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General multiplicative Zagreb indices of unicyclic graphs

MONTHER R. ALFURAIDAN, SELVARAJ BALACHANDRAN and TOMÁŠ VETRÍK

ABSTRACT. General multiplicative Zagreb indices generalize well-known multiplicative Zagreb indices of
graphs. We present lower and upper bounds on the general multiplicative Zagreb indices for unicyclic graphs
with given number of vertices and diameter/number of pendant vertices/cycle of given length. All bounds are
best possible. Bounds on the classical multiplicative Zagreb indices of unicyclic graphs are corollaries of the
general results.

1. INTRODUCTION

Let V (G) be the vertex set and let E(G) be the edge set of a graph G. The order n of
a graph G is the number of vertices of G. The degree of a vertex v ∈ V (G), denoted by
dG(v), is the number of edges incident with v. A pendant vertex is a vertex of degree one.
The distance between two vertices is the number of edges in a shortest path connecting
them and the diameter of G is the distance between any two farthest vertices in G. A di-
ametral path is a shortest path in G connecting two farthest vertices in G. A unicyclic
graph is a connected graph containing exactly one cycle. We denote the star, the cycle and
the path graph of order n by Sn, Cn and Pn, respectively.

Multiplicative Zagreb indices have numerous applications and they have been studied
especially in the last decade. They play a significant role in chemistry, materials science,
pharmaceutical sciences and engineering, since they can be correlated with a large num-
ber of physico-chemical properties of molecules. Graph theory is used to characterize
these chemical structures. Vertices of graphs correspond to the atoms of a compound and
edges of graphs correspond to chemical bonds.

Lower and upper bounds on the multiplicative Zagreb indices for unicyclic graphs
of given order were obtained by Xu and Hua [15], sharp upper bounds for graphs of
prescribed order and size were obtained in [7], sharp upper bounds for bipartite graphs
of given diameter were given in [11], trees were investigated in [5] and [12], k-trees in
[14], graphs with a small number of cycles in [1], graph operations in [4] and [8], graphs
with cut edges in [13], graphs with given chromatic number in [3], graphs with prescribed
clique number in [9], some derived graphs in [2] and molecular graphs in [6].

General multiplicative Zagreb indices were introduced in [10]. The first general multi-
plicative Zagreb index of a graph G is defined as

P a1 (G) =
∏

v∈V (G)

dG(v)
a

and the second general multiplicative Zagreb index is

P a2 (G) =
∏

v∈V (G)

dG(v)
adG(v) =

∏
uv∈E(G)

(dG(u)dG(v))
a,
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where a 6= 0 is any real number. These indices generalize basic multiplicative Zagreb
indices. For a = 1, P 1

1 (G) is the Narumi-Katayama index and for a = 2, P 2
1 (G) is the first

multiplicative Zagreb index ∏
1
(G) =

∏
v∈V (G)

dG(v)
2.

For a = 1, P 1
2 (G) is the second multiplicative Zagreb index∏

2
(G) =

∏
v∈V (G)

dG(v)
dG(v).

Let D = (d1, d2, . . . , dn) be the degree sequence, where d1 ≥ d2 ≥ · · · ≥ dn. We
introduce

P a1′(D) =

n∏
i=1

dai and P a2′(D) =

n∏
i=1

dadii

If there is a graph G with vertices having degrees d1, d2, . . . , dn, then the degree sequence
D is graphical and we have P a1 (G) = P a1′(D) and P a2 (G) = P a2′(D).

It is well-known that for every graph G,
∑
v∈V (G) dG(v) = 2m, where m is the number

of edges of G. Since the number of edges is equal to the number of vertices in a unicyclic
graph, for a unicyclic graph G we get

(1.1)
∑

v∈V (G)

dG(v) = 2n.

Unicyclic graphs are interesting, because they can represent various chemical struc-
tures. We study unicyclic graphs for the most important parameters. We obtain sharp
lower and upper bounds on the general multiplicative Zagreb indices for unicyclic graphs
with given number of vertices and diameter/number of pendant vertices/cycle of pre-
scribed length. In all these cases, we characterize the extremal graphs.

2. PRELIMINARY RESULTS

Let us present one lemma and a few corollaries, which will be used in the proofs of our
main results.

Lemma 2.1. Let D and D′ be the degree sequences which differ only in two entries, namely di, dj
are in D and di + 1, dj − 1 are in D′, where di ≥ dj ≥ 2 and 1 ≤ i < j ≤ n. Then for a > 0,
P a1′(D

′) < P a1′(D) and P a2′(D
′) > P a2′(D).

Proof. For a > 0, we have

P a1′(D)

P a1′(D
′)

=
dai d

a
j

(di + 1)a(dj − 1)a
=
( didj
didj + dj − di − 1

)a
> 1

aince dj − di − 1 < 0. For the P a2′ index, we have

P a2′(D)

P a2′(D
′)

=
dadii d

adj
j

(di + 1)a(di+1)(dj − 1)a(dj−1)
=
[ ddii d

dj
j

(di + 1)di+1(dj − 1)dj−1

]a
=

[(
1− 1

di + 1

)di+1(
1 +

1

dj − 1

)dj−1 dj
di

]a
< 1,

since (1 − 1
di+1 )

di+1 < 1
e , (1 + 1

dj−1 )
dj−1 < e and dj

di
≤ 1. Hence P a1′(D) > P a1′(D

′) and
P a2′(D) < P a2′(D

′). �
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Corollary 2.1. Let a > 0 and D be the degree sequence having the smallest P a1′ index (the largest
P a2′ index) with at most t ≥ 1 entries equal to 1, where

∑n
i=1 di = 2n. Then D has exactly t

entries equal to 1.

Proof. Assume to the contrary that D = (d1, d2, . . . , dn−t+ε, 1, 1, . . . , 1︸ ︷︷ ︸
t−ε

) where ε ≥ 1 and

d1, d2, . . . , dn−t+ε ≥ 2, is the degree sequence having the smallest P a1′ index (the largest
P a2′ index). From Lemma 2.1 we know that we can replace d1 and dn−t+ε by d1 + 1 and
dn−t+ε − 1 to obtain D′ = (d1 + 1, d2, . . . , dn−t+ε − 1, 1, 1, . . . , 1︸ ︷︷ ︸

t−ε

) having smaller P a1′ index

(larger P a2′ index). So P a1′(D
′) < P a1′(D) and P a2′(D

′) > P a2′(D), a contradiction. �

Corollary 2.2. Let a > 0 and D be the degree sequence having the smallest P a1′ index (the largest
P a2′ index) with t ≥ 0 entries equal to 1, where

∑n
i=1 di = 2n. ThenD = (t+2, 2, . . . , 2︸ ︷︷ ︸

n−t−1

, 1, . . . , 1︸ ︷︷ ︸
t

).

Proof. First we prove that the degree sequence D with the smallest P a1′ index (the largest
P a2′ index) has at most one entry greater than 2.

Assume to the contrary that D is the degree sequence with the smallest P a1′ index (the
largest P a2′ index) has at least two entries greater than 2. So D = (d1, d2, . . . , ds, 2, . . . , 2︸ ︷︷ ︸

n−s−t

,

1, . . . , 1︸ ︷︷ ︸
t

), where s ≥ 2 and d1, d2, . . . , ds ≥ 3. By Lemma 2.1, D′ = (d1 + 1, d2, . . . , ds −

1, 2, . . . , 2︸ ︷︷ ︸
n−s−t

, 1, . . . , 1︸ ︷︷ ︸
t

) has smaller P a1′ index (larger P a2′ index). So D is not the degree se-

quence with the smallest P a1′ index (the largest P a2′ index). A contradiction.
Thus D = (d1, 2, . . . , 2︸ ︷︷ ︸

n−t−1

, 1, . . . , 1︸ ︷︷ ︸
t

). Since
∑n
i=1 di = d1 + 2(n− t− 1) + t = 2n, we obtain

d1 = t+ 2. �

Corollary 2.3. Let a > 0 and D be the degree sequence having the largest P a1′ index (the smallest
P a2′ index) with t ≥ 0 entries equal to 1, where

∑n
i=1 di = 2n. Then D = (d1, d2, . . . , dn−t,

1, . . . , 1︸ ︷︷ ︸
t

), where di − dj ≤ 1 for 1 ≤ i < j ≤ n− t.

Proof. Let D′ = (d1, d2, . . . , dn−t, 1, . . . , 1︸ ︷︷ ︸
t

) be the degree sequence having the largest P a1′

index (the smallest P a2′ index) with t entries equal to 1. Since d1 ≥ d2 ≥ · · · ≥ dn−t, we
must show that d1 − dn−t ≤ 1.

Assume to the contrary that d1−dn−t ≥ 2. Then by Lemma 2.1, a new degree sequence
with d1− 1 and dn−t+1 has larger P a1′ index (smaller P a2′ index), which is a contradiction.

�

Corollary 2.4. Let a > 0 and D be the degree sequence having the largest P a1′ index (the smallest
P a2′ index), where

∑n
i=1 di = 2n. Then D = (2, 2, . . . , 2).

Proof. Let D = (d1, d2, . . . , dn) be the degree sequence having the largest P a1′ index (the
smallest P a2′ index). Note that D does not necessarily contain entries 1. By Corollary 2.3,
di−dj ≤ 1 for 1 ≤ i < j ≤ n. The only sequence satisfying this condition and

∑n
i=1 di = 2n

is D = (2, 2, . . . , 2). �
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3. UNICYCLIC GRAPHS WITH GIVEN DIAMETER

Let us study the general multiplicative Zagreb indices for unicyclic graphs with n ver-
tices and diameter k. The only graphs having diameter 1 are complete graphs, which are
not unicyclic graphs for n ≥ 4. The only graphs having diameter n − 1 are paths. So all
unicyclic graphs for n ≥ 4 have diameter k, where 2 ≤ k ≤ n− 2.

The only unicyclic graphs having diameter 2 for n ≥ 6 consist of the cycle C3 and n− 3
pendant vertices adjacent to one of the vertices of that C3. Therefore, we study the case
3 ≤ k ≤ n− 2.

Let u0u1 . . . uk be a path of order k + 1 and length k, where k ≥ 3. Let Sn,k be the set
containing the graphs Un,k,i,ε obtained from the path u0u1 . . . uk by attaching n − k − 1
new vertices to ui and joining one of the new vertices to ui+ε, where ε = 1 or 2, and
1 ≤ i < i+ ε ≤ k− 1. We prove that the set Sn,k is the family of extremal unicyclic graphs.

Theorem 3.1. Let G be any unicyclic graph having n vertices and diameter k, where 3 ≤ k ≤
n− 2. Then for a > 0,

P a1 (G) ≥ (n− k + 1)a3a2a(k−2) and P a2 (G) ≤ (n− k + 1)(n−k+1)a33a22a(k−2)

with equalities if and only if G ∈ Sn,k.

Proof. Let G be any unicyclic graph having n vertices and diameter k. Let P = u0u1 . . . uk
be a diametral path in G.

Claim 1. D(G) = (d1, d2, . . . , dk+c, 1, 1, . . . , 1︸ ︷︷ ︸
n−k−c

) where c ≥ 0.

Clearly, dG(ui) ≥ 2 for i = 1, 2, . . . , k − 1. Moreover, the cycle of G must contain at least
one vertex which is not in P . This implies that G contains at least k vertices of degree
greater than 1 and at most n− k vertices of degree 1.

Claim 2. No unicyclic graph has the degree sequence (n− k + 2, 2, 2, . . . , 2︸ ︷︷ ︸
k−1

, 1, 1, . . . , 1︸ ︷︷ ︸
n−k

).

Assume to the contrary that D(G) = (n − k + 2, 2, 2, . . . , 2︸ ︷︷ ︸
k−1

, 1, 1, . . . , 1︸ ︷︷ ︸
n−k

). Obviously, k − 1

vertices of the diametral path u1, u2, . . . , uk−1 have degree at least 2. Let u′ be the k-
th vertex of degree at least 2. All the other vertices have degree 1. So u′ must be in
the cycle, which means that it is adjacent to 2 vertices, say ui, uj where i < j, from the
set {u1, u2, . . . , uk−1}. Clearly, u′ is neither u0 not uk, otherwise if, say u′ = u0, then
u0ujuj+1 . . . uk would be a shorter path than P . Then ui and uj have degree at least 3,
which is a contradiction since D(G) has only one entry greater than 2.

By Claim 1, the degree sequenceD′ having the smallest P a1′ index (the largest P a2′ index)
satisfying

∑n
i=1 di = 2n has at most n − k entries equal to 1. Then by Corollary 2.1, D′

has exactly n − k entries equal to 1. From Corollary 2.2 we know that D′ is the sequence
given in Claim 2. However, there is no unicyclic graph of diameter k having that degree
sequence. By Lemma 2.1, the degree sequence having the second smallest P a1′ index (the
second largest P a2′ index) satisfying

∑n
i=1 di = 2n and Claim 1 is the sequence (n − k +

1, 3, 2, 2, . . . , 2︸ ︷︷ ︸
k−2

, 1, 1, . . . , 1︸ ︷︷ ︸
n−k

).

Let us find all graphs G′ having that degree sequence. Clearly, the vertices u1,
u2, . . . , uk−1 of the diametral path have degree at least 2. Let us denote the set of these
vertices by U . Since G′ has a cycle and exactly k vertices of degree at least 2, G′ contains
one vertex, say x, connected to 2 vertices of U , say ui and uj . So, ui and uj are of dis-
tance at most 2. Thus j ≤ i + 2. Since G′ has a vertex of degree n − k + 1 and only one
vertex of degree 3, it follows that one of ui, uj is adjacent to n − k − 2 pendant vertices
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x1, x2, . . . , xn−k−2. The other two pendant vertices are u0 and uk. Hence, G′ is one of the
graphs in Sn,k. It is easy to see that

P a1 (G
′) = (n− k + 1)a3a2a(k−2) and P a2 (G

′) = (n− k + 1)(n−k+1)a33a22a(k−2),

thus the proof is complete. �

For z ≥ 3 and b ≥ 0, let Cz ? Pb+1 be a graph obtained by identifying one vertex of
the cycle Cz with the end vertex of the path Pb+1. Let us show that C2n−2k ? P2k−n+1 and
C2n−2k−1 ? P2k−n+2 are the only unicyclic graphs of order n and diameter k having the
largest P a1 index and the smallest P a2 index for k > bn2 c.

Theorem 3.2. Let a > 0 and let G be any unicyclic graph having n vertices and diameter k. If
bn2 c < k ≤ n− 2, then

P a1 (G) ≤ 3a2a(n−2) and P a2 (G) ≥ 33a22a(n−2),

with equalities if and only if G is C2n−2k ? P2k−n+1 or C2n−2k−1 ? P2k−n+2. If k = bn2 c, then

P a1 (G) ≤ 2an and P a2 (G) ≥ 22an,

with equalities if and only if G is Cn.

Proof. Let G be a unicyclic graph having n vertices and diameter k with the largest P a1
index (the smallest P a2 index)

From Corollary 2.4 we know that the degree sequence having the largest P a1′ index (the
smallestP a2′ index) is (2, 2, . . . , 2). The only (connected) graph having this degree sequence
is Cn, which has the diameter bn2 c. Obviously, P a1 (Cn) = 2an and P a2 (Cn) = 22an.

So we consider the problem for bn2 c < k ≤ n − 2. The degree sequence having the
second largest P a1′ index (the second smallest P a2′ index) is (3, 2, . . . , 2︸ ︷︷ ︸

n−2

, 1). It is easy to

check that the only unicyclic graph having this sequence is Cz ? Pb+1. Since this graph is
obtained by identifying one vertex of Cz with the end vertex of Pb, the order n = z + b.
The diameter of Cz ?Pb+1 is k = b z2c+ b. We express z and b+1 in terms of n and k. Since

n = z + b and k =
⌊z
2

⌋
+ b, we get n− k =

⌈z
2

⌉
.

This implies that if z is even, then

z = 2n− 2k and b = n− z = 2k − n.

If a is odd, then

z = 2n− 2k − 1 and b = n− z = 2k − n+ 1.

Hence, C2n−2k ? P2k−n+1 and C2n−2k−1 ? P2k−n+2 are the only graphs having the largest
P a1 index (the smallest P a2 index) for k > bn2 c.

We have

P a1 (C2n−2k ? P2k−n+1) = P a1 (C2n−2k−1 ? P2k−n+2) = 3a2a(n−2)

and

P a2 (C2n−2k ? P2k−n+1) = P a2 (C2n−2k−1 ? P2k−n+2) = 33a22a(n−2),

which completes the proof. �
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4. UNICYCLIC GRAPHS WITH GIVEN NUMBER OF PENDANT VERTICES

In this section we give lower and upper bounds on the general multiplicative Zagreb in-
dices for unicyclic graphs with given number of vertices and number of pendant vertices.
Since every unicyclic graph contains a cycle having at least 3 vertices, those vertices are
not pendant. Thus the number p of pendant vertices in a unicyclic graph is 0 ≤ p ≤ n− 3.

Let H be a unicyclic graph containing the cycle C3, where one of the vertices of the
cycle is adjacent to p pendant vertices and let Up+3,p = {H}. Let Up+i+1,p be the set of
unicyclic graphs containing all graphs obtained by the subdivision of any edge of every
graph in Up+i,p, where i = 3, 4, . . . , n − p − 1. We show that Un,p is the set of extremal
unicyclic graphs with respect to the order and the number of pendant vertices

Theorem 4.3. Let G be any unicyclic graph having n vertices and p pendant vertices, where
0 ≤ p ≤ n− 3. Then for a > 0,

P a1 (G) ≥ (p+ 2)a2a(n−p−1) and P a2 (G) ≤ (p+ 2)a(p+2)22a(n−p−1)

with equalities if and only if G is in Un,p.

Proof. Let G be any unicyclic graph having n vertices and p pendant vertices. Obviously,
G has exactly p vertices of degree 1. By Corollary 2.2, the degree sequence having the
smallest P a1′ index (the largest P a2′ index) is (d1, 2, . . . , 2︸ ︷︷ ︸

n−p−1

, 1, . . . , 1︸ ︷︷ ︸
p

), where d1 = p+ 2.

The only graphs having the degree sequence (p+ 2, 2, . . . , 2︸ ︷︷ ︸
n−p−1

, 1, . . . , 1︸ ︷︷ ︸
p

) are the graphs in

the set Un,p. Thus the graphs G′ ∈ Un,p are the unicyclic graphs having the smallest P a1
index (the largest P a2 index). We obtain

P a1 (G
′) = (p+ 2)a2a(n−p−1) and P a2 (G

′) = (p+ 2)a(p+2)22a(n−p−1).

�

Now we obtain a sharp upper bound on P a1 (G) and a sharp lower bound on P a2 (G),
where G is a unicyclic graph of given order and number of pendant vertices.

Theorem 4.4. Let G be any unicyclic graph having n vertices and p pendant vertices, where
0 ≤ p ≤ n− 3. Then for a > 0,

P a1 (G) ≤ (b+ 2)a[n−(n−p)b](b+ 1)a[(n−p)b−p]

and
P a2 (G) ≥ (b+ 2)a(b+2)[n−(n−p)b](b+ 1)a(b+1)[(n−p)b−p]

with equalities if and only ifG has the degree sequence (b+ 2, . . . , b+ 2︸ ︷︷ ︸
n−(n−p)b

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
(n−p)b−p

, 1, . . . , 1︸ ︷︷ ︸
p

),

where b = b n
n−pc.

Proof. Let G be any unicyclic graph with n vertices and p pendant vertices. So, G has p
vertices of degree 1. By Corollary 2.3, the degree sequence having the largest P a1′ index
(the smallest P a2′ index) is D = (d1, d2, . . . , dn−p, 1, . . . , 1︸ ︷︷ ︸

p

), where d1 − dn−p ≤ 1.

So we can assume that di = c or c + 1 for i = 1, 2, . . . , n − p and c ≥ 2. Let nj be the
number of entries in D being j. Then

D = (c+ 1, . . . , c+ 1︸ ︷︷ ︸
nc+1

, c, . . . , c︸ ︷︷ ︸
nc

, 1, . . . , 1︸ ︷︷ ︸
p

)



General multiplicative Zagreb indices of unicyclic graphs 7

and thus

(4.2) p+ nc + nc+1 = n.

Clearly, p < n, therefore we can assume that nc ≥ 1. By (1.1),

(4.3)
n∑
i=1

di = p+ cnc + (c+ 1)nc+1 = 2n.

By (4.2) and (4.3), we obtain cp+ nc = cn− n, which gives c = n
n−p + nc

n−p . From (4.2) we
have nc ≤ n− p, therefore c = b n

n−pc+ 1, so

nc = (n− p)c− n = (n− p)
⌊ n

n− p

⌋
− p and nc+1 = n− (n− p)

⌊ n

n− p

⌋
.

Thus
D = (b+ 2, . . . , b+ 2︸ ︷︷ ︸

n−(n−p)b

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
(n−p)b−p

, 1, . . . , 1︸ ︷︷ ︸
p

),

where b = b n
n−pc.

We show that there is a graph G′ having the degree sequence D. Let G′ be a graph
which contains the cycle of length n − p; n − (n − p)b vertices of the cycle are adjacent
to b pendant vertices and the other (n − p)b − p vertices of the cycle are adjacent to b − 1
pendant vertices, where b = b n

n−pc. We get

P a1 (G
′) = (b+ 2)a[n−(n−p)b](b+ 1)a[(n−p)b−p]

and
P a2 (G

′) = (b+ 2)a(b+2)[n−(n−p)b](b+ 1)a(b+1)[(n−p)b−p].

�

5. UNICYCLIC GRAPHS WITH GIVEN k-CYCLE

We study unicyclic graphs with a cycle of length k. These graphs are also called uni-
cyclic graphs with girth k. Clearly, 3 ≤ k ≤ n.

Let Ck ∗ Sn−k+1 be the graph obtained by identifying one vertex of the cycle Ck with
the central vertex of the star Sn−k+1. We show that Ck ∗ Sn−k+1 has the smallest P a1 and
the largest P a2 among unicyclic graphs of order n which have a k-cycle.

Theorem 5.5. Let G be any unicyclic graph having n vertices and a cycle of length k, where
3 ≤ k ≤ n. Then for a > 0,

P a1 (G) ≥ (n− k + 2)a2a(k−1) and P a2 (G) ≤ (n− k + 2)a(n−k+2)22a(k−1)

with equalities if and only if G is Ck ∗ Sn−k+1.

Proof. Let G be any unicyclic graph having n vertices and a cycle of length k. All vertices
of the k-cycle have degree at least 2, so G has at most n− k vertices of degree 1.

By Corollary 2.1, the degree sequence having the smallest P a1′ index (the largest P a2′
index) with at most n−k entries being 1 is (d1, d2, . . . , dk, 1, 1, . . . , 1︸ ︷︷ ︸

n−k

), and then by Corollary

2.2, d2 = d3 = · · · = dk = 2 and d1 = n− k + 2.
The only graph having the degree sequence (n − k + 2, 2, 2, . . . , 2︸ ︷︷ ︸

k−1

, 1, 1, . . . , 1︸ ︷︷ ︸
n−k

) is Ck ∗

Sn−k+1. So Ck ∗ Sn−k+1 is the graph having the smallest P a1 index (the largest P a2 index).
We obtain

P a1 (Ck ∗ Sn−k+1) = (n− k + 2)a2a(k−1)
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and
P a2 (Ck ∗ Sn−k+1) = (n− k + 2)(n−k+2)a22a(k−1).

�

Note that Ck ? Pn−k+1 is the graph obtained by identifying one vertex of the cycle Ck
with the end vertex of the path Pn−k+1. The graph Ck ? Pn−k+1 has the largest P a1 index
and the smallest P a1 index among unicyclic graphs of order n having a k-cycle. Since for
k = n, Cn is the only graph having a k-cycle, we present the bounds for k < n.

Theorem 5.6. Let a > 0 and let G be any unicyclic graph having n vertices and a cycle of length
k, where 3 ≤ k ≤ n− 1. Then

P a1 (G) ≤ 3a2a(n−2) and P a2 (G) ≥ 33a22a(n−2),

with equalities if and only if G is Ck ? Pn−k+1.

Proof. LetG′ be a unicyclic graph having n vertices and a cycle of length k with the largest
P a1 index (the smallest P a2 index). By Corollary 2.4, the degree sequence having the largest
P a1′ index (the smallest P a2′ index) is (2, 2 . . . , 2). The only (connected) graph having this
degree sequence is Cn, which has the cycle of length k = n. So if k = n, then G′ = Cn.
Obviously, P a1 (Cn) = 2an and P a2 (Cn) = 22an.

So we consider the problem for k < n. The degree sequence having the second largest
P a1′ index (the second smallest P a2′ index) is (3, 2, . . . , 2︸ ︷︷ ︸

n−2

, 1). The only unicyclic graph having

this sequence is Ck ? Pn−k+1. Thus G′ = Ck ? Pn−k+1 is the only graph having the largest
P a1 index (the smallest P a2 index) for k < n. We have

P a1 (Ck ? Pn−k+1) = 3a2a(n−2) and P a2 (Ck ? Pn−k+1) = 33a22a(n−2),

hence the proof is complete. �

6. CONCLUSION

In Sections 3, 4 and 5 we presented lower and upper bounds on the general multi-
plicative Zagreb indices for unicyclic graphs with given number of vertices and diame-
ter/number of pendant vertices/k-cycle, where a > 0.

If a = 2, then P 2
1 (G) is the first multiplicative Zagreb index

∏
1(G), and if a = 1, then

P 1
2 (G) is the second multiplicative Zagreb index

∏
2(G). From Theorems 3.1 – 5.6 we get

the following corollaries.

Corollary 6.5. Let G be any unicyclic graph having n vertices and diameter k, where 3 ≤ k ≤
n− 2. Then∏

1
(G) ≥ 9(n− k + 1)24k−2 and

∏
2
(G) ≤ 27(n− k + 1)n−k+14k−2.

Corollary 6.6. LetG be any unicyclic graph having n vertices and diameter k. If bn2 c < k ≤ n−2,
then ∏

1
(G) ≤ 9 · 4n−2 and

∏
2
(G) ≥ 27 · 4n−2,

with equalities if and only if G is C2n−2k ? P2k−n+1 or C2n−2k−1 ? P2k−n+2. If k = bn2 c, then∏
1
(G) ≤ 4n and

∏
2
(G) ≥ 4n,

with equalities if and only if G is Cn.
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Corollary 6.7. Let G be any unicyclic graph having n vertices and p pendant vertices, where
0 ≤ p ≤ n− 3. Then

(p+ 2)24n−p−1 ≤
∏

1
(G) ≤ (b+ 2)2[n−(n−p)b](b+ 1)2[(n−p)b−p],

where b = b n
n−pc.

Corollary 6.8. Let G be any unicyclic graph having n vertices and a cycle of length k, where
3 ≤ k ≤ n− 1. Then

(n− k + 2)24k−1 ≤
∏

1
(G) ≤ 9 · 4n−2.

Corollary 6.9. Let G be any unicyclic graph having n vertices and p pendant vertices, where
0 ≤ p ≤ n− 3. Then

(b+ 2)(b+2)[n−(n−p)b](b+ 1)(b+1)[(n−p)b−p] ≤
∏

2
(G) ≤ (p+ 2)p+24n−p−1,

where b = b n
n−pc.

Corollary 6.10. Let G be any unicyclic graph having n vertices and a cycle of length k, where
3 ≤ k ≤ n− 1. Then

27 · 4n−2 ≤
∏

2
(G) ≤ (n− k + 2)n−k+24k−1.

In the proof of Lemma 2.1 we use the following: if x > 1 and a > 0, then xa > 1.
Similarly, if 0 < x < 1 and a > 0, then 0 < xa < 1. We can obtain a lemma for a < 0 using
a similar proof and these facts:

• if x > 1 and a < 0, then 0 < xa < 1,
• if 0 < x < 1 and a < 0, then xa > 1.

Lemma 6.2. Let D and D′ be the degree sequences which differ only in two entries, namely di, dj
are in D and di + 1, dj − 1 are in D′, where di ≥ dj ≥ 2 and 1 ≤ i < j ≤ n. Then for a < 0,
P a1′(D

′) > P a1′(D) and P a2′(D
′) < P a2′(D).

Then we can use Lemma 6.2 and corollaries similar to Corollaries 2.1, 2.2, 2.3 and 2.4
to obtain bounds for unicyclic graphs, where a < 0. Bounds on the general multiplicative
Zagreb indices for unicyclic graphs of given order and diameter, where a < 0, are given
in Theorems 6.7 and 6.8.

Theorem 6.7. Let G be any unicyclic graph having n vertices and diameter k, where 3 ≤ k ≤
n− 2. Then for a < 0,

P a1 (G) ≤ (n− k + 1)a3a2a(k−2) and P a2 (G) ≥ (n− k + 1)(n−k+1)a33a22a(k−2)

with equalities if and only if G ∈ Sn,k.

Theorem 6.8. Let a < 0 and let G be any unicyclic graph having n vertices and diameter k. If
bn2 c < k ≤ n− 2, then

P a1 (G) ≥ 3a2a(n−2) and P a2 (G) ≤ 33a22a(n−2),

with equalities if and only if G is C2n−2k ? P2k−n+1 or C2n−2k−1 ? P2k−n+2. If k = bn2 c, then

P a1 (G) ≥ 2an and P a2 (G) ≤ 22an,

with equalities if and only if G is Cn.

Results on unicyclic graphs of given order and number of pendant vertices, where
a < 0, are presented in Theorems 6.9 and 6.10.
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Theorem 6.9. Let G be any unicyclic graph having n vertices and p pendant vertices, where
0 ≤ p ≤ n− 3. Then for a < 0,

P a1 (G) ≤ (p+ 2)a2a(n−p−1) and P a2 (G) ≥ (p+ 2)a(p+2)22a(n−p−1)

with equalities if and only if G is in Un,p.

Theorem 6.10. Let G be any unicyclic graph having n vertices and p pendant vertices, where
0 ≤ p ≤ n− 3. Then for a < 0,

P a1 (G) ≥ (b+ 2)a[n−(n−p)b](b+ 1)a[(n−p)b−p]

and
P a2 (G) ≤ (b+ 2)a(b+2)[n−(n−p)b](b+ 1)a(b+1)[(n−p)b−p]

with equalities if and only ifG has the degree sequence (b+ 2, . . . , b+ 2︸ ︷︷ ︸
n−(n−p)b

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
(n−p)b−p

, 1, . . . , 1︸ ︷︷ ︸
p

),

where b = b n
n−pc.

Finally, we give bounds for unicyclic graphs having a k-cycle.

Theorem 6.11. Let G be any unicyclic graph having n vertices and a cycle of length k, where
3 ≤ k ≤ n. Then for a < 0,

P a1 (G) ≤ (n− k + 2)a2a(k−1) and P a2 (G) ≥ (n− k + 2)a(n−k+2)22a(k−1)

with equalities if and only if G is Ck ∗ Sn−k+1.

Theorem 6.12. Let a < 0 and letG be any unicyclic graph having n vertices and a cycle of length
k, where 3 ≤ k ≤ n− 1. Then

P a1 (G) ≥ 3a2a(n−2) and P a2 (G) ≤ 33a22a(n−2),

with equalities if and only if G is Ck ? Pn−k+1.
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