
CARPATHIAN J. MATH.
Volume 37 (2021), No. 2,
Pages 273 - 285

Online version at https://www.carpathian.cunbm.utcluj.ro/

Print Edition: ISSN 1584 - 2851; Online Edition: ISSN 1843 - 4401

DOI: https://doi.org/10.37193/CJM.2021.02.13

Dedicated to Prof. Ioan A. Rus on the occasion of his 85th anniversary

Existence of common best proximity point for single and
multivalued non-self mappings

V. PRAGADEESWARAR and R. GOPI

ABSTRACT. In this article, we introduce a new concept called proximal E.A property for single and multi-
valued mappings. We prove existence of proximally coincidence point for such class of mappings. We provide
interesting example which illustrates our main results. Finally, we provide sufficient condition for existence of
common best proximity point for this class of mappings.

1. INTRODUCTION

The study of fixed point plays a vital role in nonlinear analysis. Fixed point theorems
deal existence of solution for the equations of the form fx = x, which is known as fixed
point equation, where f is a mapping from a metric space (X, d) to itself. Suppose A,B ⊂
X and the mapping f from A to B, where A ∩ B = ∅, then the fixed point equation does
not have a solution. So it is desirable to determine an approximate solution x such that the
error d(x, fx) is minimum. Such a approximate solution is known as best proximity point.
The best proximity point theorems provide sufficient conditions to ensure the optimum
solution for fixed point equation. We refer the reader for more existence theorems of best
proximity point [3, 8, 18, 20, 21, 23].

Suppose we have two non-self mappings f, g : A → B, the equations fx = x and
gx = x are likely to have no common solution, known as common fixed point of the
mappings f and g. In this situation, one wants to find approximate solution x such that
the errors d(x, fx) and d(x, gx) are minimum for these two fixed point equations, called as
common best proximity point of the mappings f and g. For detailed analysis on common
best proximity point, we direct the reader to see [5, 11, 13, 14, 15, 17, 19].

Because of more applications involved in the study of multivalued mappings in fixed
point theory and best proximity point theory, the researchers are focusing the existence
of best proximity point for non-self multivalued mappings and existence of common best
proximity point for non-self pair of multivalued mappings. For example, in [9], the au-
thors proved the existence of coupled fixed point for multivalued mappings and they
applied the result in models in duopoly markets to get a market equilibrium and also to
get an equilibrium in aquatic ecosystems. Also, for more analysis and theorems on a best
proximity point of multivalued non-self mappings, we suggest [2, 19, 22]. In the literature,
there are existence results to ensure common fixed point for single valued and multival-
ued mappings. For example [6, 12]. In 2004, Kamran [12] extended the property (E. A)
for a hybrid pair of single and multivalued mappings and proved some coincidence and
fixed point theorems for hybrid pairs.
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Motivated from the above ideas, we wish to find results on common best proximity
point for single and multivalued non-self mappings. In this work, we define the proxi-
mal E. A property for single and multivalued non-self mappings and prove existence of
proximally coincidence point for this class of mappings. Then we illustrate our theorem
by an example. Further, we give sufficient condition to ensure existence of common best
proximity point for such a class of mappings.

2. PRELIMINARIES

Here we start with some notions:
Let A,B be two subsets of a metric space (X, d).

dist(A,B) = d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B};
d(a,B) = inf{d(a, b) : b ∈ B};
A0 = {a ∈ A : d(a, b′) = dist(A,B) for some b′ ∈ B};
B0 = {b ∈ B : d(a′, b) = dist(A,B) for some a′ ∈ A};
P (X) = Set of all subsets of X.

A subset S is called proximinal if for each x ∈ X, there exists an element s ∈ S such that
d(x, s) = d(x, S) = inf{d(x, y) : y ∈ S}. If X is uniformly convex Banach space, it is well
known that, every closed convex subset of X is proximinal.
And we denote CB(X), CL(X), PCL(X), PCB(X) set of all nonempty closed bounded,
nonempty closed, nonempty proximinal closed, nonempty proximinal closed bounded
subsets of X , respectively.
Let H be the Hausdorff metric with respect to d, defined by

H(A,B) = max
{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}

for A,B ∈ CB(X).
The classical idea of dealing with fixed points for multivalued maps uses the Hausdorff

metric introduced in [16]. Another technique is that of an excess of a set beyond another
set, introduced in [7]. Both techniques have their advantages.

Definition 2.1. [10] (Kuratowski convergence). Let (X, d) be a metric space and {An},n∈N
be a sequence of subsets of X. Then

(1) the upper limit or outer limit of the sequence {An}, n ∈ N is a subset of X given
by

lim
n→∞

supAn = {x ∈ X : lim
n→∞

inf d(x,An) = 0};

(2) the lower limit or inner limit of the sequence {An}, n ∈ N is a subset of X given
by

lim
n→∞

inf An = {x ∈ X : lim
n→∞

sup d(x,An) = 0};

If limn→∞ supAn = limn→∞ inf An, then we say that the limit of {An}, n ∈ N exists and

lim
n→∞

supAn = lim
n→∞

inf An = lim
n→∞

An.

Definition 2.2. [10] (Convergence in Hausdorff metric). Let {An} be a sequence in CB(X)
and A ∈ CB(X). We say that An converges to A with respect to the Hausdorff metric if
and only if limn→∞H(An, A) = 0. It is denoted by An

H−→ A.

Theorem 2.1. [10] Let X be a metric space, {An} ⊆ CB(X) and A ∈ CB(X). Then An
H−→ A

implies An → A, that is, Hausdorff convergence implies Kuratowski convergence.
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Theorem 2.2. [10] Let X be a metric space and {An} ⊆ P (X) and A ∈ P (X). Then prove that

lim
n→∞

An = A if and only if lim
n→∞

d(x,An) = 0,∀x ∈ A.

Definition 2.3. [12] Mappings f : X → X and T : X → CB(X) are said to satisfy the
property (E. A) if there exist a sequence {xn} in X , some t ∈ X and A ∈ CB(X) such that

Txn
H−→ A, lim

n→∞
fxn = t and t ∈ A.

Theorem 2.3. [12] Let f be a self map of the metric space (X, d) and T be a map from X into
CB(X) such that

(1) f, T satisfy the (E. A) property,
(2) for all x 6= y ∈ X such that

H(Tx, Ty) < max
{
d(fx, fy),

d(fx, Tx) + d(fy, Ty)

2
,
d(fy, Tx) + d(fx, Ty)

2

}
.

If f(X) be a closed subset of X , then f and T have a coincidence point.

Definition 2.4. [14] If A0 6= ∅ then the pair (A,B) is said to have the P -property if for any
x1, x2 ∈ A0 and y1, y2 ∈ B0{

d(x1, y1) = d(A,B)

d(x2, y2) = d(A,B)
implies d(x1, x2) = d(y1, y2).

3. EXISTENCE OF PROXIMALLY COINCIDENCE POINT

In this section, first we introduce the notion proximal E. A property for single and
multivalued mappings and we provide interesting example to illustrate our definition.

Definition 3.5. Let (X, d) be metric space and A,B ⊆ X. The mappings f : A → B and
T : A→ CB(B) are said to satisfy the proximal E.A property if there exist sequences {xn}
and {un} in A0 and V ′ ∈ CB(B) with

d(un, fxn) = d(A,B)

Vn = {v : d(v, Txn) = d(A,B)}
such that

Vn
H−→ V ′, lim

n→∞
un = u′ and u′ ∈ V ′.

Example 3.1. Let X = R2 with Euclidean metric d. And we take A = {(0, a) : 0 ≤ a ≤
1}, B = {(2, b) : 0 ≤ b ≤ 1}. So d(A,B) = 2. Define f : A → B by f(0, a) = (2, 1 − a) and
T : A → CB(B) by T (0, a) = {(2, b) : a ≤ b ≤ a + 1

10} if a ≤ 1
10 and T (0, a) = {(2, b) :

a − 1
10 ≤ b ≤ a} if a > 1

10 . By choosing the sequence xn = (0, 0.5 − 0.5
n ), we have for all

n ≥ 2, f(xn) = f(0, 0.5 − 0.5
n ) = (2, 0.5 + 0.5

n ). And clearly, un = (0, 0.5 + 0.5
n ) → (0, 0.5)

as n→∞. Since T (0, 0.5− 0.5
n ) = {(2, b) : 0.4− 0.5

n ≤ b ≤ 0.5− 0.5
n } implies Vn = {(0, a) :

0.4 − 0.5
n ≤ a ≤ 0.5 − 0.5

n } → {(0, a) : 0.4 ≤ a ≤ 0.5} = V ′ as n → ∞. Clearly, we get
(0, 0.5) ∈ V ′. Hence f, T satisfy the proximal E.A property.

Lemma 3.1. [1] Let (X, d) be a metric space and B ∈ CL(X). Then, for each x ∈ X with
d(x,B) > 0 and q > 1, there exists an element b ∈ B such that d(x, b) < qd(x,B).

Lemma 3.2. [25] Let (X, d) be a metric space. If U, V ∈ CB(X) and u ∈ U, then, for each ε > 0,
there exists v ∈ V such that d(u, v) ≤ H(U, V ) + ε.

Here we prove the following two results which help to provide our main theorem.
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Lemma 3.3. Let (X, d) be complete metric space and A,B ⊆ X satisfy the P -property. Let
T : A→ CL(B) be non-self multivalued mapping. Then the set

Vx = {v : d(v, Tx) = d(A,B)},∀x ∈ A

is closed.

Proof. Let x ∈ A. Let {yn} be a sequence in Vx such that yn → y. We claim that y ∈ Vx.
Since yn ∈ Vx for all n ∈ N we get d(yn, Tx) = d(A,B). By continuity of metric d implies
d(y, Tx) = d(A,B). So y ∈ Vx. �

Theorem 3.4. Let X be a metric space and {An} ⊆ CL(X). Suppose
limn→∞ d(a,An) = 0, a ∈ X then there exists subsequence nk,∀k ∈ N with ank

∈ Ank
such

that ank
→ a.

Proof. Let a ∈ X.
Case (1): Suppose a ∈ An for finitely many n. Clearly, there exists N ∈ N such that for
all n ≥ N, a /∈ An. So d(a,An) > 0. Then by Lemma 3.1, there exists a sequence an ∈ An,
for all n ≥ N, such that d(a, an) < qd(a,An) for some q > 1. As n → ∞, we obtain
d(a, an)→ 0 implies an → a.
Case (2): Suppose a ∈ An for infinitely many n. Choose subsequence n1, n2, ... such that
a ∈ Ank

, k ∈ N. Now we define sequence ank
= a,∀k. Clearly ank

→ a as k →∞.
Case (3): If a /∈ An,∀n ∈ N. Therefore d(a,An) > 0. Again by Lemma 3.1 we obtain
an ∈ An,∀n such that an → a, as in the proof of case(1). �

Now we define proximally coincidence point and common best proximity point for
single and multivalued mappings.

Definition 3.6. Let (X, d) be metric space and A,B ⊆ X. A point a ∈ A is called proxi-
mally coincidence point of mappings f : A→ B, T : A→ CB(B) if

d(u, fa) = d(A,B) = d(u, Ta)

for some u ∈ A.

Definition 3.7. Let (X, d) be metric space and A,B ⊆ X. A point a ∈ A is called common
best proximity point of mappings f : A→ B, T : A→ CB(B) if

d(a, fa) = d(A,B) = d(a, Ta).

Example 3.2. Let X = R2 with Euclidean metric d. And we take A = {(0, a) : 0 ≤ a ≤
1}, B = {(2, b) : 0 ≤ b ≤ 1}. So d(A,B) = 2. Define f : A → B by f(0, a) = (2, 1 − a) and
T : A → CB(B) by T (0, a) = {(2, b) : 0 ≤ b ≤ 1 − a}. If we choose the sequence xn = (0, 1

n ),

we have f(xn) = f(0, 1
n ) = (2, 1− 1

n ). And clearly, un = (0, 1− 1
n )→ (0, 1) as n→∞. Since

T (0, 1
n ) = {(2, b) : 0 ≤ b ≤ 1− 1

n} implies Vn = {(0, a) : 0 ≤ a ≤ 1− 1
n} → {(0, a) : 0 ≤ a ≤

1} = V ′ as n→∞. Clearly, we get (0, 1) ∈ V ′. Hence f, T satisfy the proximal E.A property.
One can notice the point (0, 0) ∈ A satisfies d((0, 1), f(0, 0)) = d(A,B) = d((0, 1), T (0, 0)).
Therefore, (0, 0) is proximally coincidence point of f, T.
And also we can see f(0, 1

2 ) = (2, 1
2 ) and T (0, 1

2 ) = {(2, a) : 0 ≤ a ≤ 1
2}. Clearly,

d((0,
1

2
), f(0,

1

2
)) = d(A,B) = d((0,

1

2
), T (0,

1

2
)).

Then (0, 1
2 ) is common best proximity point of f, T.

Here we define the contractive type condition for non-self mappings f, T in two differ-
ent ways.

Definition 3.8. Let (X, d) be metric space and A,B ⊆ X and f : A→ B, T : A→ CB(B).



Existence of common best proximity point for single and multivalued non-self mappings 277

(C) For all x 6= y ∈ A such that

H(Tx, Ty) < max
{
d(fx, fy),

d(fx, Tx) + d(fy, Ty)

2
,
d(fy, Tx) + d(fx, Ty)

2

}
.

(D) For all x 6= y ∈ A such that

H(U, V ) < max
{
d(u′, v′),

d(u′, U) + d(v′, V )

2
,
d(v′, U) + d(u′, V )

2

}
,

provided{
d(u′, fx) = d(v′, fy) = d(A,B),

U = {u : d(u, Tx) = d(A,B)}, V = {v : d(v, Ty) = d(A,B)}.
The class of pair of mappings f, T satisfy the condition (C) is said to be contractive type
non-self mappings. And the class of pair of mappings f, T satisfy the condition (D) is said
to be proximally contractive type non-self mappings.

The following example agrees condition (C) but not (D).

Example 3.3. Let X = R2 with Euclidean metric d. And we take A = {(0, a) : 0 ≤ a ≤ 1},
B = {(−1, b) : 0 ≤ b ≤ 1} ∪ {(1, b) : 0 ≤ b ≤ 1}. So d(A,B) = 1. Define f : A→ B by

f(0, a) =

{
(−1, a) a ≥ 1/2

(1, a) a < 1/2
,

and T : A→ CB(B) by

T (0, a) =

{
{(−1, b) : −a2 + 3

4 ≤ b ≤ 1} a ≥ 1/2

{(−1, b) : 0 ≤ b ≤ −a2 + 3
4} a < 1/2

.

Let p = (0, x) ∈ A, q = (0, y) ∈ A.

Case 1: If x, y ≥ 1/2 and x < y. Then we get f(0, x) = (−1, x), f(0, y) = (−1, y). So
d(f(0, x), f(0, y)) = y − x. And T (0, x) = {(−1, b) : −x2 + 3

4 ≤ b ≤ 1}, T (0, y) = {(−1, b) :
−y
2 + 3

4 ≤ b ≤ 1}. Since x < y implies −x2 + 3
4 > −y

2 + 3
4 . Therefore H(T (0, x), T (0, y)) = y−x

2 .

So we have H(Tp, Tq) < max
{
d(fp, fq), d(fp,Tp)+d(fq,Tq)

2 , d(fq,Tp)+d(fp,Tq)
2

}
.

Case 2: If x, y < 1/2 and x < y. Then we get f(0, x) = (1, x), f(0, y) = (1, y). Thus
there holds the equality d(f(0, x), f(0, y)) = y − x. And T (0, x) = {(−1, b) : 0 ≤ b ≤
−x
2 + 3

4}, T (0, y) = {(−1, b) : 0 ≤ b ≤ −y
2 + 3

4}. Since x < y implies −x2 + 3
4 > −y

2 + 3
4 .

Therefore H(T (0, x), T (0, y)) = y−x
2 . So we have

H(Tp, Tq) < max
{
d(fp, fq),

d(fp, Tp) + d(fq, T q)

2
,
d(fq, Tp) + d(fp, Tq)

2

}
.

Case 3: If x < 1/2 and y ≥ 1/2. Then we get f(0, x) = (1, x), f(0, y) = (−1, y). And
T (0, x) = {(−1, b) : 0 ≤ b ≤ −x2 + 3

4}, T (0, y) = {(−1, b) :
−y
2 + 3

4 ≤ b ≤ 1}. Here one can
easily observe that H(Tp, Tq) ≤ 1. But d(f(0, x), f(0, y)) > 1. So

H(Tp, Tq) < max
{
d(fp, fq),

d(fp, Tp) + d(fq, T q)

2
,
d(fq, Tp) + d(fp, Tq)

2

}
.

Therefore the mappings f, T satisfy the contractive condition (C).
Now if we choose p = (0, 51

100 ) ∈ A, q = (0, 49
100 ) ∈ A then f(0, 51

100 ) = (−1, 51
100 ), f(0,

49
100 ) =

(1, 49
100 ). Therefore, we can obtain u = (0, 51

100 ) such that d(u, f(0, 51
100 )) = 1 and we obtain

v = (0, 49
100 ) such that d(v, f(0, 49

100 )) = 1. Therefore, d(u, v) = 2
100 . Also we get T (0, 51

100 ) =

{(−1, b) : −51200 + 3
4 ≤ b ≤ 1}, T (0, 49

100 ) = {(−1, b) : 0 ≤ b ≤ −49200 + 3
4}. So U = {(0, b) : 99

200 ≤
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b ≤ 1}, V = {(0, b) : 0 ≤ b ≤ 101
200}. Then H(U, V ) = 99

200 . So clearly d(u, v) < H(U, V ). So
the mappings f, T do not satisfy the condition (D).

Also, the following example agrees condition (D) but not (C).

Example 3.4. Let X = R2 with Euclidean metric d. And we take A = {(1, a) : 0 ≤ a ≤
1/4} ∪ {(−1, a) : 1/4 ≤ a ≤ 1}, B = {(0, b) : 0 ≤ b ≤ 1}. So d(A,B) = 1. Define f : A→ B
by f(−1, a) = (0, a), f(1, a) = (0, a) and T (−1, a) = {(0, b) : −a4 + 11

16 ≤ b ≤ 1}, T (1, a) =
{(0, b) : 1/4 ≤ b ≤ −a4 + 11

16}.
Case 1: Let p = (−1, x) ∈ A, q = (−1, y) ∈ A and x < y. Then we get f(−1, x) =
(0, x), f(−1, y) = (0, y). Therefore, we obtain u = (−1, x) such that d(u, f(−1, x)) = 1 and
v = (−1, y) such that d(v, f(−1, y)) = 1. So d(u, v) = y − x. And T (−1, x) = {(0, b) : −x4 +
11
16 ≤ b ≤ 1}, T (−1, y) = {(0, b) : −y4 + 11

16 ≤ b ≤ 1}. Therefore U = {(−1, b) : −x4 + 11
16 ≤ b ≤

1} and V = {(−1, b) : −y4 + 11
16 ≤ b ≤ 1}. Since x < y implies −x4 + 11

16 > −y
4 + 11

16 . Therefore

H(U, V ) = y−x
4 . So we have H(U, V ) < max

{
d(u, v), d(u,U)+d(v,V )

2 , d(v,U)+d(u,V )
2

}
.

Case 2: Let p = (1, x) ∈ A, q = (1, y) ∈ A and x < y. Then we get f(1, x) = (0, x), f(1, y) =
(0, y). Therefore, we obtain u = (1, x) such that d(u, f(1, x)) = 1 and v = (1, y) such that
d(v, f(1, y)) = 1. So d(u, v) = y − x. And T (1, x) = {(0, b) : 1/4 ≤ b ≤ −x4 + 11

16}, T (1, y) =
{(0, b) : 1/4 ≤ b ≤ −y

4 + 11
16}. Therefore U = {(−1, b) : 1/4 ≤ b ≤ −x

4 + 11
16} and V =

{(−1, b) : 1/4 ≤ b ≤ −y
4 + 11

16}. Since x < y implies −x4 + 11
16 > −y

4 + 11
16 . Therefore

H(U, V ) = y−x
4 . So we have H(U, V ) < max

{
d(u, v), d(u,U)+d(v,V )

2 , d(v,U)+d(u,V )
2

}
.

Case 3: If (1, x) ∈ A and (−1, y) ∈ A. Then we get f(1, x) = (0, x), f(−1, y) = (0, y).
Therefore, we obtain u = (1, x) such that d(u, f(1, x)) = 1 and v = (−1, y) such that
d(v, f(−1, y)) = 1. So d(u, v) > 1. And T (1, x) = {(0, b) : 1/4 ≤ b ≤ −x4 + 11

16}, T (−1, y) =
{(0, b) : −y4 + 11

16 ≤ b ≤ 1}. Therefore, we obtain U = {(−1, b) : 1/4 ≤ b ≤ −x4 + 11
16}, V =

{(−1, b) : −y4 + 11
16 ≤ b ≤ 1}. Here one can easily observe that H(U, V ) ≤ 1. But d(u, v) > 1.

So H(U, V ) < max
{
d(u, v), d(u,U)+d(v,V )

2 , d(v,U)+d(u,V )
2

}
. Therefore the mappings f, T sat-

isfy the contractive condition (D).
Now if we choose p = (−1, 26

100 ) ∈ A, q = (1, 24
100 ) ∈ A then f(−1, 26

100 ) = (0, 26
100 ), f(1,

24
100 ) =

(0, 24
100 ). Therefore, d(fp, fq) = 2

100 . Also we get
T (−1, 26

100 ) = {(0, b) :
−26
400 + 11

16 ≤ b ≤ 1}, T (1, 24
100 ) = {(0, b) : 1/4 ≤ b ≤ −24400 + 11

16}. Then
H(Tp, Tq) = 149

400 . Now by simple calculations we obtain d(fp, fq) = 2
100 , d(fp, Tp) =

145
400 , d(fq, T q) =

1
100 , d(fq, Tp) =

153
400 , d(fp, Tq) = 0.

It shows max
{
d(fp, fq), d(fp,Tp)+d(fq,Tq)

2 , d(fq,Tp)+d(fp,Tq)
2

}
= d(fq,Tp)+d(fp,Tq)

2 .

But d(fq,Tp)+d(fp,Tq)
2 < H(Tp, Tq). Therefore, the mappings f, T do not satisfy the condi-

tion (C).

Now we prove our main theorem of this article with the assumption of condition (C).

Theorem 3.5. Let (X, d) be complete metric space and A,B ⊆ X satisfy the P -property. Assume
A0 is compact. Let f : A→ B and T : A→ PCB(B) be mappings such that

(1) f, T satisfy the proximal E.A property,
(2) for all x 6= y ∈ A such that

H(Tx, Ty) < max
{
d(fx, fy),

d(fx, Tx) + d(fy, Ty)

2
,
d(fy, Tx) + d(fx, Ty)

2

}
.

If f(A0) is closed subset of B0 and Ta ⊆ B0,∀a ∈ A0 then f, T have a proximally coincidence
point.
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Proof. Since the pair (f, T ) satisfies the proximal E.A property then there exist a sequence
{xn} ∈ A0 and V ′ ∈ CB(B) with

d(un, fxn) = d(A,B)(3.1)
Vn = {v : d(v, Txn) = d(A,B)}(3.2)

such that
lim

n→∞
un = u′ ∈ V ′ = lim

n
H−→∞

Vn.

By (3.1) and by the P -property we obtain d(un, um) = d(fxn, fxm). By the convergence of
{un} implies Cauchy. Then {fxn} is Cauchy. Since X is complete we get fxn → t for some
t ∈ X. Since f(A0) is closed subset of B0 there exists a ∈ A0 such that t = f(a) ∈ f(A0).
Then f(a) ∈ B0. So there exists u ∈ A0 such that d(u, fa) = d(A,B). Therefore, from (3.1)
as n→∞, we get

d(u′, fa) = d(A,B).(3.3)

By the P -property, u = u′ ∈ V ′. Now for this a ∈ A0, define D = {x : d(x, Ta) = d(A,B)}.
Since Ta ⊆ B0, we get D 6= ∅. To show a is proximally coincidence point of f and T, it
is enough to claim u ∈ D. From Theorems 2.1,2.2 and 3.4 there exists a sequence vn ∈ Vn

such that vn → u′. Because of vn ∈ Vn, we have

d(vn, Txn) = d(A,B).

Since Txn is proximinal then there exists x′n ∈ Txn such that

d(vn, x
′
n) = d(A,B).(3.4)

By Lemma 3.2, for all x′n ∈ Txn and for 1
n > 0, n ∈ N there exists a′n ∈ Ta such that

d(x′n, a
′
n) ≤ H(Txn, Ta)+1/n. One can note that a′n ∈ B0,∀n. So there exists c′n ∈ A0 such

that

d(c′n, a
′
n) = d(A,B).(3.5)

By the P -property, we obtain d(vn, c
′
n) = d(x′n, a

′
n). Since A0 is compact there exists a

subsequence {c′nk
} of {c′n} such that c′nk

→ c′ ∈ A0 as k →∞. Then by (2), we derive

d(vnk
, c′nk

)

= d(x′nk
, a′nk

)

≤ H(Txnk
, Ta) + 1/nk

< max
{
d(fxnk

, fa),
d(fxnk

, Txnk
) + d(fa, Ta)

2
,
d(fa, Txnk

) + d(fxnk
, Ta)

2

}
+ 1/nk.

From (3.1) and (3.4) and using the P -property, we obtain d(unk
, vnk

) = d(fxnk
, x′nk

). And
since x′nk

∈ Txnk
implies d(fxnk

, x′nk
) ≥ d(fxnk

, Txnk
).

Then d(unk
, vnk

) ≥ d(fxnk
, Txnk

). Now from (3.3) and (3.5) and using the P -property, we
derive

d(u′, c′nk
) = d(fa, a′nk

) ≥ d(fa, Ta).(3.6)

Again from (3.3) and (3.4) and by the P -property, we get

d(u′, vnk
) = d(fa, x′nk

) ≥ d(fa, Txnk
).(3.7)

Also from (3.5) and (3.1) and by the P -property, we obtain

d(c′nk
, unk

) = d(a′nk
, fxnk

) ≥ d(Ta, fxnk
).(3.8)

And also from (3.1) and (3.3) and using the P -property

d(fxnk
, fa) = d(unk

, u′).(3.9)
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Therefore, we derive

d(vnk
, c′nk

) < max
{
d(unk

, u′),
d(unk

, vnk
) + d(u′, c′nk

)

2
,
d(u′, vnk

) + d(c′nk
, unk

)

2

}
+ 1/nk.

As k →∞, we get

d(u′, c′) ≤ max
{
d(u′, u′),

d(u′, u′) + d(u′, c′)

2
,
d(u′, u′) + d(c′, u′)

2

}
=

d(c′, u′)

2
.

Therefore, we obtain d(u′, c′) ≤ d(u′,c′)
2 . This implies d(u′, c′) = 0. So u′ = c′. Now we

prove c′ ∈ D. From (3.5), d(c′nk
, a′nk

) = d(A,B). This implies d(c′nk
, Ta) = d(A,B). By

continuity of d gives d(c′, Ta) = d(A,B) as k →∞. Then c′ ∈ D. Hence proved.
�

The following example support the above theorem.

Example 3.5. Let X = R2 with Euclidean metric d. And we take A = {(0, a) : 0 ≤ a ≤
1}, B = {(2, b) : 0 ≤ b ≤ 1}. So d(A,B) = 2. Define f : A → B by f(0, a) = (2, 1 − a)
and T : A → PCB(B) by T (0, a) = {(2, b) : 0 ≤ b ≤ 1−a

2 }. If we choose the sequence
xn = (0, 1 − 1

n ), we have f(xn) = f(0, 1 − 1
n ) = (2, 1

n ). And clearly, un = (0, 1
n ) → (0, 0)

as n→∞. Since T (0, 1− 1
n ) = {(2, b) : 0 ≤ b ≤ 1

2n} implies Vn = {(0, a) : 0 ≤ a ≤ 1
2n} →

{(0, a) : 0 ≤ a ≤ 0} = {(0, 0)} = V ′ as n → ∞. Clearly, we get (0, 0) ∈ V ′. Hence f, T
satisfy the proximal E.A property. Now, for x = (0, a), y = (0, b) with a < b, we have
T (0, a) = {(2, x) : 0 ≤ x ≤ 1−a

2 }, T (0, b) = {(2, x) : 0 ≤ x ≤ 1−b
2 }. Since a < b implies

that 1−a
2 > 1−b

2 . Therefore, we get T (0, b) ⊆ T (0, a). Then H(T (0, a), T (0, b)) = b−a
2 . And

f(0, a) = (2, 1 − a), f(0, b) = (2, 1 − b). So clearly d(f(0, a), f(0, b)) = b − a. Then the
inequality

H(Tx, Ty) < max
{
d(fx, fy),

d(fx, Tx) + d(fy, Ty)

2
,
d(fy, Tx) + d(fx, Ty)

2

}
follows. So by above theorem the point (0, 1) ∈ A satisfies d((0, 0), f(0, 1)) = d(A,B) =
d((0, 0), T (0, 1)). Therefore, (0, 1) is proximally coincidence point of f, T.

In the above theorem, by assuming the proximally contractive type condition (D), in-
stead of the condition (C), we can prove the existence result of coincidence point without
assumtion of compactness on A0.

Theorem 3.6. Let (X, d) be complete metric space and A,B ⊆ X satisfy the P -property. Let
f : A→ B and T : A→ CB(B) be mappings satisfies

(1) f, T satisfy the proximal E.A property,
(2) for all x 6= y ∈ A such that

H(U, V ) < max
{
d(u′, v′),

d(u′, U) + d(v′, V )

2
,
d(v′, U) + d(u′, V )

2

}
,

provided{
d(u′, fx) = d(v′, fy) = d(A,B),

U = {u : d(u, Tx) = d(A,B)}, V = {v : d(v, Ty) = d(A,B)}.

If f(A0) is closed and Ta ∩B0 6= ∅,∀a ∈ A0 then f, T have a proximally coincidence point.
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Proof. Since the pair (f, T ) satisfies the proximal E.A property then there exist a sequence
{xn} ∈ A0 and V ′ ∈ CB(B) with

d(un, fxn) = d(A,B)(3.10)
Vn = {v : d(v, Txn) = d(A,B)}(3.11)

such that

lim
n→∞

un = u′ ∈ V ′ = lim
n

H−→∞
Vn.

By (3.10) and by the P -property we obtain d(un, um) = d(fxn, fxm). By the convergence
of {un} implies Cauchy. Then {fxn} is Cauchy. Since X is complete we get fxn → t for
some t ∈ X. Since f(A0) is closed then there exists a ∈ A0 such that t = f(a) ∈ f(A0).
Therefore, from (3.10) as n→∞, we get

d(u′, fa) = d(A,B).(3.12)

Now for this a ∈ A0, define D = {x : d(x, Ta) = d(A,B)}. By Lemma 3.3, D is closed.
Since Ta∩B0 6= ∅, we get D 6= ∅. To show a is proximally coincidence point of f and T, it
is enough to claim u′ ∈ D. Now we derive

H(Vn, D) < max
{
d(un, u

′),
d(un, Vn) + d(u′, D)

2
,
d(u′, Vn) + d(un, D)

2

}
.

As n→∞, we get

H(V ′, D) ≤ max
{
d(u′, u′),

d(u′, V ′) + d(u′, D)

2
,
d(u′, V ′) + d(u′, D)

2

}
=

d(u′, V ′) + d(u′, D)

2
.

Since u′ ∈ V ′, we obtain d(u′, D) ≤ d(u′,D)
2 , which implies that d(u′, D) = 0. Since D is

closed we get u′ ∈ D. �

Example 3.6. Let X = R2 with Euclidean metric d. And we take A = {(0, a) : 1 ≤
a < ∞}, B = {(2, b) : 1 ≤ b < ∞}. So d(A,B) = 2. Define f : A → B by f(0, a) =
(2, a2) and T : A → PCB(B) by T (0, a) = {(2, b) : 1 ≤ b ≤ a + 1}. If we choose the
sequence xn = (0, 1 + 1

n ), we have f(xn) = f(0, 1 + 1
n ) = (2, (1 + 1

n )
2). And clearly,

un = (0, (1 + 1
n )

2)→ (0, 1) as n→∞. Since T (0, 1 + 1
n ) = {(2, b) : 1 ≤ b ≤ 2 + 1

n} implies
Vn = {(0, a) : 1 ≤ a ≤ 2 + 1

n} → {(0, a) : 1 ≤ a ≤ 2} = V ′ as n → ∞. Clearly, we get
(0, 1) ∈ V ′. Hence f, T satisfy the proximal E.A property.
Now, for x = (0, a), y = (0, b) with a < b, we have T (0, a) = {(2, x) : 1 ≤ x ≤ 1 +
a}, T (0, b) = {(2, x) : 1 ≤ x ≤ 1+ b}. So U = {(0, x) : 1 ≤ x ≤ 1+ a}, V = {(0, x) : 1 ≤ x ≤
1 + b}. And f(0, a) = (2, a2), f(0, b) = (2, b2). So u′ = (0, a2), v′ = (0, b2). Therefore, we
get U ⊆ V. Then H(U, V ) = b − a. And clearly d(u′, v′) = b2 − a2. Since a, b ≥ 1 we have
b− a < b2 − a2 then the inequality

H(U, V ) < max
{
d(u′, v′),

d(u′, U) + d(v′, V )

2
,
d(v′, U) + d(u′, V )

2

}
follows. So by above theorem the point (0, 1) ∈ A satisfies d((0, 1), f(0, 1)) = d(A,B) =
d((0, 1), T (0, 1)). Therefore, (0, 1) is proximally coincidence point of f, T.
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4. EXISTENCE OF COMMON BEST PROXIMITY POINT

In this section, we provide sufficient condition for existence of common best proximity
point for single and multivalued non-self mappings. First we recall the Definition and a
Theorem from [12].

Definition 4.9. [12]Let T : X → CB(X). The map f : X → X is said to be T -weakly
commuting at x ∈ X if ffx ∈ Tfx.

Theorem 4.7. [12] Let f be a self map of the metric space (X, d) and T be a map from X into
CB(X) such that

(1) f, T satisfy the (E.A) property,
(2) for all x 6= y ∈ A such that

H(Tx, Ty) < max
{
d(fx, fy),

d(fx, Tx) + d(fy, Ty)

2
,
d(fy, Tx) + d(fx, Ty)

2

}
.

(3) f is T -weakly commuting at v and ffv = fv for v ∈ C(f, T ) := set of coincidence points
of f and T.

If f(X) be a closed subset of X , then f and T have a common best proximity point.

Now we extend the Definition 4.9 to the case of single and multivalued non-self map-
pings.

Definition 4.10. Let T : A → CB(B). The map f : A → B is said to be proximally
T -weakly commuting at x ∈ A if{

d(u, fx) = d(A,B)

d(u′, fu) = d(A,B)
then d(u′, Tu) = d(A,B)

for some u, u′ ∈ A.

Example 4.7. Let X = R2 with Euclidean metric d.
Let A = {(1, 0), (2, 0), (3, 0), (4, 0)} and B = {(1, 1), (2, 1), (3, 1), (4, 1)}. So d(A,B) = 1.
Define f : A→ B by

f(1, 0) = (4, 1), f(2, 0) = (3, 1), f(3, 0) = (2, 1), f(4, 0) = (1, 1),

and T : A→ CB(B) by T (1, 0) = {(3, 1), (4, 1)}, T (2, 0) = {(2, 1), (4, 1)},
T (3, 0) = {(1, 1), (3, 1)}, T (4, 0) = {(1, 1), (4, 1)}. Then one can notice that f is proximally
T -weakly commuting at the points (1, 0), (4, 0) ∈ A.

The following theorem gives sufficient condition for existence of common best proxim-
ity point for single and multivalued mappings which extends the Theorem 4.7 proved in
[12].

Theorem 4.8. Let (X, d) be complete metric space and A,B ⊆ X satisfy the P -property. Assume
A0 is compact. Let f : A→ B and T : A→ PCB(B) be mappings such that

(1) f, T satisfy the proximal E. A property,
(2) for all x 6= y ∈ A such that

H(Tx, Ty) < max
{
d(fx, fy),

d(fx, Tx) + d(fy, Ty)

2
,
d(fy, Tx) + d(fx, Ty)

2

}
,

(3) f is proximally T -weakly commuting at v and if
d(v′, fv) = d(A,B) then d(v′, fv′) = d(A,B) for v ∈ PC(f, T ) :=set of proximally
coincidence point of f and T .
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If f(A0) is closed subset of B0 and Ta ⊆ B0,∀a ∈ A0 then f, T have a common best proximity
point.

Proof. By above theorem there exist a ∈ A0 and u ∈ D such that d(u, fa) = d(A,B).
Since u ∈ D, we have d(u, Ta) = d(A,B). Then by (3) we get d(u, fu) = d(A,B). Because
of f is T -weakly commutative at a implies that d(u, Tu) = d(A,B), hence the theorem
follows. �

Example 4.8. Let X = R2 with Euclidean metric d. Let A = {(x, 1) : 0 ≤ x ≤ 1} and
B = {(x,−1) : 0 ≤ x ≤ 1}. Define f : A→ B by f(x, 1) = (x2,−1), and T : A→ PCB(B)

by T (x, 1) = {(y,−1) : y ∈ [0, x2

2 ]}. We choose the sequence xn = ( 1n , 1) for all n. Then we
get fxn = f( 1n , 1) = ( 1

n2 ,−1),∀n and Txn = T ( 1n , 1) = {(y,−1) : y ∈ [0, 1
2n2 ]}. Therefore,

we obtain un = ( 1
n2 , 1),∀n and Vn = {(y, 1) : y ∈ [0, 1

2n2 ]}. So, we conclude that

lim
n→∞

un ∈ lim
n

H−→∞
Vn.

Hence f, T satisfy the proximal E.A property. Also, for x 6= y with x < y, we get
H(T (x, 1), T (y, 1)) = |y

2

2 −
x2

2 |. And d(f(x, 1), f(y, 1)) = |y2 − x2|. This implies that

H(T (x, 1), T (y, 1)) < max
{
d(f(x, 1), f(y, 1)),

d(f(x, 1), T (x, 1)) + d(f(y, 1), T (y, 1))

2
,

d(f(y, 1), T (x, 1)) + d(f(x, 1), T (y, 1))

2

}
.

Also, one can easily identify the condition (3) of Theorem 4.8, with f is proximally T -
weakly commuting at (0, 1). Then by Theorem 4.8, we conclude (0, 1) is a common best
proximity point of f, T.

Theorem 4.9. Let (X, d) be complete metric space and A,B ⊆ X satisfy the P -property. Let
f : A→ B and T : A→ CB(B) be mappings satisfies

(1) f, T satisfy the proximal E.A property,
(2) for all x 6= y ∈ A such that

H(U, V ) < max
{
d(u′, v′),

d(u′, U) + d(v′, V )

2
,
d(v′, U) + d(u′, V )

2

}
,

provided{
d(u′, fx) = d(v′, fy) = d(A,B),

U = {u : d(u, Tx) = d(A,B)}, V = {v : d(v, Ty) = d(A,B)},
(3) f is proximally T -weakly commuting at v and if

d(v′, fv) = d(A,B) then d(v′, fv′) = d(A,B) for v ∈ PC(f, T ) :=set of proximally
coincidence point of f and T .

If f(A0) is closed and Ta ∩B0 6= ∅,∀a ∈ A0 then f, T have a common best proximity point.

Proof. The proof follows as above theorem. �

Example 4.9. Let X = R2 with Euclidean metric d. Let A = {(0, x) : 0 ≤ x ≤ 4} and
B = {(2, x) : 0 ≤ x ≤ 4}. Define f : A → B by f(0, x) = (2, x), and T : A → PCB(B)
by T (0, x) = {(2, ln(1 + y)) : y ∈ [0, x]}. We choose the sequence xn = (0, 1

n ) for all n.
Then we get fxn = f(0, 1

n ) = (2, 1
n ),∀n and Txn = T (0, 1

n ) = {(2, ln(1 + y)) : y ∈ [0, 1
n ]}.

Therefore, we obtain un = (0, 1
n ),∀n and Vn = {(0, ln(1+y)) : y ∈ [0, 1

n ]}. So, we conclude
that

lim
n→∞

un ∈ lim
n

H−→∞
Vn.
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Hence f, T satisfy the proximal E.A property. Also, for x 6= y with x < y, we get
H(U, V ) = |ln(1 + y) − ln(1 + x)|, and d(u′, v′) = |y − x| where u′, v′, U, V are as in
Theorem 4.9. This implies that

H(U, V ) < max
{
d(u′, v′),

d(u′, U) + d(v′, V )

2
,
d(v′, U) + d(u′, V )

2

}
.

Also, one can easily identify the condition (3) of Theorem 4.9, with f is proximally T -
weakly commuting at (0, 0). Then by Theorem 4.9, we conclude (0, 0) is a common best
proximity point of f, T.
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