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An iterative regularization method for variational
inequalities in Hilbert spaces
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ABSTRACT. We consider an iterative method for regularization of a variational inequality (VI) defined by a
Lipschitz continuous monotone operator in the case where the set of feasible solutions is decomposed to the
intersection of finitely many closed convex subsets of a Hilbert space. We prove the strong convergence of the
sequence generated by our algorithm. It seems that this is the first time in the literature to handle iterative
solution of ill-posed VIs in the domain decomposition case.

1. INTRODUCTION

We are concerned with an iterative method for the variational inequality (VI): Find a
point x̂ ∈ Ω with the property

(1.1) 〈Ux̂, x− x̂〉 ≥ 0, x ∈ Ω,

where Ω is a nonempty closed convex subset of a Hilbert space H and U is a (single-
valued) monotone operator in H (with domain containing Ω).

It is known that VI (1.1) is equivalent to the fixed point problem

(1.2) PΩ(I − λU)x̂ = x̂,

where PΩ is the projector from H onto Ω, and λ > 0 is any constant.
It is also known that if U is strongly monotone and Lipschitz continuous, then (1.1) has

a unique solution and is well posed (the mapping PΩ(I − λU) is a contraction for small
enough λ > 0). However, if U is not strongly monotone, VI (1.1) is ill-posed (i.e., not
well-posed) and regularization is needed. The traditional Tikhonov regularization uses
εI as a regularizer of U ; namely, we consider the following regularized VI:

(1.3) x̄ε ∈ Ω, 〈Ux̄ε + εx̄ε, x− x̄ε〉 ≥ 0, x ∈ Ω.

Since the regularized monotone operator U + εI is Lipschitzian and strongly monotone,
VI (1.3) has a unique solution which we denote by x̄ε ∈ Ω.

More generally, we may use εV to regularize U and consider the regularized VI:

(1.4) x̂ε ∈ Ω, 〈Ux̂ε + εV x̂ε, x− x̂ε〉 ≥ 0, x ∈ Ω.

Here V is a Lipschtz and strongly monotone operator. In [14, Theorem 2.2], it is proved
that the net of solutions (x̂ε) strongly converges as ε → 0 to a solution s† of VI (1.1)
(assuming SΩ(U) 6= ∅) which is the unique solution to the VI:

(1.5) s† ∈ SΩ(U), 〈V s†, s− s†〉 ≥ 0, s ∈ SΩ(U).

In particular, if V = I , then (x̂ε) (i.e., (x̄ε) defined by (1.3)) strongly converges to s† =
arg min{‖s‖ : s ∈ SΩ(U)}, the minimum-norm element of SΩ(U).

Received: 31.07.2020. In revised form: 16.08.2020. Accepted: 31.08.2020
2010 Mathematics Subject Classification. 47J20, 47J25, 47H09.
Key words and phrases. monotone operator, variational inequality, projection, iterative method.
Corresponding author: Najla Altwaijry; najla@ksu.edu.sa

475



476 Hong-Kun Xu, Najla Altwaijry and Souhail Chebbi

Iterative methods for finding s† are introduced in [2] and [14]. These methods generate
a sequence (xn) through the following iteration manner:

(1.6) xn+1 = PQ(xn − λn(Uxn + εnV xn)), n = 0, 1, · · · ,

where the initial point x0 ∈ Ω is chosen arbitrarily.
Under certain conditions imposed on the sequences (λn) and (εn), [2, Theorem 1] (in

the case where V = I) and [14, Theorem 3.1] prove the strong convergence to s† of the
sequence (xn) defined by (1.6).

In this paper we will continue to study iterative methods for the regularization of VI
(1.1). However we will consider the case where Ω is decomposed to the intersection of
finitely many closed convex subsets {Ωi}Ni=1 of H , that is,

(1.7) Ω =

N⋂
i=1

Ωi

where N ≥ 1 is an integer. We denote by SΩ(U) the set of solutions of VI (1.1) and always
assume that SΩ(U) is nonempty (i.e., (1.1) is solvable). To the best of our knowledge,
this seems to be the first time in the literature to seek an iterative solution of VI (1.1) via
regularization in the domain decomposition case (1.7). [Note: Theorem 3.6 of [11] looks
iteratively for the solution x̄ε of the regularized VI (1.4) (not a solution of VI (1.1)). It is
indeed an open question raised in Remark 3.9 of [11] whether an iterative method can be
found to converge in the norm topology to a solution of VI (1.1) in the case of Ω being
defined by (1.7).]

The aim of this paper is to introduce an iterative method for the regularization of VI
(1.1) with Ω of form (1.7) which generates a sequence convergent in the norm topology to
a solution of VI (1.1). The convergence result will be presented in section 3, prior to which
we will discuss in section 2 some basic tools useful to the proof of the main result (i.e.,
Theorem 3.3) in section 3. An application on a constrained linear inverse problem is given
in the final section 4.

2. PRELIMINARIES

Let H be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively, and let Ω
be a nonempty closed convex subset of H . We use PΩ to denote the projection of H onto
Ω. Namely, for each x ∈ Ω,

PΩx = arg min
y∈Ω
‖y − x‖2.

The following two properties of a projection are pertinent to our argument in this paper:
• 〈x− PΩx, y − PΩx〉 ≤ 0 for x ∈ H and y ∈ Ω,
• PΩ is nonexpansive, i.e., ‖PΩx− PΩz‖ ≤ ‖x− z‖ for x, z ∈ H .

Recall that a (single-valued) operator A with domain D(A) and range R(A) in H is said
to be monotone if

〈x2 − x1, Ax2 −Ax1〉 ≥ 0, x1, x2 ∈ D(A).

Recall also that a monotone operator A is said to be ν-strongly monotone if, for some
constant ν > 0,

〈x2 − x1, Ax2 −Ax1〉 ≥ ν‖x2 − x1‖2, x1, x2 ∈ D(A).

In the subsequent argument, we need the dual version of IV (1.1) which is the VI:

(2.8) x̂ ∈ Ω, 〈Ux, x− x̂〉 ≥ 0, x ∈ Ω.

The lemma below shows an equivalence between the primal VI (1.1) and its dual VI (2.8).
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Lemma 2.1. [4] Suppose U : Ω → H is monotone and weakly continuous along segments (i.e.,
U((1− τ)x+ τy)→ Ux weakly, as τ → 0, for x, y ∈ Ω). Then the dual VI (2.8) is equivalent to
the primal VI (1.1).

The lemma below plays an important role in strong convergence analysis of iterative
methods.

Lemma 2.2. [13] Assume (σn) is a sequence of nonnegative real numbers satisfying the condition:

(2.9) σn+1 ≤ (1− τn)σn + τnβn + δn, n ≥ 0,

where (τn) and (δn) are sequences in (0,1) and (βn) is a sequence in R. Assume
(i)

∑∞
n=1 τn =∞,

(ii) lim supn→∞ βn ≤ 0, and
(iii)

∑∞
n=1 δn <∞.

Then limn→∞ σn = 0.

3. STRONG CONVERGENCE ANALYSIS OF AN ITERATIVE METHOD

Let Ω be a nonempty closed convex subset of a Hilbert space H which is of form (1.7).
We consider the monotone VI (1.1), where U is a monotone operator with domainD(U) ⊃
∪Ni=1Ωi. Assume that U is Lipschitz continuous with coefficient L ≥ 0:

(3.10) ‖Ux− Uy‖ ≤ L‖x− y‖, x, y ∈ D(U).

Since we do not assume strong monotonicity of U , VI (1.1) is not well posed in general;
regularization is needed. We will use an `-Lipschitz and ν-strongly monotone operator V
to regularize U and consider the regularized VI:

(3.11) 〈Uzε + εV zε, z − zε〉 ≥ 0, z ∈ Ω.

Note that the regularized VI (3.11) has a unique solution that is denoted as zε for each ε >
0. Note also that when V = I , this is reduced to the traditional Tikhonov regularization
(1.3).

Observe that the fixed point equivalence of VI (3.11) is as follows:

(3.12) Tεzε = zε, with Tεx := PΩ(I − λ(U + εV ))x, x ∈ Ω,

where λ > 0, and PΩ is the projection from H to Ω.

Lemma 3.3. [14, Lemma 2.1] The mapping Tε defined by (3.12) is a (1 − 1
2νλε)-contraction

provided

(3.13) 0 < λ <
νε

(L2 + ε`)2
.

Theorem 3.1. [14, Theorem 2.2] Suppose U is L-Lipschitz and monotone, and V is `-Lipschitz
and ν-strongly monotone. Assume (3.13). Then (zε) converges in norm, as ε→ 0, to z† ∈ SΩ(U)
that solves the VI:

(3.14) 〈V z†, z − z†〉 ≥ 0, z ∈ SΩ(U).

Discretization of the implicit fixed point method (3.12) induces an iterative algorithm
that generates a sequence (xn) as follows:

(3.15) xn+1 = PΩ(xn − λn(Uxn + εnV xn)), n ≥ 0,

where the initial guess x0 ∈ Ω.
The convergence of (3.15) is proved as follows.
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Theorem 3.2. [14, Theorem 3.1] (see also [2, Theorem 1]) Suppose U is L-Lipschtiz and
monotone, and V is `-Lipschtiz and ν-strongly monotone. Assume the following conditions are
satisfied: (i) 0 < λn < νεn/[(L + εn`)

2 + (ε2
n/4)], (ii) εn → 0, (iii)

∑∞
n=1 εnλn = ∞, (iv)

(|λn − λn−1|+ |εnλn − εn−1λn−1|)/(εnλn)2 → 0.
Then the sequence (xn) generated by the algorithm (3.15) converges strongly to the unique

solution s† of VI (1.5).

We here consider an iterative method for regularization of VI (1.1) in the case where
the set Ω of feasible solutions is decomposed into the intersection (1.7) of N ≥ 1 closed
convex subsets of H . One motivation, as pointed out in [2], is that the set Ω is usually
determined by a system of inequalities:

Ω = {x ∈ H : fi(x) ≤ 0, i = 1, 2, · · · , N},

where each fi : H → R is a convex function. In this case, we have Ωi = {x ∈ H : fi(x) ≤
0} for 1 ≤ i ≤ N .

We notice that decomposition methods are popular in nonexpansive mappings and
their applications in optimization [3, 9, 10, 12, 7].

We now introduce our iterative algorithm for the regularization of VI (1.1): beginning
with an initial guess x0 ∈ Ω, iterations are updated by the following sequential projection
algorithm:

x1 = PΩ1(x0 − λ0(Ux0 + ε0V x0)),

x2 = PΩ2(x1 − λ1(Ux1 + ε1V x1)),

...
xN = PΩN

(xN−1 − λN−1(UxN−1 + εN−1V xN−1)),

xN+1 = PΩ1(xN − λN (UxN + εNV xN )),

...

where (λn) and (εn) are sequences of positive real numbers.
We can rewrite the algorithm in a more compact form:

(3.16) xn+1 = PΩ[n]
(xn − λn(Uxn + εnV xn)), n ≥ 0,

where [n] = (n mod N) + 1. Set

Tn := PΩ[n]
(I − λn(U + εnV )) = PΩ[n]

(I − λnWn)), Wn := U + εnV.

Then the algorithm (3.16) can be rewritten as

(3.17) xn+1 = Tnxn.

We will always assume that λn and εn satisfy the relation (3.13) so that Tn is (1− 1
2νλnεn)-

contraction for each n ≥ 0. Consequently, Tn has a unique fixed point which is denoted
as zn; that is,

(3.18) zn = Tnzn = PΩ[n]
(I − λn(U + εnV ))zn.

To analyze the convergence of the (explicit) algorithm (3.16), we need the convergence
analysis of the implicit scheme (3.18). Towards this we need two technical assumptions:

(A1) S∗ :=
⋂N
i=1 SΩi

(U) 6= ∅.
(A2) For each bounded set Q of H , there exists a constant K ≥ 0 such that ‖PΩix −

PΩjy‖ ≤ K‖x− y‖ for all x, y ∈ Q.
Note that SΩ(U) ⊃ S∗. Note also that (A1) and (A2) hold trivially for the case of N = 1.



Iterative regularization method for variational inequalities 479

Lemma 3.4. Assume (A1) and εn → 0. Then (zn) converges strongly to the unique solution z†

of the variational inequality:

(3.19) 〈V z†, z − z†〉 ≥ 0, z ∈ S∗.

Proof. Since zn (= Tnzn) is the projection of zn − λn(Uzn + εnV zn) on Ω[n], we obtain

(3.20) 〈Uzn + εnV zn, z − zn〉 ≥ 0, z ∈ Ω[n] ⊃ Ω.

Since U is monotone and V is ν-strongly monotone, we have, for each x̂,

〈Ux̂, x̂− zn〉 ≥ 〈Uzn, x̂− zn〉, 〈V x̂, x̂− zn〉 ≥ 〈V zn, x̂− zn〉+ ν‖zn − x̂‖2.

It turns out from (3.20) that 〈Ux̂, x̂−zn〉+εn〈V x̂, x̂−zn〉−νεn‖zn− x̂‖2 ≥ 0.Now assume
x̂ ∈ S∗. Then 〈Ux̂, x̂− zn〉 ≤ 0 (as x̂ ∈ SΩ[n]

(U) and zn ∈ Ω[n]) and we get

(3.21) ‖zn − x̂‖2 ≤
1

ν
〈V x̂, x̂− zn〉.

It follows that ‖zn − x̂‖ ≤ 1
ν ‖V x̂‖; in particular, (zn) is bounded.

Consider the dual VI of (3.20):

(3.22) 〈Uz + εnV z, z − zn〉 ≥ 0, z ∈ Ω[n].

Now if (znj
) is a subsequence of (zn) weakly convergent to a point z̃, then (3.22) implies

that

〈Uz, z − z̃〉 ≥ 0, z ∈ Ω.

This is the dual VI of (1.1); hence, z̃ ∈ SΩ(U). Moreover, from (3.21) it follows that 〈V x̂, x̂−
znj 〉 ≥ 0 for all j. Taking the limit as j →∞ yields 〈V x̂, x̂− z̃〉 ≥ 0 for every x̂ ∈ S∗. This
is the dual VI to the VI: 〈V z̃, x̂ − z̃〉 ≥ 0, which has a unique solution due to the strong
monotonicity of V . It turns out that the full sequence (zn) is weakly convergent to a point
z̃ ∈ SΩ(U).

Fix 1 ≤ i ≤ N and consider a subsequence (znk
) of (zn) such that [nk] = i for all k.

Then VI (3.22) is reduced to

〈Uz + εnk
V z, z − znk

〉 ≥ 0, z ∈ Ωi.

Taking the limit as k →∞ gives that

〈Uz, z − z̃〉 ≥ 0, z ∈ Ωi.

Since z̃ ∈ Ω ⊂ Ωi, we find that z̃ ∈ SΩi
(U) for each 1 ≤ i ≤ N . It turns out that z̃ ∈

∩Ni=1SΩi
(U) = S∗ ⊂ SΩ(U). Consequently, we can replace the x̂ in (3.21) with z̃ to get

‖zn − z̃‖2 ≤
1

ν
〈V z̃, z̃ − zn〉.

Now the weak convergence to z̃ of (zn) ensures that the right side of the last relation tends
to zero, hence zn → z̃ strongly. �

We are now in a position to state and prove the main result of this manuscript.

Theorem 3.3. Assume (A1) and (A2). Assume that the sequences (λn) and (εn) satisfy the
relation (3.13) and the conditions (ii)-(iv) of Theorem 3.2. Then the sequence (xn) generated by
the sequential projection method (3.16) converges strongly to the unique solution z† of VI (3.19).
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Proof. It suffices to prove ‖xn+1−zn‖ → 0, where (zn) is defined by (3.18) and converges in
norm to z† by Lemma 3.4. Since xn+1 = Tnxn and zn = Tnzn and since Tn is (1− 1

2νλnεn)-
contraction, we obtain

‖xn+1 − zn‖ = ‖Tnxn − Tnzn‖ ≤ (1− 1

2
νλnεn)‖xn − zn‖

≤ (1− 1

2
νλnεn)‖xn − zn−1‖+ ‖zn − zn−1‖(3.23)

and

‖zn − zn−1‖ = ‖Tnzn − Tn−1zn−1‖ ≤ ‖Tnzn − Tnzn−1‖+ ‖Tnzn−1 − Tn−1zn−1‖

≤ (1− 1

2
νλnεn)‖zn − zn−1‖+ ‖Tnzn−1 − Tn−1zn−1‖.

It follows that

‖zn − zn−1‖ ≤
2

νλnεn
‖Tnzn−1 − Tn−1zn−1‖.(3.24)

We have by virtue of (A2)

‖Tnzn−1 − Tn−1zn−1‖ = ‖PΩ[n]
(zn−1 − λnWnzn−1)− PΩ[n−1]

(zn−1 − λn−1Wn−1zn−1)‖
≤ K‖(zn−1 − λnWnzn−1)− (zn−1 − λn−1Wn−1zn−1)‖
= K‖(λn − λn−1)Uzn−1 + (λnεn − λn−1εn−1)V zn−1‖
≤M(|λn − λn−1|+ |λnεn − λn−1εn−1|).(3.25)

Here M is a constant such that M ≥ K ·max{‖Uzn‖, ‖V zn‖} for all n.
Substituting (3.24) and (3.25) into (3.23) yields

‖xn+1 − zn‖ ≤ (1− 1

2
νλnεn)‖xn − zn−1‖+

2M

νλnεn
(|λn − λn−1|+ |λnεn − λn−1εn−1|).

This can equivalently be rewritten as

σn+1 ≤ (1− τn)σn + τnβn,(3.26)

where σn = ‖xn − zn−1‖, τn = 1
2νλnεn, and βn = 4M

ν2 · |λn−λn−1|+|λnεn−λn−1εn−1|
(λnεn)2 . By the

conditions (iii)-(iv), we see that the following conditions are satisfied:
a)

∑∞
n=1 λnεn =∞, b) limn→∞ βn = 0.

Applying Lemma 2.2 (with δn = 0 for all n) immediately yields σn → 0. �

Remark 3.1. It is easy to verify that the choices λn := c
(1+n)a , εn := 1

(1+n)b
satisfy the

relation (1.4) and the conditions (ii)-(iv) of Theorem 3.2, where a, b > 0 are such that a ≥ b
and a+ 2b < 1, and 0 < c < ν(L+ `)−2.

Remark 3.2. The way of the proof of Theorem 3.3 given above seems to be indirect for
the reason that we prove ‖xn+1 − zn‖ → 0; thus the convergence to z† of (xn) follows
from that of (zn). It is an open question whether one can prove the convergence to z†

of (xn) in a direct way by estimating ‖xn − z†‖ and then proving ‖xn − z†‖ → 0. If the
answer is positive, then we conjecture that the square raised to the denominator (λnεn) in
the condition (iv) can be removed. It was recently proved [1] that a direct proof of strong
convergence works for the Krasnoselskii-Mann viscosity approximation method for fixed
points of nonexpansive mappings.
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4. AN APPLICATION

Consider the constrained linear inverse problem [5, 6, 8, 11]

(4.27) Bx = f (subject to x ∈ Ω),

where B is a bounded linear operator on a Hilbert space H , f ∈ H is a given element,
and Ω is a nonempty closed convex subset of H . Let SΩ(f) denote the set of solutions
of (4.27) and assume it is nonempty. The least-squares method for solving (4.27) is the
minimization problem

(4.28) min
x∈Ω

Γ(x) :=
1

2
‖Bx− f‖2.

The Tikhonov regularization of (4.28) is the minimization problem

(4.29) min
x∈Ω

Γε(x) :=
1

2
‖Bx− f‖2 +

1

2
ε‖x‖2.

Define the operators U and Uε by

Ux := ∇Γ(x) = B∗(Bx− f), Uεx := ∇Γε(x) = B∗(Bx− f) + εx = Ux+ εx,

where B∗ is the adjoint of B.
Observe that the minimization problems (4.28) and (4.29) are equivalent to the variati-

onal inequalities

(4.30) x∗ ∈ Ω, 〈Ux∗, x− x∗〉 ≥ 0, x ∈ Ω

and, respectively,

(4.31) xε ∈ Ω, 〈Uxε + εxε, x− xε〉 ≥ 0, x ∈ Ω.

This shows that the algorithm (3.16) and Theorem 3.3 are applicable to the problem (4.27).
Consequently, we have the following result.

Theorem 4.4. Suppose Ω is of form (1.7) and the assumptions (A1) and (A2) hold. Assume (λn)
and (εn) are sequences of positive real numbers satisfying the relations λn < εn/(‖B‖2 + εn)2

and the conditions (ii)-(iv) of Theorem 3.2. Let x0 ∈ Ω and define a sequence (xn) by the iteration
process:

(4.32) xn+1 = PΩ[n]
((1− λnεn)xn − λnB∗B(xn) + λnf) , n = 0, 1, 2, · · · .

Then (xn) converges strongly to the solution z† of (4.27) which is the minimum-norm element of
S∗, namely, z† = arg min{‖z‖ : z ∈ S∗}.

Proof. Since Ux = B∗(Bx − f) and V = I , it is easily seen that the algorithm (3.17) is
reduced to (4.32). Then applying Theorem 3.3 yields the strong convergence to x† of the
sequence (xn). Finally, we notice that when V = I , the solution z† of VI (3.19) coincides
with the minimum-norm element of S∗ [15]. This completes the proof. �

5. CONCLUSION

We have studied an iterative method for the regularization of an ill-posed variational
inequality in a Hilbert space H in the case where the set of feasible solutions is decom-
posed to the intersection of finitely many closed convex subsets. This seems to be the
first time in the literature for iterative methods for ill-posed variational inequalities in the
domain decomposition case. We have proved the strong convergence of the sequence ge-
nerated by our iterative method. However our proof is indirect in the sense that the strong
convergence of our (explicit) iterative method is proved through the strong convergence
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of an implicit method. It is unclear if a direct proof can be provided. If the answer is po-
sitive, then we guess that the conditions imposed on the sequences of parameters in our
iterative method can be weakened (e.g., the square raised in the denominator of condition
(iv) of Theorem 3.2 may be removed).
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