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Datko type characterizations for nonuniform polynomial
dichotomy

ROVANA BORUGA (TOMA) and MIHAIL MEGAN

ABSTRACT. The aim of the present paper is to give two characterization theorems of Datko type for the
nonuniform polynomial dichotomy concept with respect to invariant projection families and also with respect
to strongly invariant projection families.

1. INTRODUCTION

In the last decades, one of the most important topics discussed in the field of dynamical
systems is the uniform exponential dichotomy behavior of evolution operators in Banach
spaces. This concept was mentioned for the first time in the work of O. Perron [14] and
refers to the fact that the state space can be decomposed in every moment into a direct
sum of two subspaces: the stable subspace and the unstable subspace.

Over the years, the uniform exponential dichotomy notion has been generalized in
various forms and researchers dedicated their study to the nonuniform case [8], [9], [12],
[13], [16]. The starting point in studying this type of behavior is in the work [2] of the
authors L. Barreira and C. Valls who had a notable contribution in developing it.

Also, in this direction it is important to mention an interesting paper of D. Dragičević
[5] where the author deals with the nonuniform exponential behavior. More precisely,
he obtains some Datko-type characterizations of several classes of a strong nonuniform
exponential behavior: contractions, expansions and dichotomies, for both continuous and
discrete time cases. Recently, N. Lupa and L.H.Popescu [7], being motivated by the work
of Dragičević [5], generalize Datko’s theorem on a class of admissible Banach function
spaces, using completely different type of techniques from those in [5].

Moreover, in order to generalize the exponential bahavior, L. Barreira and C. Valls
[1] introduced in 2009 a more general behavior, namely the nonuniform polynomial di-
chotomy, which they studied for the continuous case. They were followed by A. J. G.
Bento and C. M. Silva [3] who considered the same concept for discrete time systems.
Other results in this area were obtained in the papers [4], [10], [11], [15].

In this paper we obtain necessary and sufficient conditions of Datko type for the nonuni-
form polynomial dichotomy concept of evolution operators regarding two types of pro-
jections families: invariant and respectively strongly invariant projection families to the
evolution operator.

2. NOTATIONS AND DEFINITIONS

Let X be a real or complex Banach space and B(X) the Banach algebra of all bounded
linear operators acting on X . We will denote by ‖.‖ the norm on X and on B(X) and let I
be the identity operator on X . We also consider ∆ and T two sets defined by
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∆ = {(t, s) ∈ R2
+ : t ≥ s}, T = {(t, s, t0) ∈ R3

+ : t ≥ s ≥ t0}

Definition 2.1. An application U : ∆→ B(X) is called evolution operator on X if
(e1): U(t, t) = I for every t ≥ 0.
(e2): U(t, s)U(s, t0) = U(t, t0) for all (t, s, t0) ∈ T.

Definition 2.2. An evolution operator U : ∆ → B(X) is said to be strongly measurable if
for all (s, x) ∈ R+ ×X , the mapping t 7→ ‖U(t, s)x‖ is measurable on [s,∞).

Definition 2.3. An application P : R+ → B(X) is said to be a projection family on X if
P 2(t) = P (t), for all t ≥ 0.

Remark 2.1. If P : R+ → B(X) is a projection family on X , then the mapping Q : R+ →
B(X), Q(t) = I−P (t) is also a projection family on X , which is called the complementary
projection of P . In what follows, we will denote

UP (t, s) = U(t, s)P (s), UQ(t, s) = U(t, s)Q(s), for all (t, s) ∈ ∆.

Remark 2.2. It is easy to see that:

UP (t, t) = P (t), UQ(t, t) = Q(t), for all (t, s) ∈ ∆.

UP (t, t0) = UP (t, s)UP (s, t0), UQ(t, t0) = UQ(t, s)UQ(s, t0),∀(t, s, t0) ∈ T.

Definition 2.4. A projection family P : R+ → B(X) is strongly continuous if for all x ∈ X
the mapping t 7→ P (t)x is continuous on R+.

Definition 2.5. A projection family P : R+ → B(X) is invariant to the evolution operator
U : ∆→ B(X) if U(t, s)P (s) = P (t)U(t, s), for all (t, s) ∈ ∆.
If P is an invariant projection family to the evolution operator U : ∆→ B(X), we will say
that (U,P ) is a dichotomic pair.

Definition 2.6. A projection family P : R+ → B(X) is strongly invariant to the evolution
operator U : ∆ → B(X) if it is invariant to the operator U and for all (t, s) ∈ ∆, U(t, s) :
KerP (s) = RangeQ(s)→ KerP (t) = RangeQ(t) is invertible.

Remark 2.3. If the projection family P : R+ → B(X) is strongly invariant to the evolution
operator U : ∆→ B(X) andQ : R+ → B(X) is the complementary projection family of P ,
then for all (t, s) ∈ ∆ there exists the application V : ∆ → B(X), V (t, s) : RangeQ(t) →
RangeQ(s) that satisfies the following properties:

(v1): U(t, s)V (t, s)Q(t)x = Q(t)x
(v2): V (t, s)U(t, s)Q(s)x = Q(s)x
(v3): V (t, t0) = V (s, t0)V (t, s)
(v4): V (t, s)Q(t) = Q(s)V (t, s)Q(t),

for all (t, s, t0) ∈ T. We will denote VQ(t, s) = V (t, s)Q(t).

Proof. See [6]. �

Definition 2.7. We say that the pair (U,P ) has nonuniform polynomial growth (n.p.g.) if there
are a nondecreasing function M : R+ → [1,∞) and a positive constant ω > 0 such that

(npg1): (s+ 1)ω‖UP (t, s)x‖ ≤M(s)(t+ 1)ω‖P (s)x‖
(npg2): (s+ 1)ω‖Q(s)x‖ ≤M(t)(t+ 1)ω‖UQ(t, s)x‖

for all (t, s, x) ∈ ∆×X.

Remark 2.4. The pair (U,P ) has nonuniform polynomial growth if and only if there are a
nondecreasing function M : R+ → [1,∞) and a positive constant ω > 0 such that
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(npg′1): (s+ 1)ω‖UP (t, t0)x0‖ ≤M(s)(t+ 1)ω‖UP (s, t0)x0‖
(npg′2): (s+ 1)ω‖UQ(s, t0)x0‖ ≤M(t)(t+ 1)ω‖UQ(t, t0)x0‖

for all (t, s, t0, x0) ∈ T ×X.

Remark 2.5. As particular cases we have:
(1) If M(t) = M(t+ 1)ε, then we obtain the polynomial growth property (p.g.).
(2) If M(t) = M , then we obtain the uniform polynomial growth property (u.p.g.).

Remark 2.6. It is obvious that u.p.g. ⇒ p.g. ⇒ n.p.g., but the converse implications are
not true.

Definition 2.8. We say that the pair (U,P ) has strongly nonuniform polynomial growth (s.n.p.g.)
if there are a nondecreasing function M : R+ → [1,∞) and ω > 0 such that

(snpg1): (s+ 1)ω‖UP (t, t0)x0‖ ≤M(t0)(t+ 1)ω‖UP (s, t0)x0‖
(snpg2): (s+ 1)ω‖UQ(s, t0)x0‖ ≤M(t)(t+ 1)ω‖UQ(t, t0)x0‖

for all (t, s, t0, x0) ∈ T ×X.

Remark 2.7. We have that s.n.p.g implies n.p.g..

Definition 2.9. We say that the pair (U,P ) is nonuniformly polynomially dichotomic (n.p.d.)
if there are a nondecreasing function N : R+ → [1,∞) and a positive constant ν > 0 such
that:

(npd1): (t+ 1)ν‖UP (t, s)x‖ ≤ N(s)(s+ 1)ν‖P (s)x‖
(npd2): (t+ 1)ν‖Q(s)x‖ ≤ N(t)(s+ 1)ν‖UQ(t, s)x‖

for all (t, s, x) ∈ ∆×X.

Remark 2.8. The pair (U,P ) is nonuniformly polynomially dichotomic if and only if there
are a nondecreasing function N : R+ → [1,∞) and ν > 0 such that:

(npd′1): (t+ 1)ν‖UP (t, t0)x0‖ ≤ N(s)(s+ 1)ν‖UP (s, t0)x0‖
(npd′2): (t+ 1)ν‖UQ(s, t0)x0‖ ≤ N(t)(s+ 1)ν‖UQ(t, t0)x0‖

for all (t, s, t0, x0) ∈ ∆×X.

Remark 2.9. As particular cases we have:
(1) If N(s) = N(s+ 1)ε we obtain the polynomial dichotomy concept (p.d.).
(2) If N(s) = N we obtain the uniform polynomial dichotomy concept (u.p.d.).

Remark 2.10. If (U,P ) is n.p.d., than (U,P ) has n.p.g., but the converse implication is not
true.

3. THE MAIN RESULT

The main result of the present paper consists of presenting two characterization the-
orems of Datko type using invariant projection families, respectively strongly invariant
projections families.

Theorem 3.1. Let (U,P ) be a dichotomic pair with strongly nonuniform polynomial growth.
Then (U,P ) is nonuniformly polynomially dichotomic if and only if there exist a nondecreasing
function D : R+ → [1,∞) and a constant d > 0 such that

(npD1):

∞∫
t

(
τ + 1

s+ 1

)d
· 1

τ + 1
‖UP (τ, s)x‖dτ ≤ D(t)‖UP (t, s)x‖

(npD2):

t∫
s

(
t+ 1

τ + 1

)d
· 1

τ + 1
‖UQ(τ, s)x‖dτ ≤ D(t)‖UQ(t, s)x‖
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for all (t, s, x) ∈ ∆×X .

Proof. Necessity. Let d ∈ (0, ν).
For (npD1) we have

∞∫
t

(
τ + 1

s+ 1

)d
· 1

τ + 1
‖UP (τ, s)x‖dτ≤ N(t)

∞∫
t

(
τ +1

s+1

)d
· 1

τ+ 1
·
(
τ +1

t+1

)−ν
‖UP (t, s)x‖dτ =

= N(t)(t+ 1)ν(s+ 1)−d‖UP (t, s)x‖
∞∫
t

(τ + 1)d−ν−1dτ =

=
N(t)

ν − d
(t+ 1)ν(s+ 1)−d(t+ 1)d−ν‖UP (t, s)x‖ =

N(t)

ν − d

(
t+ 1

s+ 1

)d
‖UP (t, s)x‖ ≤

≤ N(t)(t+ 1)d

ν − d
‖UP (t, s)x‖ ≤ D(t)‖UP (t, s)x‖, where D(t) = 1 +

N(t)(t+ 1)d

ν − d
.

For (Dnpd2) we do a similar computation and we obtain:

t∫
s

(
t+1

τ +1

)d
· 1

τ +1
‖UQ(τ, s)x‖dτ≤ N(t)

t∫
s

(
t+1

τ +1

)d
· 1

τ +1
·
(
t+ 1

τ + 1

)−ν
‖UQ(t, s)x‖dτ =

= N(t)(t+ 1)d(t+ 1)−ν‖UQ(t, s)x‖
t∫
s

(τ + 1)ν−d−1dτ =

=
N(t)

ν − d
(t+ 1)d(t+ 1)−ν(t+ 1)ν−d‖UQ(t, s)x‖ =

N(t)

ν − d
‖UQ(t, s)x‖ ≤ D(t)‖UQ(t, s)x‖,

because
N(t)

ν − d
≤ N(t)

ν − d
+ 1 ≤ N(t)(t+ 1)d

ν − d
+ 1.

Sufficiency.
We suppose that there exist a nondecreasing function D : R+ → B(X) and a positive
constant d = ν > 0 such that the relations (npD1) and (npD2) are satisfied. Firstly we
prove that (npD1) implies (npd1). Let t ≥ 2s+ 1. Then, we have

(
t+ 1

s+ 1

)d
‖UP (t, s)x‖ =

2

t+ 1

t∫
t−1
2

(
t+ 1

s+ 1

)d
‖UP (t, s)x‖dτ ≤

≤ 2

t+ 1
M(s)

t∫
t−1
2

(
t+ 1

s+ 1

)d(
t+ 1

τ + 1

)ω
‖UP (τ, s)x‖dτ =

=
2

t+ 1
M(s)

t∫
t−1
2

(
τ + 1

s+ 1

)d(
t+ 1

τ + 1

)ω+d
‖UP (τ, s)x‖dτ ≤
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≤ 2M(s)

t∫
t−1
2

(
τ + 1

s+ 1

)d
1

τ + 1

(
t+ 1

τ + 1

)ω+d
‖UP (τ, s)x‖dτ ≤

≤ 2ω+d+1M(s)

∞∫
s

(
τ + 1

s+ 1

)d
· 1

τ + 1
‖UP (τ, s)x‖dτ ≤

≤ 2ω+d+1M(s)D(s)‖P (s)x‖ ≤ N(s)‖P (s)x‖,

where N(s) = 1 + 2ω+d+1 ·M(s)D(s). Now, let t ∈ [s, 2s+ 1).(
t+ 1

s+ 1

)d
‖UP (t, s)x‖ ≤M(s)

(
t+ 1

s+ 1

)d+ω
‖P (s)x‖ ≤ 2d+ωM(s)‖P (s)x‖ ≤

≤ N(s)‖P (s)x‖.

Now, we prove that (npD2) implies (npd2) and we consider firstly t ≥ 2s+ 1. We obtain(
t+ 1

s+ 1

)d
‖Q(s)x‖ =

1

s+ 1

2s+1∫
s

(
t+ 1

s+ 1

)d
‖Q(s)x‖dτ ≤

≤ 1

s+ 1

2s+1∫
s

(
t+ 1

s+ 1

)d
M(τ)

(
τ + 1

s+ 1

)ω
‖UQ(τ, s)x‖dτ ≤

≤ 1

s+ 1

2s+1∫
s

M(t)

(
t+ 1

τ + 1

)d(
τ + 1

s+ 1

)ω+d
‖UQ(τ, s)x‖dτ ≤

≤M(t)

t∫
s

(
t+ 1

τ + 1

)d
· 1

τ + 1
·
(
τ + 1

s+ 1

)ω+d+1

‖UQ(τ, s)x‖dτ ≤

≤ 2ω+d+1M(t)D(t)‖UQ(t, s)x‖ ≤ N(t)‖UQ(t, s)x‖

where N(t) = 1 + 2ω+d+1 ·M(t)D(t).
If t ∈ [s, 2s+ 1) we obtain(

t+ 1

s+ 1

)d
‖Q(s)x‖ ≤M(t)

(
t+ 1

s+ 1

)d+ω
‖UQ(t, s)x‖ ≤ 2d+ωM(t)‖UQ(t, s)x‖.

�

Remark 3.11. Similar approaches of this theorem can be found in [16].

Theorem 3.2. Let U : ∆ → B(X) be an evolution operator strongly measurable, P : R+ →
B(X) a projection family strongly continuous and strongly invariant to U . If the pair (U,P ) has
nouniform polynomial growth then (U,P ) is nonuniformly polynomially dichotomic if and only if
there exist a nondecreasing function D : R+ → [1,∞) and a positive constant d > 0 such that

(npD′1):

∞∫
t

(
τ + 1

s+ 1

)d
· 1

τ + 1
‖UP (τ, s)x‖dτ ≤ D(t)‖UP (t, s)x‖

(npD′2):

t∫
s

(
t+ 1

τ + 1

)d
· 1

τ + 1
‖VQ(t, τ)x‖dτ ≤ D(t)‖Q(t)x‖

for all (t, s, x) ∈ ∆×X .
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Proof. It is obvious that (npD1) and (npD′1) coincide. We have to prove that relations
(npD2) and (npD′2) are equivalent. Necessity. We suppose that (U,P ) is n.p.d. Let d ∈
(0, ν).

t∫
s

(
t+ 1

τ + 1

)d
· 1

τ + 1
‖VQ(t, τ)x‖dτ ≤

t∫
s

(
t+ 1

τ + 1

)d
· 1

τ + 1
N(t)

(
t+ 1

τ + 1

)−ν
‖Q(t)x‖dτ =

= N(t)

t∫
s

(t+ 1)d−ν(τ +1)ν−d−1‖Q(t)x‖dτ=N(t)(t+ 1)d−ν‖Q(t)x‖
t∫
s

(τ + 1)ν−d−1dτ≤

≤ N(t)

ν − d
‖Q(t)x‖ ≤ D(t)‖Q(t)x‖,where D(t) = 1 +

N(t)

ν − d
.

Sufficiency. Let t ≥ 2s+ 1.

(t+ 1)d‖VQ(t, s)x‖ = (t+ 1)d‖V (t, s)Q(t)x‖ =

=
1

s+ 1

2s+1∫
s

(t+ 1)d‖V (t, s)Q(t)x‖dτ =
1

s+ 1

2s+1∫
s

(t+ 1)d‖V (τ, s)V (t, τ)Q(t)x‖dτ ≤

≤ M(τ)

s+ 1

2s+1∫
s

(t+ 1)d
(
τ + 1

s+ 1

)ω
‖V (t, τ)Q(t)x‖dτ ≤

≤M(t)

2s+1∫
s

(
t+ 1

τ + 1

)d(
τ + 1

s+ 1

)d+ω+1
1

τ + 1
(s+ 1)d‖V (t, τ)Q(t)x‖dτ ≤

≤M(t) · 2d+ω+1(s+ 1)d‖Q(t)x‖.

If t ∈ [s, 2s+ 1) we obtain

(t+ 1)d‖VQ(t, s)x‖ ≤ (t+ 1)dM(t)

(
t+ 1

s+ 1

)ω
‖Q(t)x‖ =

= M(t)

(
t+ 1

s+ 1

)d+ω
(s+ 1)d‖Q(t)x‖ =

= M(t)(s+ 1)d
(
t+ 1

s+ 1

)d+ω
‖Q(t)x‖ ≤M(t) · 2d+ω(s+ 1)d‖Q(t)x‖.

�
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