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Variational approach to nonlinear stochastic differential
equations in Hilbert spaces

VIOREL BARBU

ABSTRACT. Here we survey a few functional methods to existence theory for infinite dimensional stochastic
differential equations of the form dX + A(¢t)X (t) = B(t, X (t))dW (¢), X(0) = X0, where A(t) is a nonlinear
maximal monotone operator in a variational couple (V,V’). The emphasis is put on a new approach of the
classical existence result of N. Krylov and B. Rozovski on existence for the infinite dimensional stochastic diffe-
rential equations which is given here via the theory of nonlinear maximal monotone operators in Banach spaces.
A variational approach to this problem is also developed.

1. THE MAIN RESULT

Let H be a separable Hilbert space with the scalar product (-, -) 7 and the norm | and
let V' be a separable reflexive Banach space with the dual V* such that

VcHCV®

with dense and continuous injections. In the sequel, the duality v (-, ), is simply denoted
(-,-) and the norms of V' and V* are denoted by || - ||y and || - ||+, respectively.

In the following, we denote by B(H), B(V') and B(V*) the o-algebra of Borelian sets in
H,V and V*, respectively.

Let W be the cylindrical Wiener process in the Hilbert space U

W(t) = ie‘jﬁj(t% t>0,
j=1

where {e;} is an orthonormal basis in U and {3;}32, is a sequence of mutually indepen-
dent Brownian motions in a probability space (€2, F,P) with the normal filtration (F;):>o.
We shall study here the stochastic differential equation (SDE)

dX(t) + A(t, X (t))dt = B(t, X (t))dW(¢), t € (0,T),
X (0) = Xy,
where X : [0,T] xQ — V. Theoperators A: [0,T]| x QxV = V*and B: [0,T| x QxV —
Ly(U, H) are assumed to satisfy the following hypotheses (in the sequel, we sometimes
write A(t)u, A(t)(u) or, simply, A(u) instead of A(t, u)).
(H1) A:[0,T|xQxV = V*, B:[0,T]|xQxV — Lo(U, H) are progressively measurable,

ie., Vt € (0,T), these functions restricted to [0,t] x Q x V are B([0,T]) @ F, @ B(V)
measurable.

(1.1)
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(H2) Foreacht € [0,T] and w € €, the operator v — A(t,w,u) is demicontinuous from V
to V* (that is strongly-weakly continuous). Moreover, there is o € R such that, for all
u,v €V,

(A®)u—A(t)v, u—v) 2HB(t)u—B(t)vH%z(Uﬂ)—oc|u—v|§{,
Y(t,w) € (0,T) x Q.
(H3) Therearel < p < 0o, ag,ag > 0, oy € R such that, forall uw € V and P-a.s.,
(1.3) (Altyu,w) > IBOulL, 0, m+allullf —az|ulf+i (1),
Y(t,u) € (0,T) x V,

1.2)

(1.4) [A@ullv- < asllully+g2(2), ¥(t,u) € (0,T) x V,

where ﬁ =1- % and g1, g2 € L*((0,T) x Q) are Fy-adapted processes.
Here | - |z,w,m) 1is the Hilbert-Schmidt norm Ly(U,H) and the spaces
L9((0,T) x ) are considered with the measure dt @ P. The significance of the term
B(t, X)dW is that of a Gaussian noise. We refer to the book [1] for the basic results on

the theory of nonlinear monotone operators in Banach spaces which will be used in the
following.

Definition 1.1. A (pathwise) continuous H-valued (F;);>o-adapted process X : [0,T] —
H is called solution to (1.1) if

(1.5) X e LP((0,T) x Q; V)N L2((0,T) x Q; H),
t ¢
(1.6) X(t) —l—/ A(s, X (s))ds = Xo +/ B(s, X (s))dW(s),
0 0
vt € [0,T], P-as.,
where X is any V-valued progressively measurable version of X, that is,
X :)~(, a.e. dt®P.

The integral from the right-hand side of (1.6) is taken in the sense of Ito (see, e.g., [8]).
Theorem 1.1 below is the main result.

Theorem 1.1. Under hypotheses (H1)—(H3), for each X, € L*(Q, Fo, P, H), there is a unique
solution X = X (t, Xo) to (1.1). Moreover, one has

(17) E| sup |X(taXO)7X(taYO)|%I §01E|X07Y0|§—15
t€[0,T]
T
(1.8) E| sup |[X(Xo)% | +E / 1X (1, Xo)|[2.dt < Ca(E|Xol% +1),
t€[0,T] 0

where C1, Cy are independent of X.

We note that (1.7) and (1.8) can be equivalently written as
(1.9) 1X (-, Xo) = X (-, Xo) 20,00y < CrLEIXo = Xolw)?,

and
X C, Xo)I72(,n0 0 my) TIXC Xo)ll L @sLeo,r,v))
< C3(E| X0l +1).

In many cases, X is taken deterministic, that is, X, € H.

(1.10)
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Examples
Very often, the stochastic differential equations arise as deterministic differential equati-
ons perturbed by a Gaussian (Wiener) noise of the form o (¢, X )dW. Here are few exam-
ples.
1. Stochastic differential equations in RY. Consider the stochastic differential equation

dX + f(t, X)dt = o(t, X)dW

X(0) =Xy

where f: [0,T] x Q x RY = RN, 5 :[0,7] x Q x RM — R¥ are progressively measurable
and W is a Gaussian process of the form

(1.11)

M
Wi(t) = Z ai;(t)B;(t)

i=1
Moreover, for each w € Q and t € (0,7), the functions v — f(t,w,u) and v — o(t,w,u)
are continuous and

(F(tw) = F(t,0)) - (= 0) 2 (1) = 06, 0) |2 g gary — = ol[2

Yu,v € RV,
Ftu) u> ot u)llf @m gy — allullir +91(8), Yu € RV, t € (0,T),
1ftw)lley < [lullfy +g2(t), Yu € RY, t € (0,T),

where ¢1,92 € L'((0,T) x Q) are F;-adapted processes in (Q, F,P). Here, one applies
Theorem 1.1 with H =V = V* = RY and A(t) = f(t), B(t) = o(t).

2. Stochastic reaction-diffusion equations. Let V = H{(0), V* = H=1(0), H = L*(0),
OcCRYU=L%*0),d>1and

(Au)(z) = —Au(x) + v(z,u(x)), x € O,

defined from V' to V* by the variational formula
(1.12) v (Au,v),, = / Vu-Vodz +/ Y(z,w)vdr, Yo € V.
o o

Here, O is a bounded and open set of R with smooth boundary 92 and v : R — R is
monotonically increasing and continuous in u, Lebesgue measurable in z, y(x,0) = 0 and
[v(z,w)| < Crlu|® + Ca, Ve € O, u € R,

where 0 < a < 4£ By (1.12), we see that
(Au,u) > |Vulfy = |[ull§;, Yu eV,

and, by Holder’s inequality,

| (Au,v) | < |Vulg|Volg + </ |u|aq> </ |U|p*) T Cyllollo,
o o
where L =1 -1 %:%4_%'
Recalling that, by the Sobolev embedding theorem,
V = H}(0) C LV'(0), V* = H™1(0) > L*(0),

it follows that
| <~AU7U> ‘ < C4(Hu||V + 1)||UHV7 Vum € V7
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and, therefore,

[Aully+ < Ca(llullv +1), Vu e V.
Hence hypothesis (H3) holds. Finally, W is a Wiener cylindrical process in H = L?(O)
and B : H — Ly(H, H) is assumed to satisfy the condition

(L13)  [B@) — BO)Iyrm < olu— vl + Ju— vy, V.o € H}(O),
for some a € R. Then, by Theorem 1.1, the equation

dX — AX dt + ~v(z, X)dt = B(X)dW, t € (0,T),
(1.14) X(0,2) = Xo(z), x € O,

X =00n00,
has, for each X, € L?(Q; Fo, P, L?(0)), a unique solution

X € L*(;C([0,T); L*(0)) N L*(Q; L*(0,T; Hy (O)).
A few special cases of Gaussian perturbation
1° Let
(1.15) B(X)dW => ;X e;dB;, W= e;B(t)
j=1 j=1

In this case, B : H — Lo(H, H) is defined by

(B(w))(h) = u)_ uje;(h,ej)i2(0), Vh € L*(0) = H,
j=1
where {e;} is an orthonormal basis in L?(O). Then

| B(u ||L2HH) Zﬂg |“6J||L2

and so (1.13) holds if either Z MJ||€J||L00(@ <a<00, Or Z 1 le; 117, - 10) <
= :

B(X)dw = Z( -V X)e; dB;, where {n;}32; C L>(0O). Then

j=1
(1.16) B(u)(h) = i(m -Vu)ej(h, e;)2(0), Vh € L*(0),
=1
and, therefore, ]
[ B(u ||L2(UH Z [[(n; - Vu) eJHL2(O) < ||u||H1 (0) Z Injejllze, Yue H.

j=1
Then hypothesis (1.13) holds if

> lnjeilieqoy < 1.
=1

3. Parabolic nonlinear SDE of divergence type. Consider here the equation
dX —divy(a(t,z, V. X(t,z))) = B(t,X)dW, t € (0,T), z € O,
(1.17) X(0,2) = Xo(z), v € O,
X(t,z) =0 forxz € 90, t € [0,T],
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where Xy € L2(0), a: [0,7] x O x Q x RV — R¥ satisfies the following hypotheses

(i) a = a(t,z,w,n) is measurable on (0,7) x O x  and continuous in 7. Moreover,
there exists a; > 0 such that

(a(t7xawan) - a(t,x,wﬁ)) ' (77 - 777) > 041‘7’] - 77]|27 V’I’],f] S RN'

(11) a(tax,n) 1N > a2|77|pa V77 € RNa |a(taxan)‘ < a3|77‘p71a V77 € RN» where 1 < p <00
and oy > 0, ag > 0, a3 > 0.
(iii) B : L*(0) — Ly(L?(0), L?0)) = L, satisfies the condition

|B(u) — B(v)||7, < Alu— |3, Yu,v € H = L*(0).
A standard example is
dX —div,(|V,X|P72V,X)dt = B(t,z)dW in (0,T) x O,
X(0) = Xpin O,
X =0o0n(0,T) x 00,
where 2 < p < oo and B is of the form (1.15) or (1.16). We apply Theorem 1.1, where
V =WyP(0)NL*(0), H = L*(O) and A(t) : V — V* defined by
v (At)u,v),, = /O a(t,xz, Vu(x)) - Vu(x)dz, Yu,v € V.

We get
Corollary 1.1. For each X, € L?(O) there is a unique solution

X € L2 C([0, T L(0))) N LY((0,T) x &5 WP (0))
to equation (1.17).

4. The stochastic porous media equation. We consider here the stochastic version of the
differential equation

dX — Avy(X)dt = B(t, X)dW in (0,T) x O,
(1.18) X(0,2) = Xo(z), x € O,

V(X (1) € Hy(0), vt € [0,T].
Here v : R — R is continuous, monotonically increasing, W is a Wiener cylindrical process
inH'=H1(0)and B: [0,T] x H™! — Ly(H~1, H™!) satisfies
(1.19) IB(t,u) = B(t,0) |l Ly -1,m-1) < Ml =] -1
An example is

(B(t)u)(h) =y pej(h,e;), e, Yh € HY,

j=1

where {e;} C H~! is an orthonormal basis such that

S llegully s < Cllully s, Yo B,

j=1
We apply Theorem 1.1, where H = H~1(0), V = LY(0) ¢ H1(0), Au = —Av(u),
Yu € LI(0),

v (Au,v)y = /O'y(u)v dx, Yv € LP(O).
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Here ¢ > dz_fQ and V* is the dual of V' = L%(Q) is the duality with H = H~! as pivot

space, that is,
LY (O)Cc H ' cVv*.
Then, assuming that
ywu > ag|uld, foru € R,
Iy(u)] > aoful?"tl, foru e R,
where a4, az > 0, we see that A satisfies hypotheses (H1), (H2) and, by Theorem 1.1, we
get

Corollary 1.2. Under the above assumptions, there is a unique solution X to SDE (1.18) sa-

tisfying X € L*(Q; C([0,T]; H1(0))) N L4((0,T) x Q x O), where ¢ > £&.

2. PROOF OF THEOREM 1.1

For simplicity, we take g1,g> = 0. For each A > 0, consider the operator J(t)(u) =
(I +MAp(t) tu, t €[0,T), u € H, where Ay (t) : H— H is defined by

Apg(t)(uw) = A(t)u,Yu e D(Ag(t)), Vt € (0,T),

D(Ag(t)) = {veV;A(t)uc H}.
By (1.2) it follows that the operator Ay is quasi-maximal monotone in H x H, that is,
R(I+MAp)=Hfor0<\X<<1and

(Ag(t)u — Ag(t)v,u —v) > —alu —v|%, Yu,v € D(Ag),
and so the Yosida approximation (see, e.g., [1])
1
T I = T+ Mu@) ™) = Au(t)A(1)
is Lipschitz for 0 < A < 2 and ¢ € (0, 7).
Now, consider the approx1mat1ng equation

AX 5 (t) + Ar(£) X (B)dt = B (t)(Xa(1))dW (2),

(2.20) As(t) =

(2.21)
X (0) = X,
where
(2.22) By(t) = B(t)Jx(t), t € (0,T).

By (1.2) and (1.3), we see that
(Ax(®)u — Ax(t)v, I (t)u — Ix(t)v) g

(2.23)
> [|Ba(t)u — B/\(t)U”%Q(U,H) —ala(t)u — Ix(t)vlF,

(224 (Ax@Bus InOw)i 2 | BAOUIL, w,my + calIa@ullyy — azl A (E)ulf,
Yu,v € H.
In particular, it follows that
(Ax(t)u — Ax(t)v,u — v) > || Bx(t)u — BA)|17, 1 )
(2.25) +A (Aru — Ayv, Ayu — Ayv) — af Jx(t)u — Ja(t)v|g

> HBA(LL)U_ BA( ) |L2 (U,H) C)l\|u_ U‘%Ia

(2.26) IBx(t)u — Ba(t)0ll7, 5y < Calu—v[F, Yu,v € H.
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It turns out that, for each 0 < \ < é, equation (2.21) has a unique solution X. More
precisely, we have

Lemma 2.1. Equation (2.21) has a unique solution
Xy € L*(;0([0,T]; H)).

Moreover, we have

(2.27) E| sup [X(t) = Ya()|3 | < CE|XA(0) — Yy (0)|3,
t€[0,T]
T
(2.28) E| sup [Xa(0)%| +E / 1 (t, X (6)) |5t
t€[0,T] 0

T
E / IBx(3), X2(5) 0.0y < CEIXol,
0

where C'is independent of X € (0,1) .

Proof. The existence of the solution X follows by the standard existence theory. By (2.21),
we get

S PO+ [ (XA () Xa(o)mds
0 t
229) = 5%l + 5 [ 1B XA s
+ [ (B Xa ()W (5), X (5))
0

On the other hand, we have
(Ax(8)Xx(s), Xa(s)) 1

> (A(s)Ia(8)Xa(s), Ia(s) X (5)) + A AN () Xa(s) |7, Vs € (0,T),

% XA ()% + Oz1/0 |5 (8) X5 (s) |} ds

+1 /t | Ba(s) X (s)]2 ds < )\/t |Ax(5) X (5)[%ds
2 0 A A t Lo (U,H) = 0 A A H
Xl +a2 [ 136X (6) s
0

t

(BA(8)XA(8)dW (s), Xx(8)) -

(2.30)
<

+

O\N\H

By (H3), this yields

t t
E sup \XA(t)\?{JrE/ HJA(S)XA(S)HZ\’/dS*'E/ 1B ()X ()12, .51y ds
te[0,T) 0 0
t t
—|—)JE/ A5 (5) X (5) 2y ds < CE|XO@,+E/ X5 (s) 2, ds
0 + 0
+E[ sup (X0l [ 1+ X0
0

T€[0,¢]

MBS

and so, by Gronwall’s lemma, we get (2.28), as desired.
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As regards (2.27), it follows similarly by the equation
31500 =0+ [ (45X () = AN (3). X 5) = Y2 (s))ds
= 5 X0 VO + 5 [ 1B = Br) A i s

+/O ((BA(s)(Xa(s))) = Ba(Ya(5))))dW (s), Xa(s) = Ya(s))m
taking into account that, by (2.20), we have
(Ax(s)Xa(5) = Ax(s)Ya(s), Xa(s) = Ya(s))m
> || Bx(s)Xx(s) = Ba(s)Ya(s)[I* — ale( )(Ya(s))
—IA()(Ya())[F + A Ax(5) XA (s) — Ax(5)Ya(s)|
The details are omitted. U

)
2
-

Proof of Theorem 1.1. (continued) By estimates (2.27)—(2.28), it follows that on a subse-
quence {A\} = 0

X, — X weakstarin L?(; L>°(0,T; H)),
JA(Xn) — Y weaklyin LP((0,T) x ; V),
Bx(t, X)) — Z weaklyin L?((0,T) x Q; La(U, H)),
JNXA)Xn — 0 stronglyin L?((0,T) x Q; H),

(2.31)

This yields X=Ydt® P, a.e. Moreover, we define the process

(2.32) X(t):Xo—/O ?(s)ds+/0 Z(s)dW (s), t € (0,T),

and note that it is a version of X, that is,
(2.33) X=Xdt®P, ae. in (0,T) x Q.
Here is the argument. By (2.21), we have, for all ¥ € LP((0, T) x{;V),

E/OT(XA(t),\II(t))dt+]E/OT (/Ot AA(S)XA(s)ds,\I!(t)> dt

=3 o, W0t + B / ' (qf(t), / t BA(S)XA(s)dW(s)) .

This yields, via Fubini’s theorem,

E /0 (Xx(t), U(t))dt +E /0 (Ax(t)XA(t), /O m(s)ds> dt

_ E/OT(XO, W(t))dt + E/OT dt </Ot Ba(s) X (s)dW (s), \I/(t)> .

Letting A — 0, we get by (2.31) that

T T/ T
IE/O (X(t),\I/(t))dt+]E/o <Y(t),/t ‘I’(s)ds) dt



Variational approach to nonlinear stochastic differential equations in Hilbert spaces 303

and so (2.33) follows. We also note that X : [0,7] — H is continuous for all w € Q and

(2.34) E sup |X(1)|% <O+ [Xol%).
t€[0,T

We note first that X is a V*-valued and by
t

¢

X(t) =lim X»\(t) = Xo + lim [ Ax(s)Xa(s)ds+ lim [ Bx(s)Xx(s)dW(s),
A—=0 A—=0 Jo A—=0 Jo

Yt € [0,T], P-as.

On the other hand, by (2.31) we see that X(¢t) € H, P-a.s. for all ¢ € [0,7] and (2.33)
holds. Moreover, since t — X (t) is V*-continuous, it follows that t — X (t) is weakly
H-continuous on [0, T]. To prove that ¢t — X (t) is H-valued continued, it suffices to show
that t — | X (t)|% is continuous. To this end, we note that, by (2.32), we have

3 IXOF =5 X0 - [ (). X()r

1 t - t .
+5/ ||Z||§2(U7H)dr+/ (ZdW, X)dr.

Hence,
lim(|X (£)[3, — [X(s)[3) = 0, P-as.

To prove that X is solution to (1.1), it remains to be shown that

(2.35) Y = A, X),dt®P, ae. in (0,T) x Q,

(2.36) Z = B(t,X),dt®P, ae. in (0,T) x €.
To this end, we note that, by (2.21) and (2.32), we have

imsup (] [ (NGO, I 605 — 5 [ IBAKA DI, 5]

A—0

2.37) < 3 B Xolt — 1X(Ol3)

t _ 17t
([ (7). Xds + 5 [ 126 wmds):
0 0
On the other hand, we have by (H2) that, for all ¢ € L?((0,T) x ;V),
(AN(XN) = Ap, A (X2) = ¢) +al N (X)) — ¢lF

(2.38) 1
> S IBA(XA) = BAIIL, )

while, by (2.37) and (2.31), we have

timsup (B [ ((A(X0)= A (X0 =) = 5 [BA(X0) ~Br(@) I, 0 s |

t
239) <E [ ((Apo)~(Ap. D)~ (T 0)ds
0
1 .
+51E/0 12170, — 1 Bx@l T, 0,1 + 2 (BA(XA), Bap))ds.
By (2.38)-(2.39), we obtain that, for ¢ = X,

t t
IE/ IZ - BX|},w.m < alimE/ |\ (X) — X |%ds,
0 ’ A—0 0
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because, for A — 0, By(p) — By in L%((0,T) x Q; L2(U, H)). Hence
Z = BX, ae. dt®P,
Now, coming back to (2.37), we get
t t
(2.40) lim sup / (Ar(Xr(5)), Jn(Xa(s)))ds < E / (V(s), X (s))ds,
0 0

A—0

because
t t
tiinf E [ 1B GO 0mds > E [ 12100

Taking into account that the operator v — A(¢, u)+awu is maximal monotone in L?((0,T) x
Q; V) x LP' ((0,T) x Q; V*), we conclude by (2.40) that Y = A(X) dt x P, a.e. in (0,T) x Q.
Finally, (1.7) follows by (2.27). This concludes the proof. O

Remark 2.1. As seen from the above proof, Theorem 1.1 extends to maximal monotone
multivalued operators A(t) : V' — V' satisfying (H1)-(H3). Applied to stochastic PDEs of
the form (1.17)-(1.18), such a general case allows the treatment of equations with discon-
tinuous nonlinearities, ¢ and 7.
3. THE POTENTIAL CASE A(t) = 0p(t)
Assume now in Theorem 1.1 that A(¢) : V' — V* is of the form
A(t)(u) = 0p(t,u), Yt € [0,T], u €V,

where ¢ = ¢(t,w,u) : [0,T] x 2 x V — R = (—o00, +00) is a convex and lower semiconti-
nuous function on V' and d¢(t, -) is the subdifferential of ¢ (¢, -), that is,

ve (A(t)u,u — )y, > p(t,u) — e(t,v), Yu,v eV, we Q.
If we denote by ¢*(t) : V* — R the conjugate of *, that is,
@"(t,u) = sup{v- (u, v)y, — @(v); Vv € V},
and recall that (see, e.g., [1])
p(v) + ¢*(u) = v-(v,u)y  ifv e dp(u),
Ve

p(v) +¢" () Z v (v,u)y, VueV,veVr,
we may rewrite equation (1.1) as
dX +udt = B(t)XdW, te(0,T),
(3.41) ve (u(t), X(t)y, = o(t, X(t))+ " (t,u(t)), vVt € [0,T],

" (
v-(v, X))y = ot X(t)+ ¢ (t,v), Vvoe V™"
(

This means that, if X* is the solution to equation (1.1), then (X*,u* = A(¢)(X™)) is the
solution to the minimization problem

T

Minfe [ (o(t X(0) + ¢ (1, 00) = v-(ul), X (O) e
0

(3.42)
4X + u(t)dt = B(t)X dWW, X(0) = Xo .

and this minimum equals zero. Taking into account that, by Itd’s formula,

T 1 1 T
B[t X)dedt = =5 EXDF - EXofi) + 5E [ IBOX O, 0mah
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we can rewrite (3.42) as
g 1
ory {E / (st X(0) + ¢ (t.w) = 5 IBOX I, 1) ) dt
. 1 /
+5 E(X (D) — |Xoff); we L7((0,7) x %), ]-'t—adapted}.
By hypothesis (1.4), we know that (take g; = 0)
p(t,2) 2 (A2, 2) 2 | BT, 0,m) + a2l — ezlzlf, Yz e V.

(We note that, in this case, A(t) : V' — V' might be multivalued.)
If the function # — B(t)z which happens in the case of the Wiener linear multiplicative
noise is linear, it follows that the function

v = (t,2) — 3 B0, 0m
is convex if
anllell — ool + 3 B0l ) > 0, o €V,
and so, in this case, (3.43) reduces to a convex minimization problem which has a solution

(X, u) because the function u — ¢* (¢, u) is convex and coercive in L?((0,T") x Q; V*). This
is an alternative constructive proof of existence in this special case.

4. THE CASE OF ADDITIVE GAUSSIAN NOISE

Consider here the stochastic differential equation (1.1) in a separable Hilbert space H,
{dXﬁ)+AX@MthW@L t >0,

(49 X(0) = z.

Here A : D(A) C H — H is a nonlinear quasi-m-accretive operator in H, thatis, A + Ao/
is m-accretive for some Ao > 0, B € L(U, H), where U is another Hilbert space and W (t)
is a cylindrical Wiener process in U defined on a probability space {2, F,P}. This means
that

W(t) = iﬁk(t)ek,
k=1

where {ey} is an orthonormal basis in U and {3}« is a sequence of mutually indepen-
dent Brownian motions on {2, F,P}. Denote by F; the o-algebra generated by fy(s) for
s<t,keN.

By solution to (4.44) we mean, as in Definition 1.1, a stochastic process X = X (¢) on
{Q, F,P} adapted to F;; that is, X (t) is measurable with respect to the o-algebra 73, and
satisfies the equation

¢ ¢
(4.45) X(t)=a—- / AX(s)ds —|—/ B dW (s)ds, vt >0, P-ass.,
0 0

where the integral fg B dW (s) is considered, as above, in the sense of Ito.
A standard way to study the existence for equation (4.44) is to reduce it via substitution

y(t) = X(t) - BW ()

to the random differential equation

wao & y(t,0) + Aly(tw) + BW(Lw) =0, 120, Pas, we,

y(0,w) = x.
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For almost all w € Q2 (i.e., P-a.s.), (4.46) is a deterministic time-dependent equation in H of
the form

dy B
(4.47) = O+ A@y(H) =0, =0,
y(0) =,

where A(t)y = A(y+BW (t)). This fact explains why one cannot expect a complete theory
of existence similar to that from the deterministic case. In fact, because the Wiener process
t — W(t) does not have bounded variation and this precludes the well posedness of the
Cauchy problem (4.47) because t — (I + AA(t))~! is not with bounded variation (see
[1]). However, we can invoke in this case an abstract existence result for (4.47) which
does not require regularity of A(t). Namely, we assume that V' is a reflexive Banach space
continuously embedded in H and so we have

VcHcCV

algebraically and topologically, where 1 is the dual space of V.
Let A : V — V' satisfy the assumption

(I) Aisa demicontinuous monotone operator and

(Au,u) > A|ul} + Ch, Yu €V,
[Aullv: < Co(+ [lullf), Vu €V,
where v > 0 and p > 1.

Then, we have the following theorem.
Theorem 4.2. Assume that A satisfies hypothesis () and that
(4.48) BW € L?(0,T;V), P-as.
Then, for each x € H, equation (4.46) has a unique F-adapted solution X = X (t,w) € LP(0,T; V)N
C([0,T]; H), a.e. w € Q.

Proof. Here, one simply applies Theorem 4.17 in [1] to the operator A(t)y = A(y+ BW (t))
and check that conditions (i)(iii) are satisfied under hypotheses () and (4.48).

Thus, one finds a solution X = X (¢,w) to (4.46) that satisfies the equation for P-almost
all w € . Taking into account that, as seen earlier, such a solution can be obtained as the
limit of solutions y) to the approximating equations

d
{ St A+ BW) =0, e (0,7),
yA(0) =z,
for A — 0, where A, is the Yosida approximation of A[ 5 (the restriction of the operator A
to H), we may conclude that X is adapted with respect to the filtration { % }. O O

Theorem 4.2 remains true for time-dependent operators A = A(¢) : (0,T) x V — V/,
which are measurable in ¢ and satisfy conditions (i), (ii), a.e. t € (0, 7).

5. THE OPERATORIAL APPROACH FOR LINEAR
MULTIPLICATIVE NOISE

Under hypotheses of Theorem 1.1, consider here (1.1) being of the form

dX + A(H)X dt = X dW,

(5.49) X(0) =
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where W = Z wie; ;.

j=1
By the rescaling transformation X = ey, we reduces (5.49) to
dy -w w
— At =0
(5.50) o e ) (e y) + ny

y(0) =z € H,

because by It0’s formula dX = "' dy + "y dW + pe''y, where u = % Z 13e;.
j=1
We note that the operator y — e~V ® A(t)(e" (y) is not monotone in V x V' and so
Theorem 3.19 in [1] is not applicable here. In order to rewrite (5.49) as a nonlinear infinite
dimensional equation of monotone (accretive) type, we define new spaces #,V and V', as
follows.
H is the Hilbert space of all (F;):>o-adapted processes y : [0,T] — H such that

. 3
(5.51) MH@/lJmMWMQ < 00,
0

where E denotes the expectation in the above probability space. The space H is endowed
with the norm | - |3 coming from the scalar product

T
(5.52) (Y,2)5 = E/O <eW(t)y(t),eW(t)y(t)> dt.

V is the space of (F;):>o-adapted processes y : [0,7] — V such that

T H
(5.53) lyly = <]E / |eW<t>(t)|@dt> < 0.
0

Clearly, the space V is reflexive. The space V' (the dual of V) is the space of all (F})¢>o-
adapted processes y : [0,T] — V' such that

=

T p’/
(5.54) ww:<E/|ﬂmmeﬁ> < e,
0
where % + ﬁ =1.If < p < oo, we have
(5.55) VCcHCV

with continuous defined embeddings. We note that

T
(5.56) vi{u,v),, = ]E/ <6W(f’)u(t), eW(t)U(t)> dt, veV,uecV.
0

is just the duality pairing between V and V'. We also have, for p > 2,
(5.57) vi{u,v)y, = (u,v), , Yue H,veV.

In the case where 1 < p < 2, we repalce V by V N H and still have (5.55).
We also note that we have the continuous embeddings

LP2((0,T) x Q; V)CVCLP((0,T) x Q; V),

(5.58)
V1 < p; < p, max(p,2) < ps.
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Now, we fix x € H and define the operators A:V 5 VandB:DB)CV — )V as
follows:

(Ay)(t) = e WO A1) (W Oy(t)) — vy(t), ae. t € (0,T), y €V,

559 (By) (1) = (1) + (u-+ v)y(t), a1 € (0,7),y € D(B),
D(B)={y €V -y € AC(0, T): V') N C([0, T]; H), Pas.,
(5.60) dy

pr eV, y(0) = :c}

Here, AC(]0,T7; V') is the space of all absolutely continuous V'-valued functions on [0, T].
The fact that indeed A(V) C V' follows from (1.4) since p > p’ if p > 2, and V is replaced
byVNHforl <p<2.

We note that, if p > 2,y € LP(0,T;V)and & € LP'(0,T; V"), thatis, ify € W' ([0,7; V/)N
L?(0,T;V), theny € C([0,T]; H) and % is just the derivative of y in the sense of V’-valued
distributions on (0,7"), and so the condition y € C([0,7T]; H) in the definition of D(B) is
redundant.

We also note that we have

% e LP((0,T) x V'), Yy € D(B),
forany 1 < p; < p’andsoy: [0,7] — LP1(Q; V') is absolutely continuous P-a.s.

The idea is to represent the Cauchy problem as a stationary equation in the pair of spa-

ces (V,V’). Namely, the Cauchy problem (5.49) can be written as the operatorial equation

By + ./Ty =0.
We have

Lemma 5.2. Assume that hypotheses (H1)-(H3) with B(t) = 0 and o = 0, ag = 0. Then, the

operators A and 13 are maximal monotone from V to V'. Moreover, the equation By + Ay = 0 has
a solution.

Proof. It is easily seen that A : V — )V’ is monotone, that is,
v (Ay — Ay, y — )y, 20, Yy, j V.
Moreover, since A is also demicontinuous from V to V’, it follows that it is maximal mo-
notone (see [1]). By (H3), it also follows that A is coercive.
The maximal monotonicity of B : V — V' is more delicate but follows as in [1]. Then,
it follows that B + A is maximal monotone. Since B + A is also coercive, it follows that

R(B+ A) = X*, as claimed. O O

By Lemma 5.2 we get, therefore,

Theorem 5.3. For each « € H there is a unique solution X to (5.49). Moreover, X is of the form
X(t,w) =y(t,w),
where y € WHP([0,T]; V') N LP(0,T;V) N C([0,T); H) P-a.s. w € Q.

Theorem 1.1 was previously established by E. Pardoux [10] and later on by N. Krylov
and B. Rozovski [9] in the general setting given here. However, the proof given here is
conceptually different and simpler. The variational approach briefly described in Section
3 was firstly developed in the works [2], [3], [6]. Some recent results on these lines are
given in [7]. Theorem 5.3 along with the operatorial approach presented above was given

in the work [6]. For other results on the variational of stochastic differential equations we
refer to the works [3, 4, 5].
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