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General multiplicative Zagreb indices of unicyclic graphs

MONTHER R. ALFURAIDAN, SELVARA] BALACHANDRAN and TOMAS VETRIK

ABSTRACT. General multiplicative Zagreb indices generalize well-known multiplicative Zagreb indices of
graphs. We present lower and upper bounds on the general multiplicative Zagreb indices for unicyclic graphs
with given number of vertices and diameter/number of pendant vertices/cycle of given length. All bounds are
best possible. Bounds on the classical multiplicative Zagreb indices of unicyclic graphs are corollaries of the
general results.

1. INTRODUCTION

Let V(G) be the vertex set and let E(G) be the edge set of a graph G. The order n of
a graph G is the number of vertices of G. The degree of a vertex v € V(G), denoted by
dg(v), is the number of edges incident with v. A pendant vertex is a vertex of degree one.
The distance between two vertices is the number of edges in a shortest path connecting
them and the diameter of G is the distance between any two farthest vertices in G. A di-
ametral path is a shortest path in G connecting two farthest vertices in G. A unicyclic
graph is a connected graph containing exactly one cycle. We denote the star, the cycle and
the path graph of order n by S, C), and P, respectively.

Multiplicative Zagreb indices have numerous applications and they have been studied
especially in the last decade. They play a significant role in chemistry, materials science,
pharmaceutical sciences and engineering, since they can be correlated with a large num-
ber of physico-chemical properties of molecules. Graph theory is used to characterize
these chemical structures. Vertices of graphs correspond to the atoms of a compound and
edges of graphs correspond to chemical bonds.

Lower and upper bounds on the multiplicative Zagreb indices for unicyclic graphs
of given order were obtained by Xu and Hua [15], sharp upper bounds for graphs of
prescribed order and size were obtained in [7], sharp upper bounds for bipartite graphs
of given diameter were given in [11], trees were investigated in [5] and [12], k-trees in
[14], graphs with a small number of cycles in [1], graph operations in [4] and [8], graphs
with cut edges in [13], graphs with given chromatic number in [3], graphs with prescribed
clique number in [9], some derived graphs in [2] and molecular graphs in [6].

General multiplicative Zagreb indices were introduced in [10]. The first general multi-
plicative Zagreb index of a graph G is defined as

P& = ][I delv)
veV(G)
and the second general multiplicative Zagreb index is

PiG) = [ da) ™= ][ (dewda())",

veV(G) weE(G)
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where a # 0 is any real number. These indices generalize basic multiplicative Zagreb
indices. For a = 1, P}(G) is the Narumi-Katayama index and for a = 2, P#(G) is the first
multiplicative Zagreb index
— 2
[L@= I dew

veV(G)

For a = 1, P}(G) is the second multiplicative Zagreb index

[L@= IJ dewy'=c

veV(G)

Let D = (di,ds,...,dy,) be the degree sequence, where dy > dy > --- > d,,. We

introduce
P(D) =[] d; and P5(D) =[] di"
i=1 i=1

If there is a graph G with vertices having degrees d;,d», . . ., d,, then the degree sequence
D is graphical and we have P{(G) = P{(D) and Pg¢(G) = Ps. (D).

It is well-known that for every graph G, 3 <y () dc(v) = 2m, where m is the number
of edges of G. Since the number of edges is equal to the number of vertices in a unicyclic
graph, for a unicyclic graph G we get

1.1) > da(v) =

veV(QG)

Unicyclic graphs are interesting, because they can represent various chemical struc-
tures. We study unicyclic graphs for the most important parameters. We obtain sharp
lower and upper bounds on the general multiplicative Zagreb indices for unicyclic graphs
with given number of vertices and diameter/number of pendant vertices/cycle of pre-
scribed length. In all these cases, we characterize the extremal graphs.

2. PRELIMINARY RESULTS

Let us present one lemma and a few corollaries, which will be used in the proofs of our
main results.

Lemma 2.1. Let D and D’ be the degree sequences which differ only in two entries, namely d;, d,
arein D and d; +1,d; — larein D', where d; > d; > 2and 1 < i < j < n. Then for a > 0,
P{(D') < P{(D) and Pg,(D") > P§ (D).
Proof. For a > 0, we have
a ded® . a
D) i dd e
Pla,(D/) (dz + l)a(dj — 1)“ dld] + dj —d; —1

aince d; — d; — 1 < 0. For the Py, index, we have

Py(D) dgt s dddy

Pg(D)  (di+ 1)t D (d; — 1)e(d D i<d¢+1>di+1<dj—1>df1ia
d .1a
- [(l—de) Tlegm) T

since (1 — z45)% " < 4, (1+ z55)%"' < eand d—f < 1. Hence P{ (D) > P& (D’) and

Pe(D) < PL(D"). O
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Corollary 2.1. Let a > 0 and D be the degree sequence having the smallest Py, index (the largest
Py, index) with at most t > 1 entries equal to 1, where > | d; = 2n. Then D has exactly t
entries equal to 1.

Proof. Assume to the contrary that D = (dy,ds,...,dp—tte, 1,1,...,1) where ¢ > 1 and
———
t—e
dy,dg,...,dp_tyc > 2, is the degree sequence having the smallest P}, index (the largest
Pg, index). From Lemma 2.1 we know that we can replace d; and d,,_;+ by d; + 1 and
dp—t+e —1toobtain D' = (dy +1,da,...,dp—t+e — 1,1,1,...,1) having smaller Py, index
——
t—e

(larger P§. index). So Py, (D') < Py (D) and Py, (D’) > Py, (D), a contradiction. O

Corollary 2.2. Let a > 0and D be the degree sequence having the smallest Py, index (the largest
Py, index) witht > 0 entries equal to 1, where Y d; = 2n. Then D = (t4+2,2,...,2,1,...,1).
—— —

n—t—1 t

Proof. First we prove that the degree sequence D with the smallest Py, index (the largest

P35, index) has at most one entry greater than 2.
Assume to the contrary that D is the degree sequence with the smallest P{, index (the
largest Ps, index) has at least two entries greater than 2. So D = (dy,ds,...,ds,2,...,2,
——

n—s—t
1,...,1), where s > 2 and d;,ds,...,ds > 3. By Lemma 2.1, D' = (d; + 1,da,...,ds —

——
t

1,2,...,2,1,...,1) has smaller P} index (larger Ps. index). So D is not the degree se-
—— ——
n—s—t t

quence with the smallest P}, index (the largest Py, index). A contradiction.
Thus D = (dy,2,...,2,1,...,1). Since 31" | d; = dy +2(n —t — 1) + t = 2n, we obtain
——— ——

n—t—1 t

di =t+2. O

Corollary 2.3. Let a > 0and D be the degree sequence having the largest Py, index (the smallest
Py, index) with t > 0 entries equal to 1, where 2?:1 di = 2n. Then D = (dy,ds,...,dp—4,
1,...,1), whered; —d; < 1for1 <i<j<n-—t.

—

t

Proof. Let D' = (d1,da,...,dp—¢,1,...,1) be the degree sequence having the largest Py
——

t
index (the smallest Py, index) with ¢ entries equal to 1. Since d; > dy > -+ > d,,—¢, We

must show thatd; — d,,_; < 1.
Assume to the contrary that d; —d,_; > 2. Then by Lemma 2.1, a new degree sequence
with d; — 1 and d,,_; + 1 has larger P} index (smaller Py, index), which is a contradiction.
U

Corollary 2.4. Let a > 0 and D be the degree sequence having the largest Pf, index (the smallest
Py, index), where Y | d; = 2n. Then D = (2,2,...,2).

Proof. Let D = (d1,ds,...,d,) be the degree sequence having the largest P} index (the
smallest Pj, index). Note that D does not necessarily contain entries 1. By Corollary 2.3,
d;—d; < 1for1 <i < j < n. The only sequence satisfying this conditionand > , d; = 2n
isD=1(2,2,...,2). O
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3. UNICYCLIC GRAPHS WITH GIVEN DIAMETER

Let us study the general multiplicative Zagreb indices for unicyclic graphs with n ver-
tices and diameter k. The only graphs having diameter 1 are complete graphs, which are
not unicyclic graphs for n > 4. The only graphs having diameter n — 1 are paths. So all
unicyclic graphs for n > 4 have diameter k, where2 < k <n — 2.

The only unicyclic graphs having diameter 2 for n > 6 consist of the cycle C3 and n — 3
pendant vertices adjacent to one of the vertices of that Cs. Therefore, we study the case
3<k<n-2.

Let uopuy ... ux be a path of order k£ + 1 and length k, where & > 3. Let S,, j, be the set
containing the graphs U, ;. obtained from the path ugu; ... u; by attachingn — k — 1
new vertices to u; and joining one of the new vertices to u;1., where ¢ = 1 or 2, and
1 <i<i+e < k—1. Weprove that the set S, 1, is the family of extremal unicyclic graphs.

Theorem 3.1. Let G be any unicyclic graph having n vertices and diameter k, where 3 < k <
n — 2. Then for a > 0,

PHG) > (n —k +1)23%29¢=2) gnd PY(G) < (n — k + 1)(n—k+Dagsag2alk=2)
with equalities if and only if G € S,, .

Proof. Let G be any unicyclic graph having n vertices and diameter k. Let P = uou; . .. ug
be a diametral path in G.
Claim 1. D(G) = (dy,da, ... ,dgte, 1,1,...,1) where ¢ > 0.
n—k—c
Clearly, dg(u;) > 2 fori = 1,2,...,k — 1. Moreover, the cycle of G must contain at least
one vertex which is not in P. This implies that G contains at least k vertices of degree
greater than 1 and at most n — k vertices of degree 1.

Claim 2. No unicyclic graph has the degree sequence (n — k +2,2,2,...,2,1,1,...,1).
—— ——
k-1 n—

k
Assume to the contrary that D(G) = (n — k +2,2,2,...,2,1,1,...,1). Obviously, k — 1
k—1 n—k

vertices of the diametral path uq,us,...,ux_1 have degree at least 2. Let v’ be the k-
th vertex of degree at least 2. All the other vertices have degree 1. So v’ must be in
the cycle, which means that it is adjacent to 2 vertices, say u;, u; where i < j, from the
set {uq,ug,...,ux—1}. Clearly, v/ is neither uy not ug, otherwise if, say v’ = w, then
UoUjUjt1 - .. u Would be a shorter path than P. Then u; and u; have degree at least 3,
which is a contradiction since D(G) has only one entry greater than 2.

By Claim 1, the degree sequence D’ having the smallest P, index (the largest Py index)
satisfying >, d; = 2n has at most n — k entries equal to 1. Then by Corollary 2.1, D’
has exactly n — k entries equal to 1. From Corollary 2.2 we know that D’ is the sequence
given in Claim 2. However, there is no unicyclic graph of diameter k having that degree
sequence. By Lemma 2.1, the degree sequence having the second smallest Py, index (the
second largest Py index) satisfying > ; d; = 2n and Claim 1 is the sequence (n — k +

1,3,2,2,...,2,1,1,...,1).
—— —
k—2 n—k
Let us find all graphs G’ having that degree sequence. Clearly, the vertices uq,
Ug, ..., ur—1 of the diametral path have degree at least 2. Let us denote the set of these

vertices by U. Since G’ has a cycle and exactly k vertices of degree at least 2, G’ contains
one vertex, say x, connected to 2 vertices of U, say u; and u;. So, u; and u; are of dis-
tance at most 2. Thus j < i + 2. Since G’ has a vertex of degree n — k + 1 and only one
vertex of degree 3, it follows that one of u;, u; is adjacent to n — k — 2 pendant vertices
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Z1,Z2,...,ZTn—k—2. The other two pendant vertices are uy and uy. Hence, G’ is one of the
graphs in S, ;. It is easy to see that
PHG) = (n—k+1)*32°*"2) and P§(G') = (n — k+1)"-FHhagdegalk=2),
thus the proof is complete. O

For z > 3and b > 0, let C, x P, be a graph obtained by identifying one vertex of
the cycle C, with the end vertex of the path P, ;. Let us show that Cs,,_ok * Pag—pn+1 and
Con—2k—1 * Paop—n4o are the only unicyclic graphs of order n and diameter k£ having the
largest P{ index and the smallest Py index for k& > [ %].

Theorem 3.2. Let a > 0 and let G be any unicyclic graph having n vertices and diameter k. If
5] <k <n-—2 then

P{Z(G) < 3a2a(n—2) and P;(G) > 33@22a(n—2)’
with equalities if and only if G is Cay, o * Por—ny1 0¥ Con_op—1 % Pop—nyo. If k = [ 5], then
PHG) < 2% and Pg(G) > 2%,
with equalities if and only if G is C,,.

Proof. Let G be a unicyclic graph having n vertices and diameter k with the largest Py
index (the smallest Ps' index)

From Corollary 2.4 we know that the degree sequence having the largest Py, index (the
smallest Pg, index)is (2,2, .. .,2). The only (connected) graph having this degree sequence
is C,,, which has the diameter | %]. Obviously, P{(C),) = 2*" and Pg(C,,) = 2%".

So we consider the problem for [§] < k& < n — 2. The degree sequence having the
second largest Py, index (the second smallest Py index) is (3,2,...,2,1). It is easy to

n—2
check that the only unicyclic graph having this sequence is C, * P,11. Since this graph is
obtained by identifying one vertex of C, with the end vertex of P, the order n = z + b.
The diameter of C, x Py, 1 is k = | 5| +b. We express z and b+ 1 in terms of n and k. Since

n=z+band k= EJer, weget n —k = E—‘

This implies that if z is even, then
z=2n—-2k and b=n—2z=2k—n.
If a is odd, then
z=2n—2k—1and b=n—2z=2k—n+1.

Hence, Con—2i * Pog—n+1 and Cop_op—1 * Pog—n42 are the only graphs having the largest
P{* index (the smallest Pg' index) for k > | % .
We have

PH(Clp_op * Pag—ni1) = PH(Cap_op_1 % Pog_pyo) = 37202

and
P (Clapag * Pag—ni1) = P§(Con_ap_1 % Pok_nyo) = 3302%2a(n=2),

which completes the proof. O
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4. UNICYCLIC GRAPHS WITH GIVEN NUMBER OF PENDANT VERTICES

In this section we give lower and upper bounds on the general multiplicative Zagreb in-
dices for unicyclic graphs with given number of vertices and number of pendant vertices.
Since every unicyclic graph contains a cycle having at least 3 vertices, those vertices are
not pendant. Thus the number p of pendant vertices in a unicyclic graphis 0 < p < n — 3.

Let H be a unicyclic graph containing the cycle ('3, where one of the vertices of the
cycle is adjacent to p pendant vertices and let U3, = {H}. Let Uptit1, be the set of
unicyclic graphs containing all graphs obtained by the subdivision of any edge of every
graph in Upy; ,, where i = 3,4,...,n — p — 1. We show that U, , is the set of extremal
unicyclic graphs with respect to the order and the number of pendant vertices

Theorem 4.3. Let G be any unicyclic graph having n vertices and p pendant vertices, where
0 <p <n—3. Then for a > 0,

PYG) > (p+2)72°P=D and PY(G) < (p+ 2)* P+ 22a(n—p-1)
with equalities if and only if G is in U, p.

Proof. Let G be any unicyclic graph having n vertices and p pendant vertices. Obviously,
G has exactly p vertices of degree 1. By Corollary 2.2, the degree sequence having the

smallest P index (the largest Py, index) is (d1,2,...,2,1,...,1), where d; = p + 2.
—— ——
n—p—1 p
The only graphs having the degree sequence (p + 2,2,...,2,1,...,1) are the graphs in
y grap g gree seq ) grap
n—p—1 p

the set U, ,. Thus the graphs G’ € U, , are the unicyclic graphs having the smallest P;*
index (the largest P35 index). We obtain

PUG) = (p+2)"2°" 7 and PJ(G') = (p+2)" D g2,
]

Now we obtain a sharp upper bound on P{*(G) and a sharp lower bound on Py(G),
where G is a unicyclic graph of given order and number of pendant vertices.

Theorem 4.4. Let G be any unicyclic graph having n vertices and p pendant vertices, where
0 <p <n—3. Then for a > 0,

PA(G) < (b + 2)°ln=(n=p)t] (p 4 1)al(n=p)b—p]

and
Pza(G) > (b—|— 2)a(b+2)[nf(n7p)b] (b + 1)a(b+1)[(n7p)b7p]
with equalities if and only if G has the degree sequence (b+2,...,b+2,b+1,...,b+1,1,...,1),
——

n—(n—p)b (n—p)b—p P
where b = | 1 |.

Proof. Let G be any unicyclic graph with n vertices and p pendant vertices. So, G has p
vertices of degree 1. By Corollary 2.3, the degree sequence having the largest P, index
(the smallest Py, index) is D = (dy,da,...,dn—p,1,...,1), where dy — d,,—, < 1.

—

p
So we can assume that d; = corc+ 1fori =1,2,...,n —pand ¢ > 2. Let n; be the
number of entries in D being j. Then
D=(c+1,...,c+1,¢...,¢,1,...,1)
—_——— —— ——

MNet1 Ne p
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and thus
(4.2) P+ ne + Neyp1 =N
Clearly, p < n, therefore we can assume that n, > 1. By (1.1),

(4.3) Z di =p+cne+ (c+ 1)nepr = 2n.
i=1

By (4.2) and (4.3), we obtain c¢p + n. = cn — n, which gives ¢ = %ﬁp + n"—jp. From (4.2) we
have n. < n — p, therefore c = | -] + 1, so

n—p
J—p and ncH:n—(n—p){nﬁpJ.

ne=(n=ple=n=(n-p)|

Thus
D=0b+2,...,0+2,b+1,...,b+1,1,...,1),
N—_——

n—(n—p)b (n—p)b—p p

where b = [ ;%]

We show that there is a graph G’ having the degree sequence D. Let G’ be a graph
which contains the cycle of length n — p; n — (n — p)b vertices of the cycle are adjacent
to b pendant vertices and the other (n — p)b — p vertices of the cycle are adjacent to b — 1

pendant vertices, where b = [ ;% ]. We get
PG = (b + 2)eln=(n=pbl(py 4 7)al(r=p)b=p]

and
PYG") = (b + 2)2b+2In=(n=p)bl(py 4 1)ab+D[(n=p)b=p]

5. UNICYCLIC GRAPHS WITH GIVEN k-CYCLE

We study unicyclic graphs with a cycle of length k. These graphs are also called uni-
cyclic graphs with girth k. Clearly, 3 < k < n.

Let Cy, * S,—_i+1 be the graph obtained by identifying one vertex of the cycle C} with
the central vertex of the star S,,_4+1. We show that C}, % S,,_+1 has the smallest P{* and
the largest P§ among unicyclic graphs of order n which have a k-cycle.

Theorem 5.5. Let G be any unicyclic graph having n vertices and a cycle of length k, where
3 <k < n. Then for a > 0,

PYG) > (n—k+2)22°*=Y and PIG) < (n — k + 2)2(n—k+2)g2a(k—1)
with equalities if and only if G is Cy * Sp_p+1.
Proof. Let G be any unicyclic graph having n vertices and a cycle of length £. All vertices
of the k-cycle have degree at least 2, so G has at most n — k vertices of degree 1.

By Corollary 2.1, the degree sequence having the smallest Pj; index (the largest Py,
index) with at most n—k entries being 11is (dy,da, .. .,dx, 1,1, ...,1), and then by Corollary
——

n—=k
2.2,d2:d3:-":dk:23ndd1 =n—k+2.
The only graph having the degree sequence (n — k +2,2,2,...,2,1,1,...,1) is C}, *
k—1 n—k

Sp—k+1. S0 Ck * Sp_p41 is the graph having the smallest Py index (the largest Ps' index).
We obtain
P (Cl* Sp—pt1) = (n—k+ 2)a2a(k—1)
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and
P3O % Sp_jr1) = (n — k + 2)(n—k+Dagalk—1),
]

Note that C}, x P,,_;41 is the graph obtained by identifying one vertex of the cycle Cj,
with the end vertex of the path P,,_;;. The graph C}, * P,,_j1 has the largest P index
and the smallest P index among unicyclic graphs of order n having a k-cycle. Since for
k = n, C, is the only graph having a k-cycle, we present the bounds for k < n.

Theorem 5.6. Let a > 0 and let G be any unicyclic graph having n vertices and a cycle of length
k, where 3 < k <n — 1. Then

PY@) < ga9a(n=2) .1 P3(G) > 33(122(1(7172)’
with equalities if and only if G is Cj, * Pp_j41.

Proof. Let G’ be a unicyclic graph having n vertices and a cycle of length k with the largest
P{ index (the smallest Pj index). By Corollary 2.4, the degree sequence having the largest
Pf, index (the smallest Py, index) is (2,2...,2). The only (connected) graph having this
degree sequence is C,,, which has the cycle of length £ = n. Soif k = n, then G’ = C,,.
Obviously, P{#(C,,) = 29" and Pg(C,,) = 22",

So we consider the problem for k < n. The degree sequence having the second largest
Pf, index (the second smallest Py, index) is (3,2, . ..,2, 1). The only unicyclic graph having

n—2

this sequence is Cj, x P,_i+1. Thus G’ = C}, x P,,_+1 is the only graph having the largest
Pf* index (the smallest Ps index) for & < n. We have

PHC x Py_jyq) = 3922 and P¢(Ch * Py_jpq) = 33722002,

hence the proof is complete. O

6. CONCLUSION

In Sections 3, 4 and 5 we presented lower and upper bounds on the general multi-
plicative Zagreb indices for unicyclic graphs with given number of vertices and diame-
ter/number of pendant vertices/k-cycle, where a > 0.

If a = 2, then P?(G) is the first multiplicative Zagreb index [],(G), and if a = 1, then
P} (@) is the second multiplicative Zagreb index [[,(G). From Theorems 3.1 — 5.6 we get
the following corollaries.

Corollary 6.5. Let G be any unicyclic graph having n vertices and diameter k, where 3 < k <
n — 2. Then

Hl(G) > 9(n —k+1)%42 and HQ(G) <27(n — k + 1) Frigh=2,

Corollary 6.6. Let G be any unicyclic graph having n vertices and diameter k. If [ 5 | < k <n—2,
then

. An—2 An—2
Hl(G) <9.-4"2 and H2(G) > 274772,
with equalities if and only if G is Cop o * Pog—ny1 0 Con_op—1 % Poag—ny2. If k = [ 5|, then

HI(G) < 4™ and HQ(G) >4,
with equalities if and only if G is C,,.
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Corollary 6.7. Let G be any unicyclic graph having n vertices and p pendant vertices, where
0<p<n-—3.Then

(p+2)24n—p—1 < HI(G) < (b+2)2[7z—(7L—p)b](b+ 1)2[(n—p)b—p]7
where b = | - |.

Corollary 6.8. Let G be any unicyclic graph having n vertices and a cycle of length k, where
3<k<n-—1.Then

- 2 (k—1 n—2
(n—k+2)%4 ng(G)§9 4n=2,
Corollary 6.9. Let G be any unicyclic graph having n vertices and p pendant vertices, where
ry Y ycic grap g p
0<p<n-—3.Then
(b42)[n—(n—p)b] (b+1D)[(n—p)b—p] p+2 n—p—1
(b+2) (b+1) < [L@) < @ +2pr2amrt,
where b = | ]

Corollary 6.10. Let G be any unicyclic graph having n vertices and a cycle of length k, where
3<k<n-—1 Then
oAn—2 _ n—k+2 1k—1
27 -4 SHQ(G)S(TL k+2) 4=t
In the proof of Lemma 2.1 we use the following: if z > 1 and a > 0, then «* > 1.

Similarly, if 0 < z < 1and a > 0, then 0 < 2 < 1. We can obtain a lemma for a < 0 using
a similar proof and these facts:

eifr>1landa < 0,then0 < 2% <1,
e if0<z<landa <0, then z% > 1.

Lemma 6.2. Let D and D’ be the degree sequences which differ only in two entries, namely d;, d,
arein D and d; +1,d; — larein D', where d; > d; > 2and 1 < i < j < n. Then for a < 0,
P{(D') > P{(D) and P§,(D') < Ps.(D).

Then we can use Lemma 6.2 and corollaries similar to Corollaries 2.1, 2.2, 2.3 and 2.4
to obtain bounds for unicyclic graphs, where a < 0. Bounds on the general multiplicative
Zagreb indices for unicyclic graphs of given order and diameter, where a < 0, are given
in Theorems 6.7 and 6.8.

Theorem 6.7. Let G be any unicyclic graph having n vertices and diameter k, where 3 < k <
n — 2. Then for a < 0,

PH@) < (n—k+1)%392°¢2) and P3(G) > (n — k + 1)(n—k+haglag2a(k=2)
with equalities if and only if G € Sy, ..

Theorem 6.8. Let a < 0 and let G be any unicyclic graph having n vertices and diameter k. If
5] <k <n—2, then

PH@G) > 39292 gpd PY(G) < 33420(n=2)
with equalities if and only if G is Cop o * Pog—ny1 0F Con_op—1 % Pop—ny2. If k = [ 5], then
PHG) > 2% and Pg(G) < 2%,
with equalities if and only if G is C,,.

Results on unicyclic graphs of given order and number of pendant vertices, where
a < 0, are presented in Theorems 6.9 and 6.10.
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Theorem 6.9. Let G be any unicyclic graph having n vertices and p pendant vertices, where
0<p<n—3.Thenfora <0,

P{(G) < (p+2)"2°=P=Y) and P§(G) > (p+ 2)*@+2)g2a(n=r=1)
with equalities if and only if G is in U, ;.
Theorem 6.10. Let G be any unicyclic graph having n vertices and p pendant vertices, where
0 <p <n—3. Then fora <0,
P(@) > (b+ 2)eln— (=)l (p 4 1)alln=p)b=p]

and
PY(G) < (b+ 2)xb+n—(n=p)bl(j 4 1)alb+1)[(n=p)b—p]
with equalities if and only if G has the degree sequence (b+2,...,b+2,b+1,...,b+1,1,...,1),
——

n—(n—p)b (n—p)b—p P
where b = | 1 ].
Finally, we give bounds for unicyclic graphs having a k-cycle.

Theorem 6.11. Let G be any unicyclic graph having n vertices and a cycle of length k, where
3 <k < n. Then fora <0,

PHG) < (n—k+2)22°*=D and P§(G) > (n — k + 2)2(n—k+2)g2ak—1)
with equalities if and only if G is Cy * Sy _p41.

Theorem 6.12. Let a < 0and let G be any unicyclic graph having n vertices and a cycle of length
k, where 3 <k <n —1. Then

Pla(G) > ga9a(n=2) .1 P;(G) < 33a22a(n—2),
with equalities if and only if G is Cj, *x Pp_j41.
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