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Approximation of random functions by stochastic
Bernstein polynomials in capacity spaces

SORIN G. GAL and CONSTANTIN P. NICULESCU

ABSTRACT. Given a submodular capacity space, we firstly obtain a quantitative estimate for the uniform
convergence in the Choquet p-mean, 1 ≤ p < ∞, of the multivariate stochastic Bernstein polynomials associ-
ated to a random function. Also, quantitative estimates concerning the uniform convergence in capacity in the
univariate case are given.

1. INTRODUCTION

In this paper we extend some old and new results on the approximation of random
functions by Bernstein random polynomials to the framework of capacities and Choquet’s
theory of integrability. As is well known, these polynomials are among the most studied
and the most interesting polynomials used in the probabilistic framework of approxima-
tion theory. We mention here the classical book of Lorentz [21] and the papers of Onicescu
and Istrăţescu [22], [23], Cenuşă and Săcuiu [3], Gal [7], [8], and Gal and Villena [17]. In
the very recent papers of Adell and Cárdenas-Morales [2], Sun and Wu [25], Wu, Sun and
Ma [26] and Wu and Zhou [27], quantitative estimates for approximation in probability of
deterministic functions by random Bernstein polynomials were obtained.

The papers cited above have motivated us to study the extension of the approxima-
tion properties of random Bernstein polynomials in the much more general framework
provided by capacity spaces and the Choquet integral. Unlike the case of probability
measures, the capacities are nonadditive set functions, and precisely the lack of additivity
makes them useful in risk theory (especially in decision making under risk and uncer-
tainty). See Föllmer and Schied [6] and Grabisch [18].

It is worth mentioning that the present paper belongs to the recent direction of study
concerning to what extent various properties in Real and Functional Analysis can be ex-
tended by replacing the probability measure with a nonadditive set function (capacity)
and the linear Lebesgue integral with the nonlinear Choquet integral. See, e.g., the very
recent papers Gal [9], Gal and Opris [15], Gal and Trifa [16], Gal and Iancu [10], Gal and
Niculescu [11]-[14].

In Section 2 we present preliminaries on capacities and Choquet integral. Section 3 is
devoted to a description of various concepts of continuity and convergence of random
functions in the setting of capacities and Choquet integral. Section 4 deals with approxi-
mation results by stochastic Bernstein polynomials of several variables in the framework
of the Choquet integral. Our main result is Theorem 4.2, devoted to the approximation in
the Choquet p–mean, p ∈ [1,∞). In the probabilistic case (and for functions of one real
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variable and p = 1 for Theorem 4.2), these results were previously proved respectively
in Cenuşă and Săcuiu [3] and Onicescu and Istrăţescu [22]. In section 5 we obtain quan-
titative estimates for the approximation in capacity by univariate Bernstein-type random
polynomials, generalizing recent results due to Adell and Cárdenas-Morales [2], Sun and
Wu [25], Wu, Sun and Ma [26] and Wu and Zhou [27], who considered only the frame-
work of probability measures and of deterministic functions.

2. PRELIMINARIES ON CAPACITIES AND CHOQUET INTEGRAL

For the convenience of the reader we will briefly recall some basic facts concerning
Choquet’s theory of integrability with respect to a nondecreasing set function (not neces-
sarily additive). Full details are to be found in the books of Denneberg [5] and Grabisch
[18].

Let (Ω,A) be an arbitrarily fixed measurable space, that is, a nonempty abstract set Ω
endowed with a σ-algebra A of subsets of Ω.

Definition 2.1. A set function µ : A → R+ is called a capacity if it verifies the following
two conditions:

(a) µ(∅) = 0 and µ(Ω) = 1;
(b) µ(A) ≤ µ(B) for all A,B ∈ A, with A ⊂ B.
A capacity µ is called subadditive if

µ(A
⋃
B) ≤ µ(A) + µ(B)

and submodular (or strongly subadditive) if

µ(A
⋃
B) + µ(A

⋂
B) ≤ µ(A) + µ(B)

for all A,B ∈ A.

A simple way to construct nontrivial examples of submodular capacities is to start with
a probability measure P : A →[0, 1] and to consider any nondecreasing concave function
u : [0, 1] → [0, 1] such that u(0) = 0 and u(1) = 1; for example, one may chose u(t) = ta

with 0 < α < 1.Then µ = u(P ) is a submodular capacity on the σ-algebra A, called a
distorted probability.

The capacity spaces (that is, the triplets (Ω,A, µ), where Ω is a nonempty abstract set
endowed with a σ-algebra A of subsets of Ω and µ : A → R+ is a capacity) represent a
generalization of the classical concept of probability space.

To a capacity space (Ω,A, µ) one can attach several spaces of functions, starting with the
spaceL0(Ω,A, µ) of all random variables f : Ω→ R (that is, of all functions f verifying the
condition of A-measurability, f−1(A) ∈ A for every Borel subset A ⊂ R) and continuing
with the analogs of the classical Lebesgue spaces Lp(Ω,A, µ) (for 1 ≤ p < ∞), when the
capacity µ is submodular.

The key ingredient is the integrability of random variables f ∈ L0(Ω,A, µ) with respect
to the capacity µ.

Definition 2.2. The Choquet integral of a random variable f : Ω → R on a set A ∈ A is
defined by the formula

(C)

∫
A

fdµ =

∫ +∞

0

µ ({ω ∈ Ω : f(ω) > t} ∩A) dt

+

∫ 0

−∞
[µ ({ω ∈ Ω : f(ω) > t} ∩A)− µ(A)] dt,(2.1)

where the integrals in the right hand side are generalized Riemann integrals.
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If (C)
∫
A
fdµ exists in R, then f is called Choquet integrable on A.

The Choquet integral agrees with the Lebesgue integral in the case of probabilistic mea-
sures, see Denneberg [5], p. 62.

The next remark summarizes basic properties of the Choquet integral used in the next
sections.

Remark 2.1. (a) If f, g ∈ L0(Ω,A, µ) are Choquet integrable on A, then

f ≤ g implies (C)

∫
A

fdµ ≤ (C)

∫
A

gdµ (monotonicity)

(C)

∫
A

afdµ = a · (C)

∫
A

fdµ for all a ≥ 0 (positive homogeneity).

(b) If µ is a submodular capacity, then the associated Choquet integral is subadditive, that
is,

(C)

∫
A

(f + g)dµ ≤ (C)

∫
A

fdµ+ (C)

∫
A

gdµ

for all functions f and g integrable on A, see [5], Theorem 6.3, p. 75.

The analogues of the Lebesgue spaces in the context of capacities can be introduced for
1 ≤ p < +∞ via the formulas

Lp(Ω,A, µ) = {f : f ∈ L0(Ω,A, µ) and (C)

∫
Ω

|f(ω)|pdµ < +∞}.

When µ is a submodular capacity, the quotient spaceLp(Ω,A, µ) = Lp(Ω,A, µ)/Np, where
Np = {f ∈ Lp(Ω,A, µ) :

(
(C)

∫
Ω
|f(ω)|pdµ

)1/p
= 0}, becomes a normed vector space

relative to the norm ‖f‖Lp(Ω,A,µ) =
(
(C)

∫
Ω
|f(ω)|pdµ

)1/p, see [5], Proposition 9.4, p. 109,
for p = 1 and ibidem p. 115 for arbitrary p ≥ 1.

3. CONTINUITY OF RANDOM FUNCTIONS ASSOCIATED TO A CAPACITY SPACE

Given a capacity space (Ω,A, µ) and a subset D of the Euclidean space RN , we will
refer to the functions F : D → L0(Ω,A, µ) as random functions. It is also usual to interpret
F as a stochastic/random process F : D × Ω→ R, F (x, ω) = F (x)(ω). For fixed ω, F (x, ω) is
a deterministic function of x, called a sample function.

Following the case of probabilistic spaces one can consider several kinds of continuity
and of approximation, of interest for us being the following ones.

Definition 3.3. A random function F is continuous in capacity at the point x0 ∈ D, if
x → x0 implies F (x) → F (x0) in capacity, that is, for every ε > 0 and η > 0 there exists
δ = δ(ε, η,x0) > 0 such that

(3.2) µ({ω ∈ Ω : |F (x, ω)− F (x0, ω)| ≥ ε}) < η

whenever x ∈ D and ‖x− x0‖ < δ.
If δ depends only on ε and η and (3.2) holds for all x and x0, then the random function

F is called uniformly continuous in capacity.
A random function F : D → Lp(Ω,A, µ), 1 ≤ p < +∞, is called continuous in the

Choquet-mean of order p (shortly Choquet p-mean) at the point x0 ∈ D, if for every ε > 0
there exists δ = δ(ε,x0) > 0, such that for all x ∈ D with ‖x− x0‖ < δ, we have

(3.3) (C)

∫
Ω

|F (x, ω)− F (x0, ω)|pdµ < ε.

If δ depends only on ε and (3.3) holds for all x and x0, then the random function F is
called uniformly continuous in Choquet p-mean.



188 Sorin G. Gal and Constantin P. Niculescu

A sequence (Fn)n of random functions converges in capacity to the random function
F at x ∈ D, if for every ε, η > 0, there exists N(ε, η,x) ∈ N such that for all n ≥ N(ε, η,x)
we have

µ({ω ∈ Ω : |Fn(x, ω)− F (x, ω)| ≥ ε}) < η.

IfN(ε, η,x) does not depend on x, then we say that (Fn)n converges uniformly in capacity
to F .

A sequence (Fn)n of random functions converges in Choquet p-mean to the random
function F , if for every ε > 0 and x ∈ D, there exists N(ε,x) ∈ N such that for all
n ≥ N(ε,x) we have

(C)

∫
Ω

|Fn(x, ω)− F (x, ω)|pdµ < ε.

If N(ε,x) does not depend on x, then we will say that (Fn)n converges uniformly to F in
the Choquet p-mean.

For 1 ≤ p < +∞ and δi ≥ 0, i = 1, ..., N , the multivariate Choquet Lp-modulus of
continuity of F will be defined by

Γ(f : δ1, ..., δN )p =

(
sup

|ti−si|≤δi,i=1,...N

(C)

∫
Ω

|F (t1, ..., tN , ω)− F (s1, ..., sN , ω)|pdµ(ω)

)1/p

.

An important property of the Choquet Lp-modulus of continuity used in approximation
is the following one, stated and proved here only for simplicity for two variables.

Theorem 3.1. Let 1 ≤ p < +∞ and N ∈ N. If µ is a submodular capacity, then

Γ(F : α1 · γ1, ..., αN · γN )p ≤ (1 + α1 + ...+ αN )Γ(F : γ1, ..., γN )p,

for all αi, γi ≥ 0, i = 1, ..., N .

Proof. For simplicity, we give the proof only for N = 2, but the proof in the general case
for N is similar. We start with the inequality

(3.4) Γ(F : δ1 + δ2, η1 + η2)p ≤ Γ(F : δ1, η1)p + Γ(F : δ2, η2)p.

Indeed, let t1, r1, s1 with |t1 − s1| ≤ δ1 + δ2, |t1 − r1| ≤ δ1, |r1 − s1| ≤ δ2 and t2, r2, s2 with
|t2 − s2| ≤ η1 + η2, |t2 − r2| ≤ η1, |r2 − s2| ≤ η2.

Since µ is submodular, the Minkowski inequality is valid in the vector space L(Ω,A, µ),
see Theorem 2, p. 5 in [4], or Proposition 9.4, p. 109-110 in [5]. Therefore

(
(C)

∫
Ω

|F (t1, t2, ω)− F (s1, s2, ω)|pdµ(ω)

)1/p

≤
(

(C)

∫
Ω

|F (t1, t2, ω)− F (r1, r2, ω)|pdµ(ω)

)1/p

+
(
(C)

∫
Ω
|F (r1, r2, ω)− F (s1, s2, ω)|pdµ(ω)

)1/p
.

Passing now to the corresponding suprema, first in the right-hand side and then in the
left-hand side, we are led to (3.4). As a consequence

Γ(F : nδ,mη)p ≤ max{n,m}Γ(F : δ, η)p

and taking into account that α < [α] + 1, β < [β] + 1 and

max{[α] + 1, [β] + 1} = max{[α], [β]}+ 1 < α+ β + 1,

one easily obtain the inequality in the statement of Theorem 3.1. �
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4. APPROXIMATION BY STOCHASTIC BERNSTEIN POLYNOMIALS IN CHOQUET p-MEAN

The approximation of random functions defined on a compact N -dimensional interval
in RN (that is, on a product of N compact intervals of R) can be easily reduced (via an
affine transformation) to the particular case where the domain is the N -dimensional unit
cube [0, 1]N . In this context it is important to study the approximation of random functions
F : [0, 1]N → L0(Ω,A, µ) via the associated stochastic Bernstein polynomials,

Bn1,...,nN
(F )(x1, ..., xN , ω) =

n1∑
k1=0

...

nN∑
kN=0

pk1,n1(x1) · · · pkN ,nN
(xN )·F

(
k1

n1
, ...,

kN
nN

, ω

)
,

where pkj ,nj (xj) =
(
nj

kj

)
x
kj
j (1 − xj)

nj−kj , kj ∈ {0, ..., nj}, nj ∈ N and xj ∈ [0, 1] for
j = 1, ...N .

Recall that the classical Bernstein polynomials attached to a function f : [0, 1] → R are
defined by the formula

Bn(f)(x) =

n∑
k=0

f

(
k

n

)
pk,n(x), x ∈ [0, 1], n ∈ N,

and their main feature is the estimate

(4.5) sup
x
‖Bn(f)(x)− f(x)‖ ≤ c · ω1

(
f ;

1√
n

)
,

where c = 4306+837
√

6
5832 = 1, 089.... is the optimal Sikkema constant and

ω1(f ; δ) = sup{|f(x)− f(y)| : x, y ∈ [0, 1], |x− y| ≤ δ}

is the usual modulus of continuity, see [24].
The approximation of random functions by stochastic Bernstein polynomials will be

discussed in the context of submodular capacity spaces (Ω,A, µ). We consider here the case
of approximation in the Choquet p-mean, p ∈ [1,∞).

Theorem 4.2. Suppose that (Ω,A, µ) is a submodular capacity space and

F : [0, 1]N → Lp(Ω,A, µ)

is a random function. Then for all x1, x2, ..., xN ∈ [0, 1] and n1, n2, ..., nN ∈ N, the following
quantitative estimate holds[

(C)

∫
Ω

|F (x1, x2, ...xN , ω)−Bn1,n2(F )(x1, x2, ..., xN , ω)|pdµ
]1/p

≤ [Cp]
1/p · Γ

(
F ;

1
√
n1
,

1
√
n2
, ...,

1
√
nN

)
p

,

where Cp is independent of n1, n2, ..., nN and x1, x2, ..., xN .
If F is continuous in the Choquet p-mean at each x ∈ [0, 1]N , then the sequence of random

Bernstein polynomials (Bn1,...,nN
(F ))n1,...,nN

converges uniformly to F in the Choquet p-mean
as min {n1, ..., nN} → ∞.

Proof. For simplicity, we will give all the details of the proof in the caseN = 2 (the general
case being similar). Taking into account the identity

n1∑
k1=0

n2∑
k2=0

pk1,n1
(x1) · pk2,n2

(x2) = 1
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and the convexity of the function xp for p ≥ 1, we infer from Jensen’s inequality that

|F (x1, x2, ω)−Bn1,n2(F )(x1, x2, ω)|p

≤

[
n1∑
k1=0

n2∑
k2=0

pk1,n1(x1) · pk2,n2(x2)|F (x1, x2, ω)− F (k1/n1, k2/n2, ω)|

]p

≤
n1∑
k1=0

n2∑
k2=0

pk1,n1
(x1) · pk2,n2

(x2)|F (x1, x2, ω)− F (k1/n1, k2/n2, ω)|p.

Integrating side by side and using Remark 2.1, (a) and (b) we arrive at the estimate

(C)

∫
Ω

|F (x1, x2, , ω)−Bn1,n2(F )(x1, x2, ω)|pdµ

(4.6) ≤
n1∑
k1=0

n2∑
k2=0

pk1,n1
(x1)pk2,n2

(x2)(C)

∫
Ω

|F (x1, x2, ω)− F (k1/n1, k2/n2, ω)|pdµ.

Using the inequality (4.6) and then Theorem 3.1, we get

(C)

∫
Ω

|F (x1, x2, , ω)−Bn1,n2
(F )(x1, x2, ω)|pdµ ≤

n1∑
k1=0

n2∑
k2=0

pk1,n1
(x1)pk2,n2

(x2)

·

[
Γ

(
F ;

1
√
n1
· (
√
n1|x1 − k1/n1|),

1
√
n2
· (
√
n2|x2 − k2/n2|)

)
p

]p

≤

[
Γ

(
F ;

1
√
n1
,

1
√
n2

)
p

]p

·
n1∑
k1=0

n2∑
k2=0

pk1,n1(x1)pk2,n2(x2)(1 +
√
n1|x1 − k1/n1|+

√
n2|x2 − k2/n2|)p.

But by the general estimates of the moments of Bernstein polynomials
n∑
k=0

pk,n(x)[
√
n|x− k/n|]j ≤ 2G(1 + j/2), j = 0, 1, ..., p,

where with G we have denoted the Gamma function (see Theorem 1 in J. A. Adell, J.
Bustamente and J. M. Quesada [1]), it is immediate that

n1∑
k1=0

n2∑
k2=0

pk1,n1
(x1)pk2,n2

(x2)(1 +
√
n1|x1 − k1/n1|+

√
n2|x2 − k2/n2|)p ≤ Cp,

where Cp is independent of n1, n2 and x1, x2 ∈ [0, 1]. Concluding, we obtain[
(C)

∫
Ω

|F (x1, x2, , ω)−Bn1,n2(F )(x1, x2, ω)|pdµ
]1/p

≤ [Cp]
1/p ·Γ

(
F ;

1
√
n1
,

1
√
n2

)
p

.

On the other hand, we observe that the continuity of F in the Choquet p-mean at each
x in the compact [0, 1]N , easily implies its uniform continuity on [0, 1]N , which by the
definition of the multivariate Choquet Lp-modulus of continuity of F , immediately implies
that limδ1,...,δN→0 Γ(F ; δ1, ..., δN )p = 0. This implies the second part of the theorem too.

�
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Remark 4.2. The particular case of Theorem 4.2, when µ is a σ-additive measure, N = 1
and p = 2, was previously proved by Ignatov, Mills and Tzankova [19] and Kamolov [20].
Also, the second part of Theorem 4.2, for µ a σ-additive measure, N = 1 and p = 1 was
first noticed by Cenuşă and Săcuiu [3].

5. QUANTITATIVE ESTIMATES FOR CONVERGENCE IN CAPACITY

This section is devoted to the proof of several quantitative estimates for the approxi-
mation in capacity by univariate stochastic Bernstein-type polynomials. Our results were
inspired by the recent papers of Adell and Cárdenas-Morales [2], Sun and Wu [25], Wu,
Sun and Ma [26] and Wu and Zhou [27], who considered only the framework of probabil-
ity measures and of deterministic functions.

In the definition of the classical univariate Bernstein polynomials, the function f :
[0, 1] → R is evaluated at the set of equally spaced nodes k/n, k = 0, 1, ..., n. However,
in real problems, data at equally spaced nodes are sometimes contaminated by random
errors due to a variety of factors.

Thus, in this section, we consider the approximation in capacity of a random function
f(x, ω) by stochastic Bernstein polynomials

Bn(f, Y )(x, ω) =

n∑
k=0

f(Yn,k(ω), ω)pk,n(x),

where Y = {Yn,k : n ∈ N, k = 0, ..., n} is a triangular array of random variables Yn,k :
Ω→ R, such that

0 ≤ Yn,0 ≤ Yn,1 ≤ .... ≤ Yn,n.
We shall need the following two quantities associated to a random function f :

(5.7) ω1,x(f ; δ)(ω) = sup{|f(x, ω)− f(y, ω)| : x, y ∈ [0, 1], |x− y| ≤ δ}

and

(5.8) K(f ; δ) = sup{ω1,x(f ; δ)(ω) : ω ∈ Ω}, δ ≥ 0.

It is immediate that K(f ; δ) is nondecreasing and subadditive as function of δ ≥ 0. Also,
it is easy to see that if f(x, ω) is continuous at each x ∈ [0, 1], uniformly with respect to ω,
then limδ→0K(f ; δ) = 0, so in this case K(f ; ·) is a modulus of continuity.

We put

Mn(ω) = max

{∣∣∣∣Yn,k(ω)− k

n

∣∣∣∣ : 0 ≤ k ≤ n
}
, n ∈ N, ω ∈ Ω.

Theorem 5.3. Let f : [0, 1]× Ω→ R be continuous at each x ∈ [0, 1], uniformly with respect to
ω ∈ Ω, C a σ-algebra of subsets of Ω and µ : C → [0, 1] a capacity. If

lim
n→∞

µ({ω ∈ Ω : Mn(ω) > ε}) = 0,

for every ε > 0, then Bn(f, Y )(x, ω) converges to f(x, ω) in capacity, uniformly with respect to
x ∈ [0, 1].

In addition, for every 0 < δ < 1 and n ≥ 1/δ2, we have

µ

(
{ω ∈ Ω : sup

x
‖Bn(f, Y )(x, ω)− f(x, ω)‖ > (1 + c)K(f, δ)}

)
(5.9)

≤ µ({ω ∈ Ω : Mn(ω) > δ}),

where c is the Sikkema constant.
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Proof. First, let Bn(f)(x, ω) =
∑n
k=0 f

(
k
n , ω

)
pk,n(x). If we fix ω ∈ Ω, then by repeating

the argument used by Sikkema [24] for the formula (4.5), we immediately get

sup
x
‖Bn(f)(x, ω)− f(x, ω)‖

≤ c·sup{|f(x, ω)−f(y, ω)| : x, y ∈ [0, 1], |x−y| ≤ 1√
n
} ≤ c·K

(
f ;

1√
n

)
, for ω ∈ Ω, n ∈ N.

For x ∈ [0, 1] and ω0 ∈ Ω, by the triangular inequality it follows that

|Bn(f, Y )(x, ω0)− f(x, ω0)| =

∣∣∣∣∣
n∑
k=0

[f(Yn,k(ω0), ω0)− f(x, ω0)]pk,n(x)

∣∣∣∣∣(5.10)

≤ sup
x
‖Bn(f)(x, ω0)− f(x, ω0)‖+

n∑
K=0

ω1,x(f ; |Yn,k(ω0)− k/n|)(ω0) · pk,n(x)

≤ c ·K
(
f ;

1√
n

)
+ ω1,x(f ;Mn(ω0))(ω0) ≤ c ·K

(
f ;

1√
n

)
+K(f ;Mn(ω0)),

since

ω1,x(f ;Mn(ω0))(ω0) = sup{|f(x, ω0)− f(y, ω0)| : x, y ∈ [0, 1], |x− y| ≤Mn(ω0)}

≤ sup{sup{|f(x, ω)− f(y, ω)| : ω ∈ Ω} : x.y ∈ [0, 1], |x− y| ≤Mn(ω0)}

= sup{sup{|f(x, ω)− f(y, ω)| : x, y ∈ [0, 1], |x− y| ≤Mn(ω0)} : ω ∈ Ω} = K(f ;Mn(ω0)).

For ε ∈ (0,K(f ; 1)) and K
(
f ; 1√

n

)
≤ ε, from the previous estimate, by the monotonicity

of µ and by Lemma 1 in Adell and Cárdenas-Morales [2], we infer that

µ({ω0 ∈ Ω : sup
x
‖Bn(f, Y )(x, ω0)− f(x, ω0)‖ > (1 + c)ε})

(5.11) ≤ µ({ω0 ∈ Ω;K(f ;Mn(ω0)) > ε}) = µ({ω0 ∈ Ω : Mn(ω0) > K̃(f ; ε)},

where K̃ is the right-continuous inverse of the modulus of continuityK, given by formula
(5.8) and satisfying

(5.12) δ ≤ K̃(f ;K(f ; δ)), for all 0 ≤ δ ≤ 1.

Indeed, the equality in (5.11) follows immediately from the nondecreasing monotonicity
of K(f ; ·) and K̃(f ; ·) and applying K̃(f ; ·) to K(f ;Mn(ω0)) > ε and K(f ; ·) to Mn(ω0) >

K̃(f ; ε).
Choosing now ε = K(f ; δ) with δ ≥ 1√

n
in (5.11), taking into account (5.12) and from

K
(
f ; 1√

n

)
≤ ε, it follows the estimate in the statement. �

Remark 5.3. If µ is a probability measure and f is deterministic, then K(f, δ) becomes
the usual modulus of continuity and by Theorem 5.3 we obtain Theorem 1 in Adell and
Cárdenas-Morales [2].

In the next lemma we shall need the triangular array Y obtained as follows. For each
n ∈ N, let (Vj)

n+1
j=1 be a finite sequence of independent identically distributed random

variables having the uniform distribution on [0, 1]. Let Vn+1:1 ≤ · · · ≤ Vn+1:n+1 be the
order statistics obtained by arranging (Vj)

n+1
j=1 in increasing order and put

(5.13) Y = {Yn,k = Vn+1:k+1, n ∈ N, k = 0, 1, ..., n}.
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Lemma 5.1. Suppose that µ : C → [0, 1] is a distorted probability of the form µ = u ◦P , where P
is a probability measure and u : [0, 1]→ R is a strictly increasing and concave function such that
u(0) = 0 and u(1) = 1. If 0 < u′(0) <∞, then for every ε > 0, n ∈ N and 0 < r < 1 we have

µ({ω ∈ Ω : Mn(ω) > ε}) ≤ u′(0) · n+ 1√
1− r

· exp

(
−3r

2
nε2

)
,

where exp denotes the exponential function and Mn(ω) is defined by

Mn(ω) = max

{∣∣∣∣Yn,k(ω)− k

n

∣∣∣∣ : 0 ≤ k ≤ n
}

for n ∈ N, ω ∈ Ω.

Proof. Clearly, x ≤ u(x) ≤ u′(0)x for all x ∈ [0, 1], which for x = µ(A) gives us µ(A) ≤
u′(0)P (A) for all A ∈ C. Combining this fact with the estimate

P (Mn > ε) ≤ n+ 1√
1− r

exp

(
−3r

2
nε2

)
,

in Adell and Cárdenas-Morales [2], Lemma 2, p. 7, the Lemma 5.1 is proved. �

Theorem 5.4. Let (τ(n))n satisfying the conditions

(5.14) lim
n→∞

τ(n) =∞, lim
n→∞

τ(n)

n
= 0 and τ(n) ≥ 1 for n ∈ N,

let Y be the triangular array (5.13) and let µ the distorted probability defined as in Lemma 5.1.
Then, for any random function f(x, ω) continuous at each x ∈ [0, 1] uniformly with respect to ω,
for any r ∈ (0, 1) and any n ∈ N, we have

µ

({
ω ∈ Ω : sup

x
‖Bn(f, Y )(x, ω)− f(x, ω)‖ > (1 + c)K

(
f ;

√
τ(n)

n

)})
(5.15)

≤ u′(0) · n+ 1√
1− r

exp

(
−3r

2
τ(n)

)
.

Here c is the Sikkema’s constant.

Proof. Choosing δ =
√

τ(n)
n in Theorem 5.3, we have n ≥ 1

δ2 since τ(n) ≥ 1. The proof
ends by applying Lemma 5.1. �

There are many examples of distorted probabilities µ = u ◦P satisfying the hypothesis
of Theorem 5.4. One can choose u(t) = 2t

t+1 , u(t) = (1 − e−t)/(1 − e−1), u(t) = ln(1 +

t)/ ln(2), u(t) = sin(πt/2), or u(t) = 4
π · arctan(t), for t ∈ [0, 1].

If µ is a probability measure (that is, when u(t) = t) and f is a deterministic function,
then Theorem 5.4 reduces to Corollary 1 in Adell and Cárdenas-Morales [2].
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UNIVERSITĂŢII 1, 410087, ORADEA, ROMANIA

Email address: galso@uoradea.ro

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CRAIOVA

CRAIOVA, 200585, ROMANIA

Email address: constantin.p.niculescu@gmail.com


