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Existence of solutions for a fractional nonlocal boundary
value problem

RODICA LUCA

ABSTRACT. We investigate the existence of solutions for a Riemann-Liouville fractional differential equation
with a nonlinearity dependent of fractional integrals, subject to nonlocal boundary conditions which contain
various fractional derivatives and Riemann-Stieltjes integrals. In the proof of our main results we use different
fixed point theorems.

1. INTRODUCTION

We consider the nonlinear fractional differential equation

(E) Dα
0+u(t) + f(t, u(t), Ip0+u(t))) = 0, t ∈ (0, 1),

with the nonlocal boundary conditions

(BC) u(0) = u′(0) = · · · = u(n−2)(0) = 0, Dβ0

0+u(1) =

m∑
i=1

∫ 1

0

Dβi

0+u(t) dHi(t),

where α ∈ R, α ∈ (n − 1, n], n, m ∈ N, n ≥ 2, βi ∈ R for all i = 0, . . . ,m, 0 ≤ β1 < β2 <
· · · < βm < α− 1, β0 ∈ [0, α− 1), Dk

0+ denotes the Riemann-Liouville derivative of order
k (for k = α, β0, β1, . . . , βm), p > 0, Ip0+ is the Riemann-Liouville integral of order p, f is
a nonlinear function, and the integrals from the boundary condition (BC) are Riemann-
Stieltjes integrals with Hi, i = 1, . . . ,m functions of bounded variation.

We present conditions for the nonlinearity f such that problem (E)− (BC) has at least
one solution. The existence of multiple positive solutions for problem (E) − (BC) with
n ≥ 3, β0 ≥ βm and the function f does not depend on the fractional integral Iα0+u, but
it may change sign and be singular in the points t = 0, 1 and/or in the space variable u,
was investigated in the paper [1]. In the proof of the main results of [1], the authors used
various height functions of the nonlinearity of equation defined on special bounded sets,
some properties of the corresponding Green functions, and two theorems from the fixed
point index theory. The equation (E) with f = f(t, u), and with a positive parameter λ
supplemented with the boundary conditions

(BC1) u(0) = u′(0) = · · · = u(n−2)(0) = 0, Dp
0+u(1) =

m∑
i=1

aiD
q
0+u(ξi),

where ξi ∈ R, i = 1, . . . ,m, 0 < ξ1 < · · · < ξm < 1, p, q ∈ R, p ∈ [1, n − 2], q ∈ [0, p], has
been studied in [9]. In paper [9], the nonlinearity f changes sign and it is singular only in
t = 0, 1, and there the authors used the Guo-Krasnosel’skii fixed point theorem to prove
the existence of positive solutions when the parameter belongs to various intervals. We
also mention the monograph [8] and the papers [2], [3], [4], [5], [6], [7], [10], [11], [12], [14],
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[15], [16], [17], [18], [19], [20], [21] for some recent results on the existence, nonexistence
and multiplicity of solutions for fractional differential equations and systems of fractional
differential equations subject to various boundary conditions.

2. PRELIMINARY RESULTS

First we consider the fractional differential equation

(2.1) Dα
0+u(t) + y(t) = 0, t ∈ (0, 1),

with the boundary conditions (BC), where y ∈ C(0, 1) ∩ L1(0, 1). We denote by

∆ =
Γ(α)

Γ(α− β0)
−

m∑
i=1

Γ(α)

Γ(α− βi)

∫ 1

0

sα−βi−1 dHi(s).

Lemma 2.1. ([1]) If ∆ 6= 0, then the unique solution u ∈ C[0, 1] of problem (2.1)-(BC) is given
by

(2.2)
u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1y(s) ds+
tα−1

∆Γ(α− β0)

∫ 1

0

(1− s)α−β0−1y(s) ds

− t
α−1

∆

m∑
i=1

1

Γ(α− βi)

∫ 1

0

(∫ s

0

(s− τ)α−βi−1y(τ) dτ

)
dHi(s), t ∈ [0, 1].

Lemma 2.2. ([3]) If x ∈ C[0, 1] then for θ > 0 we have

|Iθ0+x(t)| ≤ ‖x‖
Γ(θ + 1)

, ∀ t ∈ [0, 1],

where ‖x‖ = supt∈[0,1] |x(t)|.

We consider the Banach space X = C([0, 1]) with the supremum norm ‖ · ‖, and define
the operator A : X → X by
(2.3)

(Au)(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1f(s, u(s), Ip0+u(s)) ds

+
tα−1

∆Γ(α− β0)

∫ 1

0

(1− s)α−β0−1f(s, u(s), Ip0+u(s)) ds

− t
α−1

∆

m∑
i=1

1

Γ(α− βi)

∫ 1

0

(∫ s

0

(s− τ)α−βi−1f(τ, u(τ), Ip0+u(τ)) dτ

)
dHi(s), t ∈ [0, 1].

By using Lemma 2.1, we see that u is a solution of problem (E) − (BC) if and only if
u is a fixed point of operator A. Therefore, next we will investigate the existence of fixed
points of operator A.

3. EXISTENCE OF SOLUTIONS FOR PROBLEM (E)− (BC)

We introduce firstly the assumptions that we will use in our main existence theorems
for problem (E)− (BC).

(H1) α ∈ R, α ∈ (n − 1, n], n, m ∈ N, n ≥ 2, βi ∈ R for all i = 0, . . . ,m, 0 ≤ β1 < β2 <
· · · < βm < α− 1, β0 ∈ [0, α− 1), p > 0, Hi : [0, 1]→ R, i = 1, . . . ,m are functions
of bounded variation, and ∆ = Γ(α)

Γ(α−β0) −
∑m
i=1

Γ(α)
Γ(α−βi)

∫ 1

0
sα−βi−1 dHi(s) 6= 0.

(H2) The function f : [0, 1]× R2 → R is continuous and there exists L1 > 0 such that
|f(t, x, y)− f(t, x1, y1)| ≤ L1(|x− x1|+ |y − y1|), for all t ∈ [0, 1], x, y, x1, y1 ∈ R.

(H3) There exists a function g ∈ C([0, 1], [0,∞)) such that |f(t, x, y)| ≤ g(t), for all
(t, x, y) ∈ [0, 1]× R2.
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(H4) The function f : [0, 1]×R2 → R is continuous and there exist real constants a0 > 0,
a1 ≥ 0, a2 ≥ 0 such that
|f(t, x, y)| ≤ a0 + a1|x|+ a2|y|, for all t ∈ [0, 1], x, y ∈ R.

(H5) The function f : [0, 1] × R2 → R is continuous and there exist the constants
b0, b1, b2 ≥ 0 with at least one nonzero, and l1, l2 ∈ (0, 1) such that
|f(t, x, y)| ≤ b0 + b1|x|l1 + b2|y|l2 , for all t ∈ [0, 1], x, y ∈ R.

(H6) The function f : [0, 1] × R2 → R is continuous and there exist c0, c1, c2 ≥ 0 with
at least one nonzero, and nondecreasing functions h1, h2 ∈ C([0,∞), [0,∞)) such
that
|f(t, x, y)| ≤ c0 + c1h1(|x|) + c2h2(|y|), for all t ∈ [0, 1], x, y ∈ R.

We denote by

(3.4)
M1 =

1

Γ(α+ 1)
+

1

|∆|Γ(α− β0 + 1)
+

1

|∆|

m∑
i=1

1

Γ(α− βi + 1)

∣∣∣∣∫ 1

0

sα−βidHi(s)

∣∣∣∣ ,
M2 = M1 −

1

Γ(α+ 1)
, L0 = 1 +

1

Γ(p+ 1)
.

Theorem 3.1. Assume that (H1) and (H2) hold. If Ξ := L1L0M1 < 1, then problem (E) −
(BC) has a unique solution on [0, 1], where L0 and M1 are given by (3.4).

Proof. Let us fix r > 0 such that r ≥M0M1(1−L1L0M1)−1, whereM0 = supt∈[0,1] |f(t, 0, 0)|.
We consider the set Br = {u ∈ X, ‖u‖X ≤ r} and we show firstly that ABr ⊂ Br. Let
u ∈ Br. By using (H2) and Lemma 2.2, for f(t, u(t), Ip0+u(t)) we obtain the following
inequalities

|f(t, u(t), Ip0+u(t))| ≤ |f(t, u(t), Ip0+u(t))− f(t, 0, 0)|+ |f(t, 0, 0)|

≤ L1(|u(t)|+ |Ip0+u(t)|) +M0 ≤ L1

(
‖u‖+

1

Γ(p+ 1)
‖u‖
)

+M0

= L1

(
1 +

1

Γ(p+ 1)

)
‖u‖+M0 ≤ L1L0r +M0, ∀ t ∈ [0, 1].

Then by the definition of operator A from (2.3), we deduce

|(Au)(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1(L1L0r +M0) ds

+
tα−1

|∆|Γ(α− β0)

∫ 1

0

(1− s)α−β0−1(L1L0r +M0) ds

+
tα−1

|∆|

m∑
i=1

1

Γ(α− βi)

∣∣∣∣∫ 1

0

(∫ s

0

(s− τ)α−βi−1(L1L0r +M0) dτ

)
dHi(s)

∣∣∣∣
= (L1L0r +M0)

{
tα

Γ(α+ 1)
+

tα−1

|∆|Γ(α− β0 + 1)

+
tα−1

|∆|

m∑
i=1

1

Γ(α− βi + 1)

∣∣∣∣∫ 1

0

sα−βi dHi(s)

∣∣∣∣
}
, ∀ t ∈ [0, 1].

Therefore we conclude

‖Au‖ ≤ (L1L0r +M0)

[
1

Γ(α+ 1)
+

1

|∆|Γ(α− β0 + 1)

+
1

|∆|

m∑
i=1

1

Γ(α− βi + 1)

∣∣∣∣∫ 1

0

sα−βi dHi(s)

∣∣∣∣
]

= (L1L0r +M0)M1 ≤ r.

So, we deduce that A maps Br into itself.
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Now for u, v ∈ Br we have

|(Au)(t)− (Av)(t)| ≤
∣∣∣∣− 1

Γ(α)

∫ t

0

(t− s)α−1f(s, u(s), Ip0+u(s)) ds

+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, v(s), Ip0+v(s)) ds

∣∣∣∣
+

tα−1

|∆|Γ(α− β0)

∫ 1

0

(1− s)α−β0−1|f(s, u(s), Ip0+u(s))− f(s, v(s), Ip0+v(s))| ds

+
tα−1

|∆|

m∑
i=1

1

Γ(α− βi)

∣∣∣∣∫ 1

0

(∫ s

0

(s− τ)α−βi−1|f(τ, u(τ), Ip0+u(τ))

−f(τ, v(τ), Ip0+v(τ))| dτ
)
dHi(s)

∣∣∣∣
≤ L1

Γ(α)

∫ t

0

(t− s)α−1[|u(s)− v(s)|+ |Ip0+u(s)− Ip0+v(s)|] ds

+
tα−1L1

|∆|Γ(α− β0)

∫ 1

0

(1− s)α−β0−1[|u(s)− v(s)|+ |Ip0+u(s)− Ip0+v(s)|] ds

+
tα−1L1

|∆|

m∑
i=1

1

Γ(α− βi)

∣∣∣∣∫ 1

0

(∫ s

0

(s− τ)α−βi−1 [|u(τ)− v(τ)|

+|Ip0+u(τ)− Ip0+v(τ)|
]
dτ

)
dHi(s)

∣∣∣∣
≤ L1

Γ(α)

∫ t

0

(t− s)α−1

[
‖u− v‖+

1

Γ(p+ 1)
‖u− v‖

]
ds

+
tα−1L1

|∆|Γ(α− β0)

∫ 1

0

(1− s)α−β0−1

[
‖u− v‖+

1

Γ(p+ 1)
‖u− v‖

]
ds

+
tα−1L1

|∆|

m∑
i=1

1

Γ(α− βi)

∣∣∣∣∫ 1

0

(∫ s

0

(s− τ)α−βi−1

[
‖u− v‖+

1

Γ(p+ 1)
‖u− v‖

]
dτ

)
dHi(s)

∣∣∣∣
= L1L0‖u− v‖

[
tα

Γ(α+ 1)
+

tα−1

|∆|Γ(α− β0 + 1)

+
tα−1

|∆|

m∑
i=1

1

Γ(α− βi + 1)

∣∣∣∣∫ 1

0

sα−βidHi(s)

∣∣∣∣
]
, ∀ t ∈ [0, 1].

Hence we obtain

‖Au−Av‖ ≤ L1L0‖u− v‖
(

1

Γ(α+ 1)
+

1

|∆|Γ(α− β0 + 1)

+
1

|∆|

m∑
i=1

1

Γ(α− βi + 1)

∣∣∣∣∫ 1

0

sα−βidHi(s)

∣∣∣∣ ) = Ξ‖u− v‖.

By using the condition Ξ < 1, we deduce that operator A is a contraction. Then by the
Banach contraction mapping principle, we conclude that operator A has a unique fixed
point u ∈ Br, which is the unique solution of problem (E)− (BC) on [0, 1]. �

Theorem 3.2. Assume that (H1), (H2) and (H3) hold. If Ξ1 := L1L0
1

Γ(α+1) < 1, then problem
(E)− (BC) has at least one solution on [0, 1].
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Proof. Let us fix r1 > 0 such that r1 ≥ M1‖g‖. We consider the set Br1 = {u ∈ X, ‖u‖ ≤
r1}, and we introduce the operators A1, A2 : Br1 → X defined by

(3.5)

(A1u)(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1f(s, u(s), Ip0+u(s)) ds, t ∈ [0, 1],

(A2u)(t) =
tα−1

∆Γ(α− β0)

∫ 1

0

(1− s)α−β0−1f(s, u(s), Ip0+u(s)) ds

− t
α−1

∆

m∑
i=1

1

Γ(α− βi)

∫ 1

0

(∫ s

0

(s− τ)α−βi−1f(τ, u(τ), Ip0+u(τ)) dτ

)
dHi(s),

for all t ∈ [0, 1] and u ∈ Br1 .
By using (H3), we obtain for all u, v ∈ Br1

‖A1u+A2v‖ ≤ ‖A1u‖+ ‖A2v‖ ≤
1

Γ(α+ 1)
‖g‖

+

(
1

|∆|Γ(α− β0 + 1)
+

1

|∆|

m∑
i=1

1

Γ(α− βi + 1)

∣∣∣∣∫ 1

0

sα−βidHi(s)

∣∣∣∣
)
‖g‖ = M1‖g‖ ≤ r1.

Hence A1u+A2v ∈ Br1 for all u, v ∈ Br1 .
The operator A1 is a contraction, because

‖A1u−A1v‖ ≤ L1L0
1

Γ(α+ 1)
‖u− v‖ = Ξ1‖u− v‖, ∀u, v ∈ Br1 ,

and Ξ1 < 1.
The continuity of f implies that the operator A2 is continuous on Br1 . We prove next

that A2 is compact. The operator A2 is uniformly bounded on Br1 , because

‖A2u‖ ≤

(
1

|∆|Γ(α− β0 + 1)
+

1

|∆|

m∑
i=1

1

Γ(α− βi + 1)

∣∣∣∣∫ 1

0

sα−βidHi(s)

∣∣∣∣
)
‖g‖ = M2‖g‖,

for all u ∈ Br1 . Now we prove that A2 is equicontinuous on Br1 . We denote by

(3.6) Λr1 = sup

{
|f(t, x, y)|, t ∈ [0, 1], |x| ≤ r1, |y| ≤

1

Γ(p+ 1)
r1

}
.

Then for u ∈ Br1 and t1, t2 ∈ [0, 1] with t1 < t2, we obtain

|(A2u)(t2)− (A2u)(t1)| ≤ (tα−1
2 − tα−1

1 )

|∆|Γ(α− β0)

∫ 1

0

(1− s)α−β0−1Λr1 ds

+
(tα−1

2 − tα−1
1 )

|∆|

m∑
i=1

1

Γ(α− βi)

∣∣∣∣∫ 1

0

(∫ s

0

(s− τ)α−βi−1Λr1 dτ

)
dHi(s)

∣∣∣∣
≤ Λr1(tα−1

2 − tα−1
1 )

[
1

|∆|Γ(α− β0 + 1)
+

1

|∆|

m∑
i=1

1

Γ(α− βi + 1)

∣∣∣∣∫ 1

0

sα−βidHi(s)

∣∣∣∣
]

= Λr1M2(tα−1
2 − tα−1

1 ).

Therefore we conclude

|(A2u)(t2)− (A2u)(t1)| → 0, as t2 → t1, uniformly with respect to u ∈ Br1 .

We deduce that A2 is equicontinuous on Br1 , and so, by using Arzela-Ascoli theorem,
the set A2(Br1) is relatively compact. We conclude that operator A2 is compact on Br1 .
Then by the Krasnosel’skii fixed point theorem for the sum of two operators (see [13])
we deduce that there exists a fixed point of operator A1 + A2, which is a solution of the
boundary value problem (E)− (BC) on [0, 1]. �
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Theorem 3.3. Assume that (H1), (H2) and (H3) hold. If Ξ2 := L1L0M2 < 1, then problem
(E)− (BC) has at least one solution on [0, 1].

Proof. We consider again a positive number r1 ≥M1‖g‖ and the operatorsA1, A2 defined
on Br1 given by (3.5). In a similar manner as in the proof of Theorem 3.2, we obtain that
A1u+A2v ∈ Br1 for all u, v ∈ Br1 .

The operator A2 is a contraction because

‖A2u−A2v‖ ≤ L1L0

(
1

|∆|Γ(α− β0 + 1)
+

1

|∆|

m∑
i=1

1

Γ(α− βi + 1)

∣∣∣∣∫ 1

0

sα−βidHi(s)

∣∣∣∣
)

×‖u− v‖ = L1L0M2‖u− v‖ = Ξ2‖u− v‖, ∀u, v ∈ Br1 ,
with Ξ2 < 1.

Then the continuity of f implies that the operator A1 is continuous on Br1 . We prove
now that A1 is compact. The operator A1 is uniformly bounded on Br1 because

‖A1u‖ ≤
1

Γ(α+ 1)
‖g‖, ∀u ∈ Br1 .

Now we show that A1 is equicontinuous on Br1 . By using Λr1 (defined in the proof of
Theorem 3.2), we obtain for u ∈ Br1 and t1, t2 ∈ [0, 1] with t1 < t2

|(A1u)(t2)− (A1u)(t1)| =
∣∣∣∣− 1

Γ(α)

∫ t2

0

(t2 − s)α−1f(s, u(s), Ip0+u(s)) ds

+
1

Γ(α)

∫ t1

0

(t1 − s)α−1f(s, u(s), Ip0+u(s)) ds

∣∣∣∣
=

∣∣∣∣− 1

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]f(s, u(s), Ip0+u(s)) ds

− 1

Γ(α)

∫ t2

t1

(t2 − s)α−1f(s, u(s), Ip0+u(s)) ds

∣∣∣∣
≤ Λr1

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1] ds+
Λr1
Γ(α)

∫ t2

t1

(t2 − s)α−1 ds

=
Λr1

Γ(α+ 1)
[−(t2 − t1)α + tα2 − tα1 ] +

Λr1
Γ(α+ 1)

(t2 − t1)α

≤ Λr1
Γ(α+ 1)

(tα2 − tα1 ).

Then we deduce

|(A1u)(t2)− (A1u)(t1)| → 0, as t2 → t1, uniformly with respect to u ∈ Br1 .
We conclude that A1 is equicontinuous on Br1 , and by using Arzela-Ascoli theorem,

the set A1(Br1) is relatively compact. We deduce that operator A1 is compact on Br1 . By
the Krasnosel’skii fixed point theorem for the sum of two operators, we obtain that there
exists a fixed point of operatorA1 +A2, which is a solution of the boundary value problem
(E)− (BC) on [0, 1]. �

Theorem 3.4. Assume that (H1) and (H4) hold. If Ξ3 := M1

(
a1 + a2

Γ(p+1)

)
< 1, then the

boundary value problem (E)− (BC) has at least one solution on [0, 1].

Proof. We consider the operator A : X → X defined in (2.3). We firstly prove that A is
completely continuous. By the continuity of f we deduce that A is a continuous operator.

We show next that A is a compact operator. Let Ω ⊂ X be a bounded set. Then there
exist a positive constant L2 such that

|f(t, u(t), Ip0+u(t))| ≤ L2, ∀ t ∈ [0, 1], u ∈ Ω.
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Therefore we obtain as in the proof of Theorem 3.1 that |(Au)(t)| ≤ L2M1, for all t ∈ [0, 1]
and u ∈ Ω. So, A(Ω) is uniformly bounded.

We will show next that A(Ω) is equicontinuous. Let u ∈ Ω and t1, t2 ∈ [0, 1] with
t1 < t2. Then by using the operators A1 and A2 defined on Ω (given by (3.5)), and based
on a similar approach as that used in the proof of Theorem 3.2, we obtain

|(Au)(t2)− (Au)(t1)| ≤ |(A1u)(t2)− (A1u)(t1)|+ |(A2u)(t2)− (A1u)(t1)|

≤ L2

Γ(α+ 1)
(tα2 − tα1 ) + L2M2(tα−1

2 − tα−1
1 ).

Then |(Au)(t2) − (Au)(t1)| → 0 as t2 → t1 uniformly with respect to u ∈ Ω. Thus A(Ω)
is equicontinuous. By Arzela-Ascoli theorem, we deduce that A(Ω) is relatively compact,
and so A is compact. Therefore A is completely continuous.

Now we will prove that the set F = {u ∈ X, u = νA(u), 0 < ν < 1} is bounded. Let
u ∈ F , that is u = νA(u) for some ν ∈ (0, 1). Then we have

|u(t)| = |ν(Au)(t)| ≤ |(Au)(t)|, ∀ t ∈ [0, 1].

By (H4) we obtain

|u(t)| ≤ |(Au)(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1[a0 + a1|u(s)|+ a2|Ip0+u(s)|] ds

+
tα−1

|∆|Γ(α− β0)

∫ 1

0

(t− s)α−β0−1[a0 + a1|u(s)|+ a2|Ip0+u(s)|] ds

+
tα−1

|∆|

m∑
i=1

1

Γ(α− βi)

∣∣∣∣∫ 1

0

(∫ s

0

(s− τ)α−βi−1[a0 + a1|u(τ)|+ a2|Ip0+u(τ)|] dτ
)
dHi(s)

∣∣∣∣
≤
(
a0 + a1‖u‖+

a2

Γ(p+ 1)
‖u‖
)[

tα

Γ(α+ 1)
+

tα−1

|∆|Γ(α− β0 + 1)

+
tα−1

|∆|

m∑
i=1

1

Γ(α− βi + 1)

∣∣∣∣∫ 1

0

sα−βidHi(s)

∣∣∣∣
]
.

Therefore we deduce

‖u‖ ≤M1

(
a0 + a1‖u‖+

a2

Γ(p+ 1)
‖u‖
)
.

Because Ξ3 < 1, we obtain

‖u‖ ≤M1a0

(
1−M1a1 −

M1a2

Γ(p+ 1)

)−1

.

Hence we deduce that the set F is bounded.
By using the Leray-Schauder alternative, we conclude that the operator A las at least

one fixed point, which is a solution for our problem (E)− (BC). �

Theorem 3.5. Assume that (H1) and (H5) hold. Then problem (E) − (BC) has at least one
solution.

Proof. Let BR = {u ∈ X, ‖u‖ ≤ R}, where

R ≥ max

{
3b0M1, (3b1M1)

1
1−l1 ,

(
3b2M1

(Γ(p+ 1))l2

) 1
1−l2

}
.

We prove now that A : BR → BR. For u ∈ BR we deduce

|(Au)(t)| ≤
(
b0 + b1R

l1 +
b2

(Γ(p+ 1))l2
Rl2
)
M1 ≤

R

3
+
R

3
+
R

3
= R, ∀ t ∈ [0, 1],
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and then ‖Au‖ ≤ R, which implies that A(BR) ⊂ BR.
From the continuity of the function f we can easily show that the operator A is con-

tinuous. The functions from A(BR) are uniformly bounded and equicontinuous. In-
deed, by using the notation (3.6), with r1 replaced by R, we obtain for any u ∈ BR and
t1, t2 ∈ [0, 1], t1 < t2 that

|(Au)(t2)− (Au)(t1)| ≤ ΛR
Γ(α+ 1)

(tα2 − tα1 ) + ΛRM2(tα−1
2 − tα−1

1 ).

Therefore |(Au)(t2) − (Au)(t1)| → 0 as t2 → t1 uniformly with respect to u ∈ BR. By
Arzela-Ascoli theorem, we conclude that A(BR) is relatively compact, and then A is a
completely continuous operator. By the Schauder fixed point theorem, we deduce that
operator A has at least one fixed point u in BR which is a solution of our problem (E) −
(BC). �

Theorem 3.6. Assume that (H1) and (H6) hold. If there exists Ξ0 > 0 such that

(3.7)
(
c0 + c1h1(Ξ0) + c2h2

(
Ξ0

Γ(p+ 1)

))
M1 < Ξ0,

where c0, c1, c2, h1, h2 are given in (H6), then problem (E)− (BC) has at least one solution on
[0, 1].

Proof. We consider the set BΞ0 = {u ∈ X, ‖u‖ ≤ Ξ0}, where Ξ0 is given in the assump-
tions of the theorem. We will show that A : BΞ0

→ BΞ0
. For u ∈ BΞ0

and t ∈ [0, 1], we
obtain

|(Au)(t)| ≤
(
c0 + c1h1(Ξ0) + c2h2

(
Ξ0

Γ(p+ 1)

))
M1 < Ξ0.

Then A(BΞ0) ⊂ BΞ0 . In a similar manner as in the proof of Theorem 3.5 we can show that
operator A is completely continuous.

We suppose now that there exists u ∈ ∂BΞ0
such that u = νA(u) for some ν ∈ (0, 1).

We obtain as above that ‖u‖ ≤ ‖Au‖ < Ξ0, which is a contradiction, because u ∈ ∂BΞ0
.

Then by the nonlinear alternative of Leray-Schauder type, we conclude that operator A
has a fixed point u ∈ BΞ0

, and so problem (E)− (BC) has at least one solution. �

4. EXAMPLES

Let α = 5
2 (n = 3), p = 10

3 , m = 2, β0 = 6
5 , β1 = 1

3 , β2 = 3
4 , H1(t) = t2 for all t ∈ [0, 1],

H2(t) = {0, if t ∈ [0, 1/2); 3, if t ∈ [1/2, 1]}.
We consider the fractional differential equation

(E0) D
5/2
0+ u(t) + f(t, u(t), I

10/3
0+ u(t)) = 0, 0 < t < 1,

with the boundary conditions

(BC0) u(0) = u′(0) = 0, D
6/5
0+ u(1) = 2

∫ 1

0

tD
1/3
0+ u(t) dt+ 3D

3/4
0+ u

(
1

2

)
.

We obtain here ∆ ≈ −1.87462428 6= 0, L0 ≈ 1.1079852, M1 ≈ 1.16312084 and M2 ≈
0.86221973. So assumption (H1) is satisfied.

Example 4.1. We consider the function

f(t, x, y) =
|x|

2(t+ 1)2(1 + |x|)
− t

4
arctan y − 3t

t2 + 4
, t ∈ [0, 1], x, y ∈ R.
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Here we have L1 = 1
2 , and then Ξ ≈ 0.64436034 < 1. Therefore assumption (H2) is

satisfied, and by Theorem 3.1 we deduce that problem (E0)−(BC0) has a unique solution
u(t), t ∈ [0, 1].

Example 4.2. We consider the function

f(t, x, y) =
1√

4 + t2
sin t+

|x|
3(2 + |x|)

− 1

2(1 + t)
sin2 y, t ∈ [0, 1], x, y ∈ R.

In this case we have L1 = 1 and |f(t, x, y)| ≤ g(t) for all t ∈ [0, 1] and x, y ∈ R, where
g(t) = | sin t|√

4+t2
+ 1

3 + 1
2(1+t) , for all t ∈ [0, 1]. So assumptions (H2) and (H3) are satisfied,

and in addition we obtain Ξ1 ≈ 0.33339398 < 1. Then by Theorem 3.2 we conclude that
problem (E0)− (BC0) has at least one solution on [0, 1].

Example 4.3. We consider the function

f(t, x, y) =
t

t2 + 1

(
4 cos t+

1

2
sinx

)
− 1

(t+ 1)3
y, ∀ t ∈ [0, 1], x, y ∈ R.

Because we have |f(t, x, y)| ≤ 2+ 1
4 |x|+|y|, for all t ∈ [0, 1], x, y ∈ R, the assumption (H4)

is satisfied with a0 = 2, a1 = 1
4 and a2 = 1. In addition we obtain Ξ3 ≈ 0.41638005 < 1,

and then by Theorem 3.4 we deduce that problem (E0) − (BC0) has at least one solution
on [0, 1].

Example 4.4. We consider the function

f(t, x, y) =
e−t

1 + t3
− 1

3
x2/3 +

1

4(3 + t)
arctan y1/5, t ∈ [0, 1], x, y ∈ R.

Because we obtain |f(t, x, y)| ≤ 1 + 1
3 |x|

2/3 + 1
12 |y|

1/5, for all t ∈ [0, 1], x, y ∈ R, then
assumption (H5) is satisfied with b0 = 1, b1 = 1

3 , b2 = 1
12 , l1 = 2

3 , l2 = 1
5 . Then by

Theorem 3.5 we deduce that problem (E0)− (BC0) has at least one solution on [0, 1].

Example 4.5. We consider the function

f(t, x, y) =
(1− t)2

10
+

(1− t)x2

15(1 + x2)
− t4y3

5
, ∀ t ∈ [0, 1], x, y ∈ R.

Because we have |f(t, x, y)| ≤ 1
10 + 1

15 |x|
2 + 1

5 |y|
3, for all t ∈ [0, 1], x, y ∈ R, then assump-

tion (H6) is satisfied with h1(x) = x2 and h2(x) = x3 for x ∈ [0,∞), c0 = 1
10 , c1 = 1

15 and

c2 = 1
5 . For Ξ0 = 2 the condition (3.7) is satisfied, because

(
c0 + c1h1(2) + c2h2

(
2

Γ(p+1)

))
M1

≈ 0.428821 < 2. Therefore by Theorem 3.6 we conclude that problem (E0)− (BC0) has at
least one solution on [0, 1].
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