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Gauge strongly summability of measurable functions

RABIA SAVAŞ and RICHARD F. PATTERSON

ABSTRACT. During the late 50’s and early 60’s, the notion of Gauge integral was presented by Kurzweil
and Henstock, independently. The purpose of this paper is to extend this concept to Summability theory. To
accomplish this, we introduce the notion of γ̃−strongly summable to L with respect to Gauge by using h(ϑ)
measurable real valued function defined on (1,∞). We shall also prove inclusion theorems to contrast it with
other Summability integration techniques.

1. INTRODUCTION, PRELIMINARIES AND DEFINITIONS

In 1957, Kurzweil in [3] introduced the concept of Gauge integral that is more general
than Lebesgue’s integral. Following, this approach was discovering independently by
Henstock [2]. Henstock named such generalization as ”Gauge theory”. This concept con-
serves the intuitive appearance of Riemann’s definition of the integral, yet has the power
of Lebesgue’s definition. Although the Henstock–Kurzweil formulation is a small change
of the Riemann integral, Gauge integral presumably has the strongest convergence theo-
rems of any integral. The fundamental premise is to apply the standard δ, introduction
of the Riemann integral with only one modification, replacing the constant δ with a func-
tion. This function, which was denoted by γ, is called a Gauge, and it stands for an open
interval that differs in length. This small variance has enormous influence in applications
such as moduli spaces, topological invariants and quantum aspects. Please observe the
following containments. Riemann

integrable
functions

 ⊂
 Lebesgue

integrable
functions

 ⊂
 Gauge

integrable
functions


for proper integrals. The classes of Gauge integrable functions and Lebesgue integrable
functions are closely related. We consider only integrals of functions from [c, d] to R, and
every improper Riemann integral is not a Lebesgue integral. As illustrated by the follow-

ing example, h(r) = r2 cos
(

1
r2

)
with h(0) = 0. Then

1∫
0

∣∣∣h′(r)∣∣∣ dr is infinite and Lebesgue

integral
1∫
0

h
′
(r)dr does not exist, but improper Riemann

R∫
0

h
′
(r)dr exists and equals h(R),

and also every Lebesgue integrable and improper Riemann integrable function is Gauge
integrable. For the most part, the big advantage of the Gauge integral is the new insight
that it yields into the Lebesgue theory. Now, let us present the concepts of the Gauge that
are the basis for Gauge theory as follows:
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Definition 1.1. [5] A tagged partition of an interval J = [c, d] is a finite set or ordered
pairs

D = {(ωi, Ji) : 1 ≤ i ≤ p}

where {Ji : 1 ≤ i ≤ p} is a partition of J comprising of closed non overlapping subinter-
vals and ωi is a point that belongs to Ji; ωi is named as the tag related to Ji. If h : J → R,
the Riemann sum of h in regard to D is defined as follows

S(h,D) =

p∑
i=1

h(ωi)` (Ji) ,

where `(Ji) is the length of the subinterval Ji. If δ : J → (0,∞) is a positive function, we
define an open interval valued function on J by stating γ(ω) = (ω − δ(ω), ω + δ(ω)). If
Ji = [yi, yi+1], then we can write ωi ∈ Ji ⊂ γ(ωi) instead of ωi−δ < yi ≤ ωi ≤ yi+1 < ωi+δ.
Any interval γ defined on J such that γ(ω) is an open interval containing ω for each
ω ∈ J is called a Gauge on J . The set of all such intervals will be denoted by ∆G. If
D = {(ωi, Ji) : 1 ≤ i ≤ p} is a tagged partition of J and γ is a Gauge on J, we say that D
is γ − fine if ωi ∈ Ji ⊂ γ(ωi) is fullfilled.

Example 1.1. Let us consider the interval [0, 1], and

γ (y) =

{
1/4 for y = 0
y/3 for 0 < y ≤ 1.

Also, we consider the following partition by selecting the first tag from the initial interval
to become 0 and each tag from every other interval to be the right and end-point of that
interval:

m
([

0, 1
5

])
< 1

5 < γ(0) = 1
4 , m

([
1
5 ,

1
4

])
< 1

20 < γ( 1
4 ) = 1

12 , m
([

1
4 ,

1
3

])
< 1

12 < γ( 1
3 ) = 1

9 ,
m
([

1
3 ,

2
5

])
< 1

15 < γ( 2
5 ) = 2

15 , m
([

2
5 ,

1
2

])
< 1

10 < γ( 1
2 ) = 1

6 , m
([

1
2 ,

3
5

])
< 1

10 < γ( 3
5 ) = 1

5 ,
m
([

3
5 ,

3
4

])
< 3

20 < γ( 3
4 ) = 1

4 , m
([

3
4 , 1
])
< 1

4 < γ(1) = 1
3 .

This is an instance of a γ (y)− fine tagged partition.
Let us now present the definition of Gauge integral written below:

Definition 1.2. [5] Let h : [c, d] → R. Provided that there exist A ∈ R such that for every
ε > 0 and a Gauge γ on [c, d] such that |S(h,D)−A| < ε whenever D is a γ− fine tagged
partition of [c, d], then h is said to be Gauge integrable over [c, d]. The number A is called

the Gauge integral of h over J = [c, d] and is denoted by
d∫
c

h or
∫
J
h ; when we see integrals

depending upon parameters, it is also proper to write
d∫
c

h(ω) or
∫
J
h(ω).

Example 1.2. The Dirichlet function:

h(y) =

{
1, if y ∈ Q
0, if y ∈ R/Q.

is gauge integrable over [c, d]. Let ε > 0 and let {rl} be an enumeration of the rational
numbers in [c, d]. Define a Gauge δ on [c, d] by

δ (ω) =

{
ε
2l , ω = rl
1, ω /∈ Q.
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If P is a δ−fine tagged partition of [c, d], we can separate P into Pr, those tagged intervals
with rational tags, and Ps with irrational tags. Therefore,∣∣S (h, P )− 0

∣∣ =
∑
P

h (ωl) ·∆yl

=
∑
Pr

1 ·∆yl +
∑
Ps

0 ·∆yl

<
∑
n

ε

2n
= ε.

Hence, the Dirichlet function is Gauge integrable with
d∫
c

h = 0.

Example 1.3. Let us consider the function h : [0, 1]→ R defined by

h(y) =

{
1√
y , if y > 0

0, if y ≤ 0

and when we ensure that a function is Gauge integrable, we will replace the value of the

integral by such a telescoping sum. h is Gauge integrable over [0, 1] with
1∫
0

h = 2. To

confirm this integral, let 0 < ε ≤ 1. A choice of Gauge γ that will ensure |S(h,D)− 2| < ε
for all γ − fine tagged partitions D of [0, 1] is

γ(ω) =

{ (
ω · a2(ω), 1

a2(ω)

)
, if ω > 0;

(−ε2, ε2), if ω = 0

where 0 < α(ω) < 1. Suppose that P = {(ωl, [yl−1, yl])}ml=1 is a γ−fine tagged partition of

[0, 1]. Then, for l > 1, 2√
yl+
√
yl−1

, and 1√
ωl

both fall in the interval
[

1√
yl
, 1√

yl−1

]
so that

∣∣∣∣ 2
√
yl +

√
yl−1

− 1
√
ωl

∣∣∣∣ <
1

√
yl−1

− 1
√
yl

<
1√

a2(ωl) · ωl
− 1√

ωl

a2(ωl)

=
1
√
ωl

(
1

a (ωl)
− a (ωl)

)
.

If we take α(ω) = 1− ε
√
ω

4 , then (recalling that 0 < ε, ω ≤ 1)

1

a (ω)
− a(ω) =

2ε
√
ω − 1

4ε
2ω

4− ε
√
ω

<
2

3
ε
√
ω.

Hence, ∣∣∣∣ 2
√
yl +

√
yl−1

− 1
√
ωl

∣∣∣∣ < ε.
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Because of the way γ is defined, the tagged interval (ω0, [y0, y1]) cannot have y0 = 0 unless
ω0 = 0. Therefore, when l = 1, h (ω1) = h(0) = 0 and 0 < y1 < ε2. Thus,

|S(h,D)− 2| =

∣∣∣∣∣
m∑
l=2

1
√
ωl

(yl − yl−1)− 2

m∑
l=1

(√
yl −

√
yl−1

)∣∣∣∣∣
≤

∣∣∣∣∣
m∑
l=2

(
1
√
ωl
− 2
√
yl +

√
yl−1

)
(yl − yl−1)

∣∣∣∣∣+ 2
√
y1

<

m∑
l=2

ε · (yl − yl−1) + 2ε < 3ε.

Hence, h is Gauge integrable with
1∫
0

h = 2.

We shall now note the following basic properties of the Gauge integral.

Theorem 1.1. [5] Assume h, h1 and h2 are Gauge integrable over J=[c, d], and h, h1, h2 :J→ R

(1) For every ω ∈ R, ωh is integrable over J with
∫
J
ωh = ω

∫
J
h.

(2) h1 + h2 is integrable over J with
∫
J

(h1 + h2) =
∫
J
h1 +

∫
J
h2.

(3) If h1 ≥ 0 on the interval J , then
∫
J
h1 ≥ 0.,

(4) If h1 ≥ h2 on the interval J , then
∫
J
h1 ≥

∫
J
h2.

(5) If h is absolutely integrable over J , then
∣∣∫
J
h
∣∣ ≤ ∫

J
|h|.

(6) h is absolutely integrable over J if both h and |h| are integrable over J .
(7) Let c < e < d. If h is integrable over [c, e] and [e, d], then h is integrable over [c, d],

and
d∫
c

h =
e∫
c

h+
d∫
e

h.

(8) Let h : J → R be integrable over J . If J̃ is a closed subinterval of J , then h is
integrable over J̃ .

Lemma 1.1. [6] By considering the hypotheses of Henstock’s lemma in ([6], page 175), we can
write ∑

P̂

∣∣∣∣h (ωi) ·∆yi −
∫
Ji

h

∣∣∣∣ ≤ 2ε

and ∣∣∣∣∣∣
∑
P̂

(
|h (ωi)| ·∆yi −

∣∣∣∣∫
Ji

h

∣∣∣∣)
∣∣∣∣∣∣ ≤ 2ε

or, equivalently, ∣∣∣∣∣∣S
(
|h| , P̂

)
−
∑
P̂

∣∣∣∣∣∣
∫
Ji

h

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 2ε.

Additionally, we shall consider the definition of bounded variation and properties of V dc h.

Definition 1.3. [6] Let h be a function on [c, d], and given a partition Q = {[yl−1, yl]} of
[c, d], the variation of h with respect to Q is

V (h,Q) =
∑
l

|h (yl)− h (yl−1)| .

The variation of h over [c, d] is
V dc h = supV (h,Q)
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where the supremum is taken over all partitions Q of [c, d]. h is said to be totally bounded
variation on [c, d] provided that V dc h is finite, then BV ([c, d]) will be the set of all such
functions.

Lemma 1.2. [6] Assume that h is a function on [c, d]. Then

(1) V (h, P ) ≤ V (h,Q) whenever P andQ are partitions of [c, d] andQ is a refinement
of P ,

(2) If h ∈ BV ([c, d]), then V dc h = V ec h+ V be h for any e ∈ (c, d), and
(3) V yc h and V yc h− h (y) are increasing functions of y on [c, d].

On the other hand, the concept of strongly summable single valued functions were in-
troduced and studied by Borwein in [1]. A nonnegative real-valued Lebesgue measurable
function h(s) in the interval (1,∞) is said to be strongly summable to L if,

lim
m→∞

1

m

m∫
1

|h(s)− L| ds = 0.

In [4], Nuray introduced λ−strongly summable and λ−statistically convergent functions
by taking nonnegative real-valued Lebesgue measurable function on (1,∞) instead of
sequences which are the following:

Definition 1.4. [4] Let λ = (λu) be a non-decreasing sequence of positive numbers tending to∞
such that λu+1 ≤ λu + 1, λ1 = 1. ∆ denotes the set of all such sequences. For a sequence y = (yl)
the generalized de la Vallée Poussin mean is defined by

tu(y) =
1

u

∑
l∈Iu

yl,

where Iu = [u− λu + 1, u].

Definition 1.5. [4] Let λ ∈ ∆ and h(s) be a real valued function which is measurable in the
Lebesgue sense in the interval (1,∞), if

lim
u→∞

1

λu

u∫
u−λu+1

|h(s)− L| ds = 0,

then we say that the function h(s) is λ−strongly summable to L. In this case, we can describe
[W,λ]− limh(s) = L.

2. MAIN RESULTS

In this section, we introduce the concept of γ̃−strongly summable to L with respect to
Gauge by considering h(ϑ) measurable real valued function in the interval (1,∞). Ad-
ditionally, using this notion we shall present inclusion theorems to contrast it with other
integration techniques.

Definition 2.6. δ : J = [c, d] → (0,∞) is a positive function, and let us define an
open interval valued function on J by setting γ̃ = γ̃(ωi)= (ωi − δ(ωi), ωi + δ (ωi)). If
Ji = [i− λi + 1, i] ,we can write ωi ∈ Ji ⊂ γ̃(ωi) instead of ωi−δ(ωi) < i−λi+1 ≤ ωi ≤ i <
ωi+δ (ωi). Let γ̃ = γ̃(ωi) ∈ ∆G, and let h(ϑ) be a real valued function which is measurable
in the Gauge sense on (1,∞) . Provided that

∫
h(ϑ) and

∫
|h(ϑ)| exist in the Gauge sense

and

lim
ωi→∞

1

ξ (ωi)

ωi+δ(ωi)∫
ωi−δ(ωi)

|h(ϑ)− L| dϑ = 0,
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where ξ (ωi) = (ωi + δ (ωi)) − (ωi − δ (ωi)) = 2δ (ωi), then we say that the function h(ϑ)
is γ̃−strongly summable to L with respect to Gauge. Whenever this occurs, we can write
[G, γ̃]− limh(ϑ) = L.

Let us note that h : [c, d] → R be a function. If h is summable in the Lebesgue sense, then
h is strongly summable in the Lebesgue sense, and∣∣∣∣∣∣

d∫
c

h (y) dy

∣∣∣∣∣∣ ≤
d∫
c

|h (y)| dy.

This equivalence is not true for the summable with respect to Gauge. To that end, let us
consider the following examples,

Example 2.4. Let us define a function

h(ϑ) =

{
(−1)

l
l, ϑ ∈

(
1
l+1 ,

1
l

]
0, y = 0,

is summable in the Gauge sense. However, h is not strongly summable in the Gauge sense because
if |h| is not Gauge integrable over [0, 1]. To see why, suppose that |h| is Gauge ıntegrable over
[0, 1], then

1∫
0

|h| =

1
m∫
0

|h|+
1∫
1
m

|h| >
1∫
1
m

|h| .

However, |h| is constant on each of the intervals
(

1
l+1 ,

1
l

]
, 1 ≤ l < m, so that

1∫
1
m

|h| =
m−1∑
l=1

1
l∫
1

l+1

|h| =
m−1∑
l=1

1

l + 1
.

Thus,
1∫
1
m

|h| cannot be finite and |h| is not Gauge integrable. Therefore, h is not strongly summable

in the Gauge sense.

Example 2.5. Let us consider a function

h(ϑ) =

{
0, ϑ = 0

2ϑ, cos
(
π
ϑ2

)
+ 2π

ϑ sin
(
π
ϑ2

)
, 0 < ϑ ≤ 1,

h is Gauge integrable on [0, 1] with
1∫
0

h = −1. However, |h| is not integrable over [0, 1]. To

see this, let τz =
√

2
4z+1 and φz = 1√

2z
, then the intervals {[τz, φz]} are pairwise disjoint

and |h| is Gauge integrable over each [τz, φz], from the properties of the Gauge Integral,
we obtain the following

φz∫
τz

|h| ≥

∣∣∣∣∣∣
φz∫
τz

h

∣∣∣∣∣∣ =
1

2z
.



Gauge strongly summability of measurable functions 115

If |h| is integrable over [0, 1], we have from the finite additivity of the integral

1∫
0

|h| ≥
m∑
z=1

φz∫
τz

|h| ≥
m∑
z=1

1

2z

for every m which is impossible.

As a result, if h : J → R is Gauge integrable over J and |h| is also Gauge integrable over
J , then h is γ̃−strongly summable in the Gauge sense over J . However, If h is Gauge
integrable over J , but |h| fails to be Gauge integrable over J , we say that h is simply
γ̃−summable in the Gauge sense over J .

Theorem 2.2. Let Ji = (ωi − δ (ωi) , ωi + δ (ωi)], and [c, d] = ∪Ji with−∞ < c < d <∞, and

h : Ji → R is measurable and γ̃−summable in Gauge sense over Ji. Let F (x) =
ω∫

ωi−δ(ωi)

h (ϑ) dϑ

, where ωi − δ (ωi) < ωi < ωi + δ (ωi), be the indefinite integral of h (ϑ). Then h (ϑ) is strongly
summable in Gauge sense over Ji if and only if F is of bounded variation over Ji.

Proof. Let h(ϑ) be a function on Ji = (ωi − δ (ωi) , ωi + δ (ωi)]. Given a partition Q =
{[i− λi + 1, i]} of Ji, the total variation of F with respect to Q is

V (F,Q) =
∑
i

|F (i)− F (i− λi + 1)| ≤
∑
i

i∫
i−λi+1

|h| =
ωi+δ(ωi)∫
ωi−δ(ωi)

|h| .

Therefore, V dc F ≤
d∫
c

|h| <∞.

For the converse assume that F is of totally bounded variation of Ji and ε > 0, there is a
partition P0 = {[i− λi, i− 1]} such that V ωi+δ(ωi)

ωi−δ(ωi)
F − ε

2 < V (h,Q) ≤ V ωi+δ(ωi)
ωi−δ(ωi)

F .
Let us define−λi = ωi−δ (ωi)−1 and i = ωi+δ (ωi)+1 and define γ0 (ωi) on [ωi − δ (ωi) , ωi + δ (ωi)]
by

γ0 (ωi) =

{
(i− λi, i− 1) , ωi ∈ (i− λi, i− 1)

(i− λi, i) , ωi = i− 1.

Then any γ̃0 − fine tagged partition Q will be include {i− λi, i− 1} among the tags.
Additionally, let us consider Q which is refinement of P0. Hence by Lemma 1.2

V
ωi+δ(ωi)
ωi−δ(ωi)

F − ε

2
< V (h, P0) ≤ V (h,Q) < V

ωi+δ(ωi)
ωi−δ(ωi)

F.

Since h is summable h is integrable, so we can obtain a Gauge γ̃1 such that any γ̃1−fine
tagged partition P2 = {(ωi, [i− λi − 2, i− 3])} that satisfies∣∣∣∣∣∣∣S (h, P2)−

ωi+δ(ωi)∫
ωi−δ(ωi)

h(ϑ)dϑ

∣∣∣∣∣∣∣ <
ε

4
.

Lemma 1.1 grants us the following:

|S (|h| , P2)− V (F, P2)| =

∣∣∣∣∣∣S (|h| , P2)−
∑
i

∣∣∣∣∣∣
i−1∫
i−λi

h (ϑ) dϑ

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ ε

2
.
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Let γ2 (ω) = γ0 (ω)∩γ1 (ω) and suppose thatP3 is any γ̃−fine partition of [ωi − δ (ωi) , ωi + δ (ωi)].
Then, ∣∣∣SR (|h| , P3)− V ωi+δ(ωi)

ωi−δ(ωi)
F
∣∣∣

≤ |SR (|h| , P3)− V (F, P3)|+
∣∣∣V (F, P3)− V ωi+δ(ωi)

ωi−δ(ωi)
F
∣∣∣ < ε.

Hence, |h| is integrable. Since |h| is integrable in the Gauge sense, and ωi − δ (ωi) <
i− λi + 1 ≤ ωi ≤ i < ωi + δ (ωi),

lim
ωi→∞

1

ξ (ωi)

ωi+δ(ωi)∫
ωi−δ(ωi)

|h (ϑ)− L| dϑ = 0,

where ξ (ωi) = (ωi + δ (ωi))− (ωi − δ (ωi)) = 2δ (ωi), then we say that the function h(ϑ) is
γ̃1−strongly summable to L with respect to Gauge. �

Theorem 2.3. Let Ji = [ωi − δ(ωi), ωi + δ (ωi)] and [c, d] = ∪Ji with −∞ < c < d < ∞. If
h (ϑ) is γ̃−strongly summable to L with respect to Gauge, then h (ϑ) is γ̃− summable to L with
respect to Gauge.

Proof. Let h (ϑ) be a function on Ji = [ωi − δ(ωi), ωi + δ (ωi)]. Given a partition P =
{[i− λi + 1, i]} of Ji, we are granted from the properties of Gauge integral that h is abso-
lutely integrable over Ji. Thus,

∣∣∫
J
h
∣∣ ≤ ∫

J
|h|. Since h (ϑ) is γ̃−strongly summable to L

with respect to Gauge, we obtain the following:∣∣∣∣∣∣∣
ωi+δ(ωi)∫
ωi−δ(ωi)

(h (ϑ)− L) dϑ

∣∣∣∣∣∣∣ ≤
ωi+δ(ωi)∫
ωi−δ(ωi)

|h (ϑ)− L| dϑ.

Moreover,

lim
ωi→ξ(ωi) and ||∆T ||→0

∑
i

1

ξ (ωi)

ωi+δ(ωi)∫
ωi−δ(ωi)

|h (ϑ)− L| dϑ = 0

where ||∆T || = ||ωi − ξ (ωi)||. Hence h (ϑ) is γ̃−summable to Lwith respect to Gauge. �

Theorem 2.4. Let λ = (λu) ∈ ∆, γ̃ = γ̃(ωi) ∈ ∆G, Ji = [ωi − δ(ωi), ωi + δ (ωi)] and
[c, d] = ∪Ji with −∞ < c < d < ∞, and h(ϑ) be a real valued function in the Gauge sense in
the interval (1,∞), then

1. [W,λ] ⊂ [G, γ̃]
2. If h(ϑ) is bounded variation and h is γ̃−strongly summable to L with respect to

Gauge sense over every measurable subset of [ωi − δ(ωi), ωi + δ (ωi)] (i.e., if CEf is Gauge
integrable over [ωi − δ(ωi), ωi + δ (ωi)] for every measurableE ⊂ [ωi − δ(ωi), ωi + δ (ωi)]),
then h is [W ]− limh(ϑ) = L.

Proof. 1. Since all functions are integrable in the Lebesgue sense, they are also integrable
in the Gauge sense, if

1

λu

∫
ϑ∈Ju

|h(ϑ)− L| dϑ

exists then
1

2δ (ωi)

∫
ϑ∈γ̃(ωi)

|h(ϑ)− L| dϑ
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exists. Therefore [W,λ]− limh(ϑ) = L implies [G, γ̃]− limh(ϑ) = L.
Then a function h(ϑ) = 1

ϑ sin 1
ϑ3 is integrable in the Gauge sense, However, it is not

integrable in the Lebesgue sense. For instance, lim
α→0

1∫
α

1
ϑ sin 1

ϑ3 dϑ = π
6 −

1
3

1∫
0

sinϑ
ϑ dϑ. i.e

h(ϑ) /∈ [W,λ].
2. If h(ϑ) be a bounded variation, then clearly h (ϑ) is bounded. Therefore, we have,

since 4δ(ωi)
u ≤ 1 for all u,∣∣∣∣∣∣ 1u

u∫
1

(h(ϑ)− L) dϑ

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1u
u−λu∫

1

(h(ϑ)− L) dϑ+
1

u

∫
ϑ∈Ju

(h(ϑ)− L) dϑ

∣∣∣∣∣∣
≤ 1

u

u−λu∫
1

|h(ϑ)− L| dϑ+
1

u

∫
ϑ∈Ju

|h(ϑ)− L| dϑ

≤ 2

u

∫
ϑ∈Ju

|h(ϑ)− L| dϑ

≤ 2

4δ (ωi)

∫
ϑ∈γ̃(ωi)

|h(ϑ)− L| dϑ =
1

2δ (ωi)

∫
ϑ∈γ̃(ωi)

|h(ϑ)− L| dϑ.

Hence [W ]− limh(ϑ) = L since [G, γ̃]− limh(ϑ) = L. �
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