfies (C1) and (C2), and the
robust feasible set is K = [0, 1]. Consider x0 := 0 ∈ K with its neighborhood U = (− 1

2 ,
1
2 ).

Choosing a positive real number η = 1 > 0, we can verify that x0 is a local robust weak
sharp solution of the problem (UP). Simultaneously, we get from direct calculating that

∂xf(x0, u) = {0}, u ∈ U , ∂xg(x0, v) = {0}, v ∈ V, N(Ω, x0) = {0}
and N(K,x0) = −R+. It follows that the (CQ) is not satisfied at x0. Furthermore, we get
ηBR2 ∩ N̂(K,x0) = [−η, 0] while

co

 ⋃
u∈U(x0)

∂xf(x0, u)

+
⋃

µ∈M(x0)

µ∂xg(x0, v) +N(Ω, x0) = {0},

which shows that (3.2) does not hold for every η, δ > 0. Hence, the assumption that (CQ)
being satisfied is essential. Observe that the functions f(·, u) and g(·, v) is not convex with
x1 = 1

2 , x2 = 0, and λ = 1
2 . Therefore, [17, Theorem 3.2] is not applicable for this example.

Now, we state a type of the robust version of Karush-Kuhn-Tucker (KKT) conditions as
the following definition.

Definition 3.4. the robust version of the (KKT) condition is satisfied at x0 ∈ K if there
exist λ > 0 and µ ∈ Rm+ such that λ+

∑m
i=1 µi = 1,

0 ∈ λ co

 ⋃
u∈U(x0)

∂xf(x0, u)

+

m∑
i=1

µi co

 ⋃
vi∈Vi(x0)

∂xgi(x0, vi)

 ,

and µi supvi∈Vi gi(x0, vi) = 0, i ∈ I.
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The following example illustrates that only satisfying the robust version of (KKT) con-
dition is not sufficient for a point to be a (local) robust weak sharp solution of problem
(UP).

Example 3.2. Let f : R× U → R and g : R× V → R be defined by f(x, u) = −x2 − u and
g(x, v) = vmax{x, 0}, where x ∈ R, u ∈ U := [0, 1] and v ∈ V := [−1, 0]. By taking Ω = R,
we have K = R. Consider x0 := 0 ∈ K, then we have

∂xf(x0, u) = {0}, u ∈ U , ∂xg(x0, v) = {0}, v ∈ V.

The robust version of the (KKT) condition is satisfied at x0 with λ = µ = 1
2 > 0. However,

this x0 is not a (local) robust weak sharp solution of our considered problem since there is
no η > 0 satisfy maxu∈U f(x, u)−maxu∈U f(x0, u) = −x2 ≥ ηd(x, K̃) for all x ∈ R.

4. SUFFICIENT OPTIMALITY CONDITIONS FOR ROBUST WEAK SHARP SOLUTIONS

In this section, we focus on sufficient optimality conditions for robust weak sharp so-
lutions of problem (UP). In order to formulate the conditions, we need to introduce con-
cepts of generalized convexity at a given point for a family of real-valued functions. We
set g := (g1, . . . , gm) for convenience in the sequel.

Definition 4.5. (f, g) is said to be generalized convex at x0 ∈ Rn if for any x ∈ Rn, z∗u ∈
∂xf(x0, u), u ∈ U(x0), and x∗v ∈ ∂gi(x0, v), v ∈ Vi(x0), i = 1, . . . ,m, there exists w ∈ Rn
such that f(x, u)− f(x0, u) ≥ 〈z∗u, w〉, gi(x, v)− gi(x0, v) ≥ 〈x∗v, w〉.

Remark 4.2. If f(·, u), u ∈ U and gi(·, v), v ∈ Vi, i = 1, . . . ,m are convex, then (f, g) is
generalized convex at any x0 ∈ Rn with w := x− x0 for each x ∈ Rn.

The following example demonstrates that the class of generalized convex functions at
a given point is properly wider than the one of convex functions.

Example 4.3. Let f : R× U → R and g : R× V → R be defined by f(x, u) = 2x+ u and

g(x, v) =

{
vx; x ≥ 0,
x− v; otherwise

where x ∈ R, u ∈ U := [0, 1] ⊆ R, and v ∈ V := [−1, 1] ⊆ R. Consider x0 := 0 ∈ R.
Observe that ∂xf(x0, u) = {2} for all u ∈ U , ∂xg(x0, v) = {v, 1} for all v ∈ V. We see that
(f, g) is generalized convex at x0 = 0 ∈ R as follows:
Case I: If x ≥ 0, then there exists w := x ∈ R such that f(x, u)− f(x0, u) = 2x = 〈2, x〉 and
g(x, v)− g(x0, v) = vx = 〈v, x〉.
Case II: If x < 0, then there exists w = x + v ∈ R such that f(x, u) − f(x0, u) = 2x ≥
〈2, x− v〉, and g(x, v)− g(x0, v) = x− v = 〈1, x− v〉.
However, g(·, 0) is not a convex function as follows: let x1 = 1, x2 = −1 ∈ R, and choose
λ = 1

2 ∈ [0, 1], we have g(λx1 + (1− λ)x2, 0) > λg(x1, 0) + (1− λ)g(x2, 0).

By means of the robust version of the (KKT) condition and the generalized convexity,
we established the following result.

Theorem 4.4. Let x0 ∈ K and the robust version of the (KKT) condition be satisfied at
x0. If (f, g) is generalized convex at x0, then x0 is a robust weak sharp solution for the
problem (UP).

Proof. Since the robust version of the (KKT) condition is satisfied at x0, there exist λ1 ≥
0, λ1k ≥ 0, z∗1k ∈ ∂xf(x0, u1k), u1k ∈ U(x0),

∑k1
k=1 λ1k = 1, k = 1, . . . , k1, k1 ∈ N, and
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µ ∈ Rm+ , µij ≥ 0, x∗ij ∈ ∂xgi(x0, vij ), vij ∈ Vi(x0),
∑ji
j=1 µij = 1, j = 1, . . . , ji, ji ∈ N, such

that λ1 +
∑m
i=1 µi = 1 and

(4.6) 0 = λ1

(
k1∑
k=1

λ1kz
∗
1k

)
+

m∑
i=1

µi

 ji∑
j=1

µijx
∗
ij

 ,

(4.7) µi sup
vi∈Vi

gi(x0) = 0, i = 1, . . . ,m.

Assume on the contrary that x0 is not a robust weak sharp solution for the problem (UP).
Then, there exists x̃ ∈ K such that for all η > 0

(4.8) max
u∈U

f(x̃, u)−max
u∈U

f(x0, u) < ηd(x̃, K̃).

It follows from the generalized convexity of (f, g) and (4.6) that there exists w ∈ Rn such
that

0 = λ1

(
k1∑
k=1

λ1k〈z∗1k , w〉

)
+

m∑
i=1

µi

 ji∑
j=1

µij 〈x∗ij , w〉


≤ λ1

(
k1∑
k=1

λ1k [f(x̃, u1k)− f(x0, u1k)]

)
+

m∑
i=1

µi

 ji∑
j=1

µij [gi(x̃, vij )− gi(x0, vij )]

 .(4.9)

Therefore,

λ1

(
k1∑
k=1

λ1kf(x0, u1k)

)
+

m∑
i=1

µi

 ji∑
j=1

µijgi(x0, vij )


≤ λ1

(
k1∑
k=1

λ1kf(x̃, u1k)

)
+

m∑
i=1

µi

 ji∑
j=1

µijgi(x̃, vij )

(4.10)

Since vij ∈ Vi(x0), gi(x0, vij ) = supvi∈Vi gi(x0, vi) for all i = 1, . . . ,m, ∀j = 1, . . . , ji. From
(4.7), we have µigi(x0, vij ) = 0 for i = 1, . . . ,m and j = 1, . . . , ji. Furthermore, for each
x̃ ∈ K,µigi(x̃, vij ) ≤ 0 for i = 1, . . . ,m and j = 1, . . . , ji. Hence, by (4.10) we have

λ1

(
k1∑
k=1

λ1kf(x0, u1k)

)
= λ1

(
k1∑
k=1

λ1kf(x0, u1k)

)
+

m∑
i=1

µi

 ji∑
j=1

µijgi(x0, vij )


≤ λ1

(
k1∑
k=1

λ1kf(x̃, u1k)

)
.

This together with u1k ∈ U(x0) imply
∑k1
k=1 λ1k maxu∈U f(x0, u) ≤

∑k1
k=1 λ1kf(x̃, u1k) ≤∑k1

k=1 λ1k maxu∈U f(x̃, u), which yields maxu∈U f(x0, u)−maxu∈U f(x̃, u) ≤ ηd(x̃, K̃), for
all η > 0. Thus for any η > 0,maxu∈U f(x̃, u) −max

u∈U
f(x0, u) ≥ ηd(x̃, K̃). This contradicts

(4.8) and hence x0 is a robust weak sharp solution of (UP). �

Remark 4.3. To establish the result in Theorem 4.4, the assumptions of the convexities of
objective function, constrains and parameter uncertain sets are dropped. However, these
assumptions are employed to obtain several results on optmality conditions for robust
optimal solutions of uncertain optimization problems obtained in recent literature (see,
e.g., [16, 22, 23, 24, 17]).
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The next example assert the importance of the generalized convexity of (f, g) imposed
in Theorem 4.4.

Example 4.4. Let f : R× U → R and g : R× V → R be defined by

f(x, u) = x3 + u and g(x, v) = 1− (v + x4),

where x ∈ R, u ∈ U := [−1, 0], v ∈ V := [1, 2] and let Ω := [−2, 2]. It can be seen that
conditions (C1) and (C2) are satisfied and the robust feasible set is K = R. By taking
x0 := 0 ∈ K, we see that ∂xf(x0, u) = {0} for all u ∈ U and ∂xg(x0, v) = {0} for all v ∈ V.
By the same way in Example 3.2, we have that the robust version of the (KKT) condition is
satisfied at x0. However, the generalized convexity of (f, g) is not satisfied at x0. Indeed,
there exists z = − 1

2 ∈ K such that for each w ∈ R, f(z, u)− f(x0, u) =
(
− 1

2

)3
< 0 = 〈0, w〉

and g(z, v)− g(x0, v) = 1−
(
v + (− 1

2 )4
)
< 0 = 〈0, w〉. Notice that x0 is not a (local) robust

weak sharp solution of (UP) as there is no η > 0 satisfy maxu∈U f(x, u)−maxu∈U f(x0, u) =

x3 ≥ ηd(x, K̃), ∀x ∈ R. Therefore, the conclusion of the Theorem 4.4 may fail if the
generalized convexity has been dropped.

It is not hard to see that the functionsf(·, u) and g(·, v) are not convex. In fact, the
convexities of them are not satisfied when x1 = − 1

2 , x2 = 0, and λ = 1
2 . Therefore, this

problem cannot be solved by [17, Theorem 3.2].
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