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Effect of voids in a heat-flux dependent theory for
thermoelastic bodies with dipolar structure

MARIN MARIN, ANDREAS ÖCHSNER and SORIN VLASE

ABSTRACT. In our paper we formulate a theory for thermoelastic porous dipolar bodies in which we consider
a new independent variable, namely the heat-flux vector. Furthermore, we add, to the differential equations that
describe the behavior of the body, a new differential equation which is an equation of evolution which is satis-
fied by the components of the heat-flux vector. The basic system of the mixed initial-boundary value problem
in this context consists of equations of the hyperbolic type. In order to ensure the consistency of the constructed
theory, we formulate and prove an uniqueness result, with regards to the solution of the mixed problem.

1. INTRODUCTION

At the beginning we will say a few words about each of the three effects we consider
in our study: heat-flux dependent theory, voids and dipolar structure. First, regarding
the heat-flux dependent theory, it is known that in the classical theory of thermoelasticity
there is a phenomenon that contradicts with real materials: there is no elastic term in the
equation of heat conduction. Also, in the previous theories the partial differential equa-
tions are only of the parabolic type. In the present theory there is a hyperbolic equation
for the balance of energy. The general purpose of all these new theories is the creation of
some models which allow waves to propagate at finite speed. In some studies on these
theories, the term ”the second-sound” is used. Among the known studies in which the au-
thors intended to avoid the above mentioned paradoxes, we must refer to papers [9]-[11]
in which the authors considered three different aspects of thermoelasticiy. In the first of
them the considerations are equivalent to those of the theory of classical thermoelasticity.
In the context of Green-Naghdi’s second theory, waves propagate at finite speed because
the authors do not consider the energy dissipation. The theory of type III of Green and
Naghdi is in fact a combination of the first two. Specific to this theory is the propagation
for the heat waves at finite speed, even if energy dissipation is allowed. In the paper [4]
Choudhuri replaced the Fourier law by a complicated energy balance in which is intro-
duced a function for the thermal displacement and is included the thermal conductivity
tensor and a tensor of rate of conductivity. In the books [15], [16] and [25] other considera-
tions can be encountered regarding the use of a vector for heat-flux as an internal variable
in the context of different generalizations of thermoelasticity.
As for the second effect, the one of the voids, we have to say that the theory of porous
bodies is dedicated to the study of behavior of solids with voids in which the interstices
are voids of the material and the skeletal is elastic. In first study for this kind of body, [26],
Nunziato and Cowin considered the mass density as the product of the density of the ma-
trix material and the volume fraction. This, in fact, means introducing an extra degree of

Received: 21.10.2019. In revised form: 30.01.2020. Accepted: 06.02.2020
2010 Mathematics Subject Classification. 74A15, 74A60, 74G40, 35A15.
Key words and phrases. thermoelasticity, heat-flux vector, dipolar bodies, voids, hyperbolic equations, uniqueness of

solution.
Corresponding author: Marin Marin; m.marin@unitbv.ro

463



464 M. Marin, A. Öchsner, S. Vlase

freedom to characterize the behavior of bodies with small pores. The applications of this
theory can be found in geological materials, like soil and rock or artificial manufactured
materials with pores. In papers [26] and [5], it is considered only the isothermal case.
Later Iesan in [14] extended the theory in order to cover the thermoelasticity of solids
with pores.
Finally, the third effect considered in our study is that of the dipolar structure.
The theories of solids with microstructure, proposed by Eringen (see for instance [6], [7]),
also aim to avoid the above paradoxes. After Eringen, these theories received a great con-
sideration, [1]-[3], [13], [18], [19].
The theory of a dipolar medium occupies a special place among the theories dedicated to
the microstructure. So, the studies [24] of Mindlin as well as of Green and Rivlin [12] are
among the best known. Also, another known researcher is Gurtin that wrote many arti-
cles on bodies with dipolar structures. For instance, in the study [8] of Fried and Gurtin it
is formulated a balance of energy for an interface regarding a solid and its outside world.
Other results regarding the microstructure can be found in [20]-[23], [27], [28].
The observation that interest has increased in recent years for these theories can be ex-
plained by the fact that it is possible to use them in the investigation of deformation prop-
erties of solids for which the classical theory is inappropriate. As a concrete motivation
of increasing interest for bodies with dipolar structure is that this theory is more realistic
than the classical elasticity theory in approaching the problems of earth science.
Considering the large number of published works dedicated to the theory of porous dipo-
lar bodies, it can be considered that it is useful for a large number of applications in con-
tinuum mechanics.
First, we will state the basic equations and conditions of the mixed initial-boundary value
problem for our bodies. The independent variables of these equations and conditions
are vi, φij and ϑ, that is, the components of displacement, the components of couple dis-
placement and the absolute temperature, respectively. All these are regular functions
depending on the variable time t and on the position variable x, of the form f = f(t, x).
This thermoelasticity theory is extended by attaching the variable heat-flux among the
independent variables. It can be considered that our work is inspired by the study [17] of
Lebon. Also, our considerations are a counterpart of the theory of thermoelasticity, pro-
posed by Lord and Shulman in [18]. In the following, we first obtain the basic equations
specific to the heat-flux theory of thermoelasticity for a dipolar porous medium, namely
the constitutive equations. For this we will use only some thermodynamical considera-
tions. As a second step, we deduce the equations that govern the evolution of our body,
and certain restrictions on the constants of the material. To prove the consistency and
applicability of our theory we obtain an uniqueness result of solution for our mixed prob-
lem, even in the general case of a medium with anisotropy. It is important to notice that
the uniqueness theorem, is proven by using some auxiliary inequalities which involve the
constitutive variable heat-flux.

2. BASIC NOTIONS, EQUATIONS AND CONDITIONS

We will consider a thermoelastic dipolar body with pores which initially occupies the
regular and bounded domainD of the three-dimensional Euclidean spaceR3. We will use
the notation ∂D for the boundary of D and suppose that it is a piecewise smooth surface
so that we can apply the divergence theorem. Points of the domain D are identifiable
by the variables x1, x2, x3 and we will denote by x the triplet (x1, x2, x3). The functions
used in our study are defined for all points of the cylinder D̄ × (0,∞), with D̄ = D ∪ ∂D.
We will use Einstein convention of summation with regards to the repeated indices. The
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Latin indices are taken over the values 1, 2, 3. To designate the derivative of the function
f regarding the variable t we will write ḟ = ∂f/∂t, so, a dot over the function. Also,
the partial differentiation of a function f regarding a spatial variable xj is denoted by
f,j = ∂f/∂xj , that is, a comma followed by the respective subscript.
We will define a mathematical model which is based on some linear differential equations
for the theory of thermoelasticity for dipolar bodies with pores.
In order to characterize the evolution of this medium will use the variables (vi, φij , ϑ),
above described. If we denote by ρ the mass density, by γ the matrix density and by ν the
matrix volume fraction, then, according to [5], these quantities are related by

ρ = νγ.(2.1)

By using the technique of Green and Rivlin we will obtain the local form of the energy
laws. According to this technique, over the usual motion, it is superposed another defor-
mation of our solid which has, in addition to the initial motion, a rotation having a rigid
body angular velocity. Also, we must suppose that the other characteristic properties are
not affected by this overlap.
So, first we can obtain the kinematic (or geometric) relations in which the strain tensors
εij , γij and χijk are related to the variables of motion (see Eringen [7]):

eij =
1

2
(vi,j + vj,i) , µij = vj,i − φij , χijk = φjk,i.(2.2)

The novelty of our model is the introduction of the heat flux among the constitutive vari-
ables. The components of this heat flux vector are denoted by qi relative to the area unit
of the initial state of the solid.
As a consequence, since other unknown functions appeared, we need some extra evolu-
tionary equations. According to Lebon [17], we must assume that q̇m is a function which
is depending on the variables eij , µij , χijk, ϑ, ϑ,i and qi:

q̇m = Qm (eij , µij , χijk, ϑ, ϑ,i, qi) ,(2.3)

which satisfies the following supplementary condition (suggested by Lebon in [17]):

∂Q̇m

∂qj
= 0, ∀m 6= j.(2.4)

Let us denote by r the internal strength of the heat source, by ϕ the variation of the volume
fraction with regards to the initial volume distribution, that is, ϕ = ν − ν0, by τij , σij and
γijk the stress tensors and by hi the components of the equilibrated stress vector. Then,
with the help of the procedure of Green and Rivlin we can obtain the first local balance
law of energy, according to which the internal energy E satisfies the following equation:

ρĖ = ρr + τij ėij + σij µ̇ij + γijkχ̇ijk + hiϕ̇,i − gϕ̇+ qi,i.(2.5)

Here we denoted by ρ the mass density of the initial state of the solid, and ρ > 0.
Now we denote by S the specific entropy, so that by using the second balance law of
energy we deduce the Clausius-Duhem inequality (which is also called the entropy pro-
duction inequality):

ρṠ ≥ ρ r
ϑ

+
ϑ,i
ϑ
qi.(2.6)

The internal strength of the heat source r, the specific entropy S and the internal energy
E are considered in an arbitrary material element and are referred to the unit mass of the
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respective element.
If we substitute r from Eq. (2.5) in inequality (2.6), we are led to the following inequality

ρĖ ≤ ρϑṠ + τij ėij + σij µ̇ij + γijkχ̇ijk + hiϕ̇,i − gϕ̇+
ϑ,i
ϑ
qi,

which can be reformulated as follows:

ρ
(
Ė − ϑṠ

)
≤ τij ėij + σij µ̇ij + γijkχ̇ijk + hiϕ̇,i − gϕ̇+

ϑ,i
ϑ
qi.(2.7)

From this inequality we are inspired to introduce the free energy function

E = E − ϑS,(2.8)

which is also called the Helmholtz’s function.
Taking into account Eq. (2.8), the entropy production inequality (2.7) receives the follow-
ing form:

−ρ
(
Ė + Sϑ̇

)
+ τij ėij + σij µ̇ij + γijkχ̇ijk + hiϕ̇,i − gϕ̇+

ϑ,i
ϑ
qi ≥ 0.(2.9)

The procedure used by Green and Rivlin in the case of classical elasticity, can be used to
obtain the balance laws in the context of thermoelasticty of porous dipolar bodies, namely:

- the motion equations:

(τij + σij),j + ρFi = ρv̈i, γijk,i + σjk + ρGjk = Ijsφ̈ks;(2.10)

- the balance of equilibrated charge:

hi,i + g + ρL = ρκϕ̈.(2.11)

In these equations F = (Fi) is the body force vector per unit mass, G = (Gjk) is the
dipolar body force tensor per unit mass, I = (Ijk) is of the micro-inertia tensor per unit
mass, κ is the equilibrated inertia, g is the intrinsic equilibrated body force, and L is the
extrinsic equilibrated body force.

3. MAIN RESULTS

In this section we will deduce the main equations and basic conditions. All our further
considerations will be made in the context of a linear theory. As a consequence, we will
develop in MacLaurin series the free energy function E and retain only the linear and
quadratic terms, that is,

ρE =
1

2
Aijmneijemn +Gijmneijµmn + Fijmnreijχmnr +

1

2
Bijmnµijµmn +

+Dijmnrµijχmnr +
1

2
Cijkmnrχijkχmnr +Bijeijϕ+ Cijµijϕ+Dijkχijkϕ+

+
1

2
ξϕ2 + dijmeijϕ,m+eijmµijϕ,m+fijkmχijkϕ,m! +

1

2
Aijϕ,iϕ,j+diϕϕ,i +(3.12)

+mijqiϕ,j +miqiϕ+ Pijmeijqm+Qijmµijqm+Rijkmχijkqm+
1

2
Sijqiqj−

−bijeijϑ− cijµijϑ− dijkχijkϑ− aiϕ,iϑ− ξiqiϑ−mϕϑ−
1

2
aϑ2.

On the other hand, q̇m is depending on the variables eij , µij , χijk, ϑ, ϑ,i and qi, so that we
will expand it in MacLaurin series and retain only up to quadratic terms. So, we obtain
the equation:

q̇m =
1

α
(κmnϑ,n − qm) ,(3.13)
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where α is the time of thermal relaxation and is a positive constant.
In Eqs. (3.12)-(3.13) we introduced the thermoelastic coefficients Aijmn, Gijmn, ...,ai, ξ,
m which characterize the mechanical and thermal properties of the medium, the thermal
conductivity tensor κij and the heat capacity a.
Given that the strain tensor eij is a symmetrical tensor, by its definition, we can deduce the
following symmetry relations satisfied by the thermoelastic coefficients from (3.12)-(3.13):

Aijmn =Amnij =Ajimn, Gijmn =Gjimn, Fijmnr =Fjimnr, Bijmn =Bmnij , dijm =djim,

Cijkmnr =Cmnrijk, bij =bji, Pijm =Pjim, Aij =Aji, Bij =Bji, Sij =Sji, κij =κji.(3.14)

Now we can tackle the problem of determining the constitutive equations as well as es-
tablishing the energy balance.

Theorem 3.1. Consider that the free energy function E has the heat-flux included in its internal
variables. Then the constitutive equations for our dipolar porous medium can be written in the
following form:

τij = ρ
∂E
∂eij

, σij = ρ
∂E
∂µij

, γijk = ρ
∂E
∂χijk

, S = −∂E
∂ϑ

, g = −ρ∂E
∂ϕ

, hi = ρ
∂E
∂ϕ,i

.(3.15)

Furthermore, for the equation of energy we deduce the expression:

∂E
∂qk

q̇k + Ṡϑ− r =
1

ρ
qk,k.(3.16)

Proof. First, we take into account that the function E is depending on the independent
variables eij , µij , χijk, ϕ, ϕ,i, ϑ, ϑ,i, qi so that, for its derivative with respect to time
variable, we must carry out the differentiation with respect to these variables. As such,
we are led to the inequality(
ρ
∂E
∂eij

− τij
)
ėij +

(
ρ
∂E
∂µij

− σij
)
µ̇ij +

(
ρ
∂E
∂χijk

− γijk
)
χ̇ijk + ρ

(
∂E
∂ϑ

+ S

)
ϑ̇+

+

(
ρ
∂E
∂ϕ

+ g

)
ϕ̇+

(
ρ
∂E
∂ϕ,i

+ hi

)
ϕ̇,i + ρ

(
∂E
∂ϑ,i

)
ϑ̇,i + ρ

(
∂E
∂qi

)
q̇i −

ϑ,i
ϑ
qi ≤ 0.(3.17)

On the other hand, if we substitute E from (2.8) in (2.5), by taking into account the total
differentiation respect to t, we deduce(

ρ
∂E
∂eij

− τij
)
ėij +

(
ρ
∂E
∂µij

− σij
)
µ̇ij +

(
ρ
∂E
∂χijk

− γijk
)
χ̇ijk + ρ

(
∂E
∂ϑ

+ S

)
ϑ̇

+

(
ρ
∂E
∂ϕ

+g

)
ϕ̇+

(
ρ
∂E
∂ϕ,i

+hi

)
ϕ̇,i+ρ

(
∂E
∂ϑ,i

)
ϑ̇,i+ρ

(
∂E
∂qi

)
q̇i+ρ

(
Ṡϑ− r

)
−qi,i =0.

(3.18)

We can require that the inequality (3.17) and the equality (3.18) should hold for arbitrary
ėij , µ̇ij , χ̇ijk, ϑ̇ and ϑ̇,i. Furthermore, we can suppose that τij does not depend on ėij , σij
does not depend on µ̇ij , γijk does not depend on χ̇ijk, g does not depend on ϕ̇ and S does
not depend on ϑ̇. In this way, we are led to the following relations:

τij = ρ
∂E
∂eij

, σij = ρ
∂E
∂µij

, γijk = ρ
∂E
∂χijk

, S = −∂E
∂ϑ

, g = −ρ∂E
∂ϕ

, hi = ρ
∂E
∂ϕ,i

;(3.19)

∂E
∂qi

q̇i + η̇ϑ− r − 1

ρ
qi,i = 0;(3.20)

∂E
∂ϑ,i

= 0, ρ
∂E
∂qi

q̇i −
qi
ϑ
ϑ,i ≤ 0.(3.21)
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Let us observe from (3.21)1 that the free energy function does not depend on the temper-
ature gradient. Also, the inequality (3.21)2 introduces two restrictions on the constitutive
equations:

1

c
Sklqkql ≥ 0, ϑ0Smnκni = cδmi,(3.22)

in which c is a prescribed positive constant, ϑ0 is the temperature in the initial state and
δij is the Kronecker’s delta.
Now the proof of the theorem is complete because Eqs. (3.19) are the constitutive equa-
tions and Eq. (3.20) is the energy equation. �

Corollary 3.1. The explicit form for the constitutive equations is

τij = Aijmnemn +Gmnijµmn + Fmnrijχmnr +Bijϕ+ dijmϕ,m + Pijmqm − aijϑ,
σij = Gijmnemn +Bijmnµmn +Dijmnrχmnr + Cijϕ+ eijmϕ,m +Qijmqm − bijϑ,
γijk =Fijkmnemn+Dmnijkµmn+Aijkmnrχmnr+Dijkϕ+fijkmϕ,m+Rijkmqm−cijkϑ,

g = −Bijeij − Cijµij −Dijkχijk − ξϕ− diϕ,i −miqi +mϑ,(3.23)
hk = dijkeij + eijkµij + fijmkχijm + dkϕ+Aikϕ,i +mikqi − akϑ+ bk,

ρS = aijeij + bijµij + cijkχijk +mϕ+ aiϕ,i + ξiqi + aϑ+ c.

Proof. All equations from (3.23) can be obtained by direct calculations of derivatives from
(3.15), after we substitute the energy function E defined in (3.12). �

For the sake of simplifying the calculations, we will make the following two hypothesis:

(H1) the reference state of the body is free of heat flux and stress;
(H2) the initial state of the medium is not affected by any intrinsic equilibrated

force and its uniform temperature is the constant ϑ0.

Based on these two hypotheses, the MacLaurin series developments of the functions E
and Qi (from (3)), in which we retain only the necessary terms in linear theory, have some
simpler expressions, namely:

ρE (eij , µij , χijk, ϕ, ϕ,i, ϑ+ ϑ0, qi) = ρE (0, 0, 0, 0, 0, ϑ0, 0)− bϕ− biϕ,i − cϑ− ciqi+

+
1

2
Aijmneijemn+Gijmneijµmn+Fijmnreijχmnr+

1

2
Bijmnµijµmn+Dijmnrµijχmnr+

+
1

2
Cijkmnrχijkχmnr+Bijeijϕ+Cijµijϕ+Dijkχijkϕ+

1

2
ξϕ2+dijmeijϕ,m+eijmµijϕ,m(3.24)

+fijkmχijkϕ,i+
1

2
Aijϕ,iϕ,j+diϕϕ,i +mijqiϕ,j +miqiϕ+ Pijmeijqm+Qijmµijqm+

+Rijkmχijkqm+
1

2
Sijqiqj−bijeijϑ−cijµijϑ−dijkχijkϑ−aiϕ,iϑ−ξiqiϑ−mϕϑ−

1

2
aϑ2,

and, respectively

q̇m = wmi [αijkejk + βijkµjk + δijknχjkn + κijϑ,j + rijϕ,j − qi] .(3.25)
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Theorem 3.2.. If hypotheses H1 and H2 are satisfied, then the constitutive equations received the
form:

τij = Aijmnemn +Gmnijµmn + Fmnrijχmnr +Bijϕ+ dijmϕ,m − aijϑ,
σij = Gijmnemn +Bijmnµmn +Dijmnrχmnr + Cijϕ+ eijmϕ,m − bijϑ,
γijk =Fijkmnemn+Dmnijkµmn+Aijkmnrχmnr+Dijkϕ+ fijkmϕ,m − cijkϑ,
g = −Bijeij − Cijµij −Dijkχijk − ξϕ− diϕ,i −miqi +mϑ,(3.26)
hk = dijkeij + eijkµij + fijmkχijm + dkϕ+Aikϕ,i − akϑ+ bk,

ρS = aijeij + bijµij + cijkχijk +mϕ+ aiϕ,i + aϑ+ c.

Furthermore, the energy equation receives the form:

αq̇i + qi = kijϑ,j .(3.27)

Proof. By combining relations (3.24) and (3.25) into inequality (3.21)2, we find that the
following conditions are necessary

Pijm = 0, Qijm = 0, Rijkm = 0, ci = 0, ξi = 0, n = 0, rij = 0, αijk = 0, βijk = 0,

δijkn = 0, mi = 0, mij = 0, bimwmnκnj = − 1

ϑ0
δij , bijwimqjqm ≥ 0.(3.28)

On the other hand, we supposed that the initial state of the medium is free of any stress,
of heat flux and of intrinsic equilibrated force. In these circumstances, the following con-
ditions must be met:

a = 0, b = 0, bi = 0.(3.29)

Based on condition (2.4) we can deduce that there is constant α so that

wij =
1

α
δij .(3.30)

In (3.28)13 and (3.30) we noted with δ the Kronecker symbol.
Finally, we consider relations (3.28)-(3.30) such that from Eqs. (3.24) and (3.25) we obtain
the desired equations (3.26) and (3.27). �

In the following theorem we will show that the introduction of a new vector for the
heat flux among the independent variables does not affect the solvability of the system of
differential equations that govern the evolution of the dipolar thermoelastic bodies with
voids.

Theorem 3.3.. We assume that the hypothesesH1 andH2 are satisfied. Then the motion equations
(2.10), the balance of equilibrated force (2.11) and the energy equation (3.27) form the following
system of equations in the independent variables vi, φij , ϕ and ϑ:

[(Aijmn +Gijmn) vn,m+(Gmnij+Bijmn) (vn,m−φmn)+(Fmnrij+Dijmnr)φnr,m+

(Bij + Cij)ϕ+ (dijm + eijm)ϕ,m − (aij + bij)ϑ],j + ρFi = ρv̈i.(3.31)

[Fijkmnvn,m +Dmnijk (vn,m − φmn) + Cijkmnrφnr,m +Dijkϕ+ fijkmϕ,m − cijkϑ],i

+Gjkmnvm,n +Bjkmn (vn,m − φmn) +Djkmnrφnr,m + Cjkϕ+(3.32)

+ejkmϕ,m − bjkϑ+ ρGjk = Ikrφ̈jr.

[dijkeij + eijkµij + fijmkχijm + dkϕ+Aikϕ,i − akϑ],k −Bijeij −
−Cijµij −Dijkχijk − ξϕ− diϕ,i −miqi +mϑ+ ρL = ρκϕ̈.(3.33)
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ρ

(
1 + α

∂

∂t

)
S − ϑ0

(
1 + α

∂

∂t

)
[aij u̇i,j + bij (u̇j,i − ϕ̇ij) +

+cijkϕ̇ij,k +mϕ̇+ aiϕ̇,i + aϑ̇
]

+ kijϑ,ji = 0.(3.34)

Furthermore, in the heat-flux dependent theory of thermoelasticity for dipolar bodies with pores the
number of the basic equations is the same as the number of internal variables.

Proof. Clearly, the purpose of this theorem is to deduce more explicit expressions for the
basic balances (2.10), (2.11) and (3.27), in which the involvement of independent variables
can be seen.
So, if we take into account the geometric equations (2.2) and substitute the constitutive
equations (3.26)1 and (3.26)2 in equation (2.10)1, we obtain Eqs. (3.31).
Also, if we take into account the geometric equations (2.2) and substitute the constitutive
equations (3.26)2 and (3.26)3 in equation (2.10)2, we obtain Eqs. (3.32).
Similarly, we consider the geometric equations (2.2) and substitute the constitutive equa-
tions (3.26)4 and (3.26)5 in equation (2.11), we are led to Eq. (3.33).
Finally, we use the geometric equations (2.2) and substitute the constitutive equation
(3.26)6 in equation (3.27), so that we deduce Eqs. (3.34).
As for the second statement of the theorem, it is sufficient to analyze the equations (3.31)-
(3.34) to find a number of fourteen differential equations in which the fourteen indepen-
dent variables vi, φij , ϕ and ϑ are involved. In this way, the proof of the theorem is
finished. �

In the last theorem of our study we intend to prove the consistency of the above theory,
by proving a theorem regarding the uniqueness of solution of the mixed initial-boundary
value problem in our context.
But first, we will build this mixed problem. Thus, in addition to the basic equations (3.31)-
(3.34), which take place in the cylinderD×[0,∞), we add the following initial data, which
involve an initial date for the heat-flux qi, as well:

vi (xk, 0) = 0, φij (xk, 0) = 0, ϕ (xk, 0) = 0, ϑ (xk, 0) = 0, ∀x = (xk) ∈ D,
v̇i (xk, 0) = 0, φ̇ij (xk, 0) = 0, ϕ̇ (xk, 0) = 0, qi (xk, 0) = 0, ∀x = (xk) ∈ D.(3.35)

The mixed problem is complete if we consider next boundary conditions, which also in-
volve a boundary date for the heat-flux qi, as well:

vi(xk, 0)=v0i , (xk, 0)∈S1×[0, t0), (τij+σij) (xk, 0)nj = t0i , (xk, 0)∈Sc
1×[0, t0),

φij(xk, 0)=φ0ij , (xk, 0)∈S2×[0, t0), γijm (xk, 0)ni =m0
jm, (xk, 0)∈Sc

2×[0, t0),

ϕ(xk, 0)=ϕ0, (xk, 0)∈S3×[0, t0), hi (xk, 0)ni =h0, (xk, 0)∈Sc
3×[0, t0),(3.36)

ϑ(xk, 0)=ϑ0, (xk, 0)∈S4×[0, t0), qi (xk, 0)ni =q0, (xk, 0)∈Sc
4×[0, t0).

Here the instant of time t0 can be infinite and n = (nk) is the vector of the unit normal
outward to the surface ∂D. The above functions v0i , t0i , φ0jk, m0

jk, ϑ0 and q0 are prescribed
and enough regular functions in the domains of their definition. Also, we denoted by Si

some parts of the surface ∂D and by Sc
i its complements, satisfying the following relations:

S1 ∪ Sc
1 = S2 ∪ Sc

2 = S3 ∪ Sc
3 = S4 ∪ Sc

4 = ∂D,

S1 ∩ Sc
1 = S2 ∩ Sc

2 = S3 ∩ Sc
3 = S4 ∩ Sc

4 = ∅.

We will call a solution of the mixed problem defined by above equations and conditions
for the heat flux thermoelasticity of a dipolar porous solid in the domain D × [0, t0), de-
noted by P , a state of deformation (vi, φij , ϕ, ϑ) satisfying the basic equations (3.31)-(3.34),
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the initial data (3.35) and the condition to the limit (3.36).
In the following theorem we will prove the uniqueness of the solution of problem P .

Theorem 3.4.. If we suppose that the coefficients ρ, κ, ξ, ϑ0, a and α are positive constants, then
the mixed problem P admits only one solution.

Proof. We will use the well-known procedure of reducing to absurdity. According to this,
we assume our problem P admits two different solutions. Of course, their difference is
a new solution of problem P , because of linearity. But this solution corresponds to null
charges, namely Fi = 0, Gij = 0, L = 0 and S = 0.
We will use Eq. (3.31), in the case Fi = 0 and multiply it by v̇i so that we are led to the
equation:

{[(Aijmn +Gijmn) vn,m + (Gmnij +Bijmn) (vn,m − φmn) + (Fmnrij +Dijmnr)φnr,m+

+ (Bij + Cij)ϕ+ (dijm + eijm)ϕ,m − (aij + bij)ϑ] v̇i},j − [(Aijmn +Gijmn) vn,m+

+ (Gmnij +Bijmn) (vn,m − φmn) + (Fmnrij +Dijmnr)φnr,m + (Bij + Cij)ϕ+(3.37)
+ (dijm + eijm)ϕ,m − (aij + bij)ϑ] v̇i,j = ρv̈iv̇i.

We consider now Eq. (32), for Gjk = 0, and multiply it by φ̇jk and deduce{
[Fijkmnvn,m+Dmnijk (vn,m−φmn)+Cijkmnrφnr,m+Dijkϕ+fijkmϕ,m− cijkϑ] φ̇jk

}
,i
−

− [Fijkmnvn,m+Dmnijk (vn,m−φmn)+Cijkmnrφnr,m+Dijkϕ+fijkmϕ,m−cijkϑ] φ̇jk,i+

+ [Gjkmnvm,n +Bjkmn (vn,m − φmn) +Djkmnrφnr,m + Cjkϕ+(3.38)

+ejkmϕ,m − bjkϑ+ ρGjk] φ̇jk = Ikrφ̈jrφ̇jk.

We gather member by member the equalities (3.37) and (3.38) and then integrate the re-
sulting equality over the domain D and the interval [0, t]. Then we use the divergence
theorem and consider the boundary conditions (3.38), in their homogeneous form, so that
we obtain:∫

D

(
ρv̇iv̇i + Ijkφ̇jrφ̇kr +Aijmneijemn + 2Gijmneijµmn + 2Fijmnreijχmnr+(3.39)

+Bijmnµijµmn+2Dijmnrµijχmnr+Cijkmnrχijkχmnr)dV +

∫ t

0

∫
D

(dijmėij + eijmµ̇ij+

+fijkmµ̇ijk)ϕ,m+(Bij ėij+Cij µ̇ij+Dijkµ̇ijk)+(bij ėij+cij µ̇ij+dijkµ̇ijk)ϑdV ds=0.

We now consider Eq. (3.33), for L = 0, and multiply it by ϕ̇ to deduce∫
D

(
ρκϕ̇2 + ξϕ2 + diϕϕ,i +Aijϕ,iϕ,j

)
dV −

∫ t

0

∫
D

(aiϕ,i +mϕ+ aϑ+miqi)ϑdV ds+

(3.40) +

∫ t

0

∫
D

(dijmeij+eijmµij+fijkmµijk) ϕ̇,m+(Bijeij+Cijµij+Dijkµijk) ϕ̇dV ds=0.

Analogous, we multiply both terms of the last basic equation (3.34) by θ and then integrate
the resulting equality over the domain D and the interval [0, t] and take into account Eq.
(3.27). So, we arrive at the following equation:

ϑ0
2

∫
D

aϑ2dV −
∫ t

0

∫
D

αq̇iϑ,idV ds+

∫ t

0

∫
D

κijϑ,jϑ,jdV ds+

+

∫ t

0

∫
D

(αij ėij + βij µ̇ij + δijkχ̇ijk + aiϕ̇,i +mϕ̇)ϑ dV ds = 0.(3.41)
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Based on the last two relations from (3.28) and Eq. (3.30) we can write:

kijbik = − α
θ0
δjk,

1

α
bjkqjqk ≥ 0.(3.42)

Inspired by equation (3.41), we can combine relations (3.27) and (3.42) so that we are led
to the following equality∫

D

∫ t

0

q̇iϑ0 (αbikq̇k + bikqk) dV ds = αϑ0

∫
D

∫ t

0

bikq̇iq̇kdV ds+

+
ϑ0
2

∫
D

bikqiqkdV = −α
∫
D

∫ t

0

q̇kϑ,kdV.(3.43)

Considering equality (3.43) in respect to relation (3.41), the latter takes the following form

ϑ0
2

∫
D

(
aϑ2 + bikqiqk

)
dV + ϑ0

∫ t

0

∫
D

αbikq̇iq̇kdV ds+

+

∫ t

0

∫
D

(αij ėij + βij µ̇ij + δijkχ̇ijk + aiϕ̇,i +mϕ̇)ϑ dV ds+(3.44)

+

∫ t

0

∫
D

κijϑ,iϑ,j dV ds = 0.

Finally, we summing together the equalities (3.39), (3.40) and (3.44) and obtain the equality∫
D

(
ρv̇iv̇i + Ijkφ̇jrφ̇kr + ρκϕ̇2 + ξϕ2 + ϑ0aϑ

2 + diϕϕ,i + ϑ0bikqiqk

)
dV +

+

∫
D

(Aijmneijemn + 2Gijmneijµmn + 2Fijmnreijχmnr+

+Bijmnµijµmn+2Dijmnrµijχmnr+Cijkmnrχijkχmnr)dV +(3.45)

+

∫ t

0

∫
D

[(dijmeij+eijmµij+fijkmµijk)ϕ,m+(Bijeij+Cijµij+Dijkµijk)ϕ] dV ds+

+

∫ t

0

∫
D

(Aijϕ,iϕ,j+diϕϕ,i+κijϑ,iϑ,j) dV +ϑ0α

∫ t

0

∫
D

bikq̇iq̇kdV ds = 0.

According to the hypotheses of Theorem 4, the coefficients ρ, κ, ξ, ϑ0, a and α are positive.
If, in addition, we also use inequality (3.42)2, we come to the conclusion that the following
two inequalities appear:

P ≥ 0, P +K ≤ 0,(3.46)

where we used the notations:

P =

∫
D

(
ρv̇iv̇i + Ijkφ̇jrφ̇kr + ρκϕ̇2 + ξϕ2 + ϑ0aϑ

2 + diϕϕ,i + ϑ0bikqiqk

)
dV,

K =

∫
D

(Aijmneijemn + 2Gijmneijµmn + 2Fijmnreijχmnr+

+Bijmnµijµmn + 2Dijmnrµijχmnr + Cijkmnrχijkχmnr) dV +(3.47)

+

∫
D

(dijmeij + eijmµij + fijkmµijk +Aimϕ,i)ϕ,m dV +

+

∫
D

(Bijeij + Cijµij +Dijkµijk + diϕ,i)ϕ dV.
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Based on the assumptions, we have K ≥ and then, from (3.46) we deduce that P ≤ 0, so
that, because the coefficients ρ, κ, ξ, ϑ0, a and α are positive, we deduce

v̇i = 0, φ̇ij = 0, ϕ = 0, ϑ = 0, qi = 0,(3.48)

so that, because the initial conditions are null for difference, we deduce vi = 0, φij = 0,
what was to be demonstrated. �

4. CONCLUSIONS

The new form of energy equation can be considered as an element of novelty of our
paper. Unlike the energy balance of other studies, our equation involves the heat flux, of
components qi, as an internal variable, together with the other variables used so far. Also,
our study is a natural generalization of the previous studies, for instance, in the transition
from bodies with a micropolar structure and voids to the dipolar solids with pores. An-
other originality is our intention to solve the paradox of the conduction of the heat. An
additional argument is that our mixed initial-boundary value problem is governed by a
system of partial differential equations of the hyperbolic type. We anticipate that our heat
flux dependent theory will become a predictive theory of shock wave structure, of sound
dispersion, of light scattering, and so on.
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