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Fixed points of Osilike-Berinde-G-nonexpansive mappings
in metric spaces endowed with graphs

A. KAEWKHAO1,2, C. KLANGPRAPHAN1,2 and B. PANYANAK1,2

ABSTRACT. In this paper, we introduce the notion of Osilike-Berinde-G-nonexpansive mappings in met-
ric spaces and show that every Osilike-Berinde-G-nonexpansive mapping with nonempty fixed point set is a
G-quasinonexpansive mapping. We also prove the demiclosed principle and apply it to obtain a fixed point
theorem for Osilike-Berinde-G-nonexpansive mappings. Strong and ∆−convergence theorems of the Ishikawa
iteration process for G-quasinonexpansive mappings are also discussed.

1. INTRODUCTION

Let C be a nonempty subset of a metric space (X, d). A mapping f : C → C is called a
contraction if there exists λ ∈ [0, 1) such that

(1.1) d(f(x), f(y)) ≤ λ d(x, y) for all x, y ∈ C.
If (1.1) is valid when λ = 1, then T is said to be nonexpansive. A point x in C is called a
fixed point of f if f(x) = x.

Fixed point theory is an important tool for finding solutions of problems in the form
of equations or inequalities. One of the fundamental and celebrated results in metric
fixed point theory is the Banach contraction principle which stated that every contraction
on a complete metric space always has a unique fixed point. This principle has been
generalized in many directions, see, e.g., [11, 12, 13, 21, 27, 29] and references therein.
Among other things, Osilike [22] generalized the concept of contractions to the following
class of mappings : there exist λ ∈ [0, 1) and L ∈ [0,∞) such that

d(f(x), f(y)) ≤ λ d(x, y) + L · d(x, f(x)) for all x, y ∈ C.
In 2007, Berinde and Berinde [4] extended this concept to multi-valued mappings in the

following manner : a multi-valued mapping T : C → CB(C) is called a weak contraction
if there exist λ ∈ [0, 1) and L ∈ [0,∞) such that

(1.2) H(T (x), T (y)) ≤ λ d(x, y) + L · dist(x, T (x)) for all x, y ∈ C.
If (1.2) is valid when λ = 1, then T is called an Osilike-Berinde-nonexpansive mapping. A
point x in C is a fixed point of T if x ∈ T (x). We denote by F (T ) the set of all fixed points
of T.

In 2019, Bunlue and Suantai [6] proved the existence of fixed points as well as the demi-
closed principle for Osilike-Berinde-nonexpansive mappings in Banach spaces satisfying
the Opial’s condition. It was quickly noted by Klangpraphan and Panyanak [17] that the
results in [6] can be extended to complete CAT(0) spaces.
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On the other hand, Jachymski [14] combined the concepts of fixed point theory and
graph theory to prove a generalization of the Banach contraction principle in a complete
metric space endowed with a graph. In 2010, Beg et al. [3] extended Jachymski’s result
to the general setting of a multi-valued G-contraction. Later on, Alfuraidan and Khamsi
[1] introduced the notion of multi-valued G-nonexpansive mappings and proved the ex-
istence of fixed points for such kind of mappings in hyperbolic metric spaces. Since then,
the fixed point results in several kinds of metric spaces endowed with graphs have been
developed and many papers have appeared, see, e.g., [2, 5, 7, 10, 23, 26, 32, 35, 36, 38].

In this paper, motivated by the ideas of [4], [14] and [22], we introduce the class of
Osilike-Berinde-G-nonexpansive mappings in metric spaces and show that it is different
from the class of Osilike-Berinde-nonexpansive mappings. We also give sufficient con-
ditions for the existence of fixed points for Osilike-Berinde-G-nonexpansive mappings
in uniformly convex hyperbolic spaces endowed with graphs. Moreover, we also prove
strong and ∆−convergence theorems of the Ishikawa iteration process for the class of G-
quasinonexpansive mappings which includes the class of Osilike-Berinde-G-nonexpansive
mappings as well. Our results extend and improve the results in [6, 17, 28, 31, 35] and
many others.

2. PRELIMINARIES

Throughout this paper, N stands for the set of natural numbers and R stands for the set
of real numbers. Let G be a directed graph with a set of vertices V (G) and a set of edges
E(G). In this paper, we assume that G contains all loops and has no parallel edges. Let
x, y ∈ V (G).We say that x dominates y if (x, y) ∈ E(G). LetA andB be nonempty subsets
of V (G). We say that A dominates B if (a, b) ∈ E(G) for all a ∈ A and b ∈ B.

Let (X, d) be a metric space, C a nonempty subset of X and G = (V (G), E(G)) a di-
rected graph such that V (G) ⊆ C. We denote by CB(C) the family of nonempty closed
bounded subsets of C and by K(C) the family of nonempty compact subsets of C. The
distance from a point x in X to a nonempty subset B of X is defined by

dist(x,B) := inf{d(x, b) : b ∈ B}.
The Pompeiu-Hausdorff distance on CB(C) is defined by

H(A,B) := max

{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

}
for all A,B ∈ CB(C).

A multi-valued mapping T : C → CB(C) is said to be edge-preserving if for each (x, y) ∈
E(G), the following implication holds:

u ∈ T (x), v ∈ T (y) =⇒ (u, v) ∈ E(G).

Let λ ∈ [0, 1) and L ≥ 0. The mapping T is said to be (λ, L)-G-contraction if it is edge-
preserving and

H(T (x), T (y)) ≤ λ d(x, y) + L · dist(y, T (x)) for all (x, y) ∈ E(G).

The existence of fixed points for (λ, L)-G-contractions is guaranteed by Tiammee and
Suantai [34] in the following result.

Theorem 2.1. ([34]) Let C be a nonempty closed subset of a complete metric space (X, d) and
G = (V (G), E(G)) be a directed graph such that V (G) = C. Let T : C → CB(C) be a (λ, L)-
G-contraction such that CT := {x ∈ C : (x, y) ∈ E(G) for some y ∈ T (x)} 6= ∅. Suppose that
the following property holds:

(∗) for any sequence {xn} in C, if xn → x and (xn, xn+1) ∈ E(G) for all n ∈ N, then there exists
a subsequence {xnk

} of {xn} such that (xnk
, x) ∈ E(G) for all k ∈ N.



Fixed points of Osilike-Berinde-G-nonexpansive mappings in metric spaces endowed with graphs 313

Then T has a fixed point in C.

Definition 2.1. Let (X, d) be a metric space,C a nonempty subset ofX andG = (V (G), E(G))
a directed graph such that V (G) ⊆ C. A multi-valued mapping T : C → CB(C) is said to
be

(i) Osilike-Berinde-nonexpansive if there exists L ≥ 0 such that

H(T (x), T (y)) ≤ d(x, y) + L · dist(x, T (x)) for all x, y ∈ C;

(ii) Osilike-Berinde-G-nonexpansive if T is edge-preserving and there exists L ≥ 0 such
that

H(T (x), T (y)) ≤ d(x, y) + L · dist(x, T (x)) for all (x, y) ∈ E(G);

(iii) quasinonexpansive if F (T ) 6= ∅ and

H(T (x), T (y)) ≤ d(x, y) for all x ∈ C and y ∈ F (T );

(iv) G-quasinonexpansive if T is edge-preserving and F (T ) 6= ∅ and

H(T (x), T (y)) ≤ d(x, y) for all (x, y) ∈ E(G) with y ∈ F (T ).

The following examples show that the class of Osilike-Berinde-nonexpansive map-
pings and the class of Osilike-Berinde-G-nonexpansive mappings are different.

Example 2.1. LetX be the Euclidean space R2 andC = [0, 1]×[0, 1] and letG = (V (G), E(G))
be such that V (G) = {(0, 0), (1, 0)} and

E(G) =
{(

(0, 0), (0, 0)
)
,
(
(0, 0), (1, 0)

)
,
(
(1, 0), (1, 0)

)}
.

The graph G can be explained by the following diagram:

Let T : C → CB(C) be defined by

T (a, b) =
{

(a, 1− b)
}

for all (a, b) ∈ C.

It follows from Example 2.1 of [26] that T is nonexpansive and hence Osilike-Berinde-
nonexpansive. However, if we choose x = (0, 0), y = (1, 0), u = (0, 1) and v = (1, 1),
then (x, y) ∈ E(G), u ∈ T (x) and v ∈ T (y). But (u, v) /∈ E(G). This shows that T is not
edge-preserving and hence is not Osilike-Berinde-G-nonexpansive.

Example 2.2. Let X = R, C = [0, 1], G = (V (G), E(G)) be such that V (G) = [0, 12 ] and
E(G) = {(x, y) : x, y ∈ V (G)}. Let T : C → CB(C) be defined by

T (x) = [0, x2] for all x ∈ C.



314 A. Kaewkhao, C. Klangpraphan and B. Panyanak

It is easy to see that T is edge-preserving. Let (x, y) ∈ E(G). Then 0 ≤ x, y ≤ 1
2 . Thus,

H(T (x), T (y)) = H([0, x2], [0, y2]) = |x2 − y2| ≤ |x− y|+ dist(x, T (x)).

This shows that T is an Osilike-Berinde-G-nonexpansive mapping with L = 1. On the
other hand, if x = 1 and y = 1

2 , then

H(T (x), T (y)) = H([0, 1],
[
0,

1

4

]
) =

∣∣1− 1

4

∣∣ > ∣∣1− 1

2

∣∣ = |x− y|+ L · dist(x, T (x)),

for all L ≥ 0. This implies that T is not Osilike-Berinde-nonexpansive.

However, these two classes of mappings are identical under some additional condi-
tions.

Proposition 2.1. Let C be a nonempty subset of a metric space and T : C → CB(C) a multi-
valued mapping. Let G = (V (G), E(G)) be a directed graph such that V (G) = C and E(G) =
C × C. Then the following statements hold:

(i) T is Osilike-Berinde-nonexpansive if and only if T is Osilike-Berinde-G-nonexpansive.
(ii) T is quasinonexpansive if and only if T is G-quasinonexpansive.

Proof. (i) Suppose that T is Osilike-Berinde-nonexpansive. Let (x, y) ∈ E(G), u ∈ T (x)
and v ∈ T (y). Since E(G) = C × C, (u, v) ∈ E(G). This shows that T is edge-preserving
and hence Osilike-Berinde-G-nonexpansive. Conversely, suppose that T is an Osilike-
Berinde-G-nonexpansive mapping with L ≥ 0 and given x, y ∈ C. Since E(G) = C × C,
(x, y) ∈ E(G) and hence

H(T (x), T (y)) ≤ d(x, y) + L · dist(x, T (x)).

This shows that T is Osilike-Berinde-nonexpansive.
The proof of (ii) is similar to (i). �

The following proposition is an immediate consequence of Definition 2.1.

Proposition 2.2. The following statements hold:
(i) If T is Osilike-Berinde-nonexpansive and F (T ) 6= ∅, then T is quasinonexpansive.
(ii) If T is Osilike-Berinde-G-nonexpansive and F (T ) 6= ∅, then T is G-quasinonexpansive.

The following example shows that the converses of (i) and (ii) in Proposition 2.2 do not
hold.

Example 2.3. Let X = R, C = [0, 1], G = (V (G), E(G)) be such that V (G) = C and
E(G) = {(x, y) : x, y ∈ V (G)}. Let T : C → CB(C) be defined by

T (x) =

{[
0,
∣∣ x
1+x sin( 1

x )
∣∣] if x 6= 0;

{0} if x = 0.

It is easy to see that F (T ) = {0}. For x ∈ (0, 1], we have

H(T (x), T (0)) =

∣∣∣∣ x

1 + x
sin(

1

x
)

∣∣∣∣ ≤ ∣∣∣∣ x

1 + x

∣∣∣∣ ≤ |x− 0|.
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This implies that T is quasinonexpansive. On the other hand, for each n ∈ N, we set
xn := 1

2πn+π/2 and yn := 1
2πn . Then

H(T (xn), T (yn))− |xn − yn|
dist(xn, T (xn))

=

[
xn

1 + xn
− (yn − xn)

](
1 + xn
x2n

)
=

1

xn
− (yn − xn)(1 + xn)

x2n

= (2πn+ π/2)− (2πn+ π/2 + 1)

4n
→ ∞.

This implies that T is not Osilike-Berinde-nonexpansive. Since V (G) = C andE(G) = C×
C, by Proposition 2.1 T isG-quasinonexpansive and is not Osilike-Berinde-G-nonexpansive.

The concept of uniformly convex hyperbolic spaces is introduced by Leuştean [19].

Definition 2.2. A hyperbolic space is a metric space (X, d) together with a function W :
X ×X × [0, 1]→ X such that for all x, y, z, w ∈ X and t, s ∈ [0, 1], we have

(W1) d(z,W (x, y, t)) ≤ (1− t)d(z, x) + td(z, y);
(W2) d (W (x, y, t),W (x, y, s)) = |t− s|d(x, y);
(W3) W (x, y, t) = W (y, x, 1− t);
(W4) d(W (x, z, t),W (y, w, t)) ≤ (1− t)d(x, y) + td(z, w).

For convenience, from now on, we will replace W (x, y, t) by (1− t)x⊕ ty. A nonempty
subset C of X is said to be convex if (1 − t)x ⊕ ty ∈ C for all x, y ∈ C and t ∈ [0, 1].
Let G = (V (G), E(G)) be a directed graph such that V (G) ⊆ C. We say that G is convex
if for each x, y, u, v ∈ C and t ∈ [0, 1] such that (x, u) and (y, v) are in E(G), we have
((1− t)x⊕ ty, (1− t)u⊕ tv) ∈ E(G). The hyperbolic space (X, d) is said to be uniformly
convex if for each (r, ε) ∈ (0,∞)× (0, 2], there exists δ ∈ (0, 1] such that

d

(
1

2
x⊕ 1

2
y, z

)
≤ (1− δ)r,

for all x, y, z ∈ X with d(x, z) ≤ r, d(y, z) ≤ r and d(x, y) ≥ rε.
A function η : (0,∞) × (0, 2] → (0, 1] providing such a δ := η(r, ε) is called a modulus

of uniform convexity. In particular, if η is a nonincreasing function of r for every fixed ε,
then we call η a monotone modulus of uniform convexity.

The concept of 2-uniformly convex hyperbolic spaces is introduced by Khamsi and
Khan [15].

Definition 2.3. Let (X, d) be a uniformly convex hyperbolic space. For each r ∈ (0,∞)
and ε ∈ (0, 2], we define

Ψ(r, ε) := inf

{
1

2
d2(x, z) +

1

2
d2(y, z)− d2(

1

2
x⊕ 1

2
y, z)

}
,

where the infimum is taken over all x, y, z ∈ X such that d(x, z) ≤ r, d(y, z) ≤ r, and
d(x, y) ≥ rε. We say that (X, d) is 2-uniformly convex if

cM := inf

{
Ψ(r, ε)

r2ε2
: r ∈ (0,∞), ε ∈ (0, 2]

}
> 0.

In [18], the authors prove that

(2.3) d2((1− t)x⊕ ty, z) ≤ (1− t)d2(x, z) + td2(y, z)− 4cM t(1− t)d2(x, y),

for all x, y, z ∈ X and t ∈ [0, 1].
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Example 2.4. (1) Every uniformly convex Banach space is a 2-uniformly convex hyper-
bolic space (see [37]).

(2) IfX is a CAT(0) space, then it is a 2-uniformly convex hyperbolic space with cM = 1
4

(see [15]).
(3) If κ > 0 and X is a CAT(κ) space with diam(X) ≤ π/2−ε√

κ
for some ε ∈ (0, π/2), then

by Lemma 2.3 of [25] we can conclude that

Ψ(r, ε) =
r2ε2R

8
,

where R = (π− 2ε) tan(ε). This clearly implies that X is a 2-uniformly convex hyperbolic
space with cM = R

8 .

From now on, X stands for a complete 2-uniformly convex hyperbolic space with a
monotone modulus of uniform convexity. Let C be a nonempty subset of X and {xn} be
a bounded sequence in X. The asymptotic radius of {xn} relative to C is defined by

r(C, {xn}) := inf
{

lim sup
n→∞

d(xn, x) : x ∈ C
}
.

The asymptotic center of {xn} relative to C is the set

A(C, {xn}) :=
{
x ∈ C : lim sup

n→∞
d(xn, x) = r(C, {xn})

}
.

It is known from [20] that ifC is a nonempty closed convex subset ofX , thenA(C, {xn})
consists of exactly one point.

Now, we give the concept of ∆−convergence.

Definition 2.4. Let C be a nonempty closed convex subset of X and x ∈ C. Let {xn} be
a bounded sequence in X. We say that {xn} ∆−converges to x if A(C, {un}) = {x} for
every subsequence {un} of {xn}. In this case we write ∆− lim

n→∞
xn = x.

It is known from [16] that every bounded sequence in X has a ∆−convergent subse-
quence. The following fact can be found in [9].

Lemma 2.1. Let C be a nonempty closed convex subset of X and {xn} be a bounded sequence
in X. If A(C, {xn}) = {x} and {un} is a subsequence of {xn} with A(C, {un}) = {u} and the
sequence {d(xn, u)} converges, then x = u.

In [33], Tiammee et al. introduce a property that is stronger than the condition (∗) in
Theorem 2.1.

Definition 2.5. Let C be a nonempty closed convex subset of X and G = (V (G), E(G))
be a directed graph such that V (G) = C. Then C is said to have property G if for any
sequence {xn} in C such that ∆ − lim

n→∞
xn = x ∈ C, there exists a subsequence {xnk

} of

{xn} such that (xnk
, x) ∈ E(G) for all k ∈ N.

3. FIXED POINT THEOREMS

LetC be a nonempty closed convex subset ofX and I : C → C be the identity mapping
and T : C → CB(C) be a multi-valued mapping. We say that I − T is demiclosed
if for any sequence {xn} in C such that ∆ − lim

n→∞
xn = x and lim

n→∞
dist(xn, T (xn)) =

0, one has x ∈ T (x). Now, we prove the demiclosed principle for Osilike-Berinde-G-
nonexpansive mappings in complete uniformly convex hyperbolic spaces. Notice that
this is an extension of Theorem 4.1 in [17].
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Theorem 3.2. Let C be a nonempty closed convex subset of X and G = (V (G), E(G)) be a
directed graph such that V (G) = C and C has property G. Let T : C → K(C) be an Osilike-
Berinde-G-nonexpansive mapping with L ≥ 0. Then I − T is demiclosed.

Proof. Let {xn} be a sequence inC such that ∆− lim
n→∞

xn = x and lim
n→∞

dist(xn, T (xn)) = 0.

For each n ∈ N, we can choose yn ∈ T (xn) and zn ∈ T (x) such that

d(xn, yn) = dist(xn, T (xn)) and d(yn, zn) = dist(yn, T (x)).

Since C has property G, there exists a subsequence {xnk
} of {xn} such that (xnk

, x) ∈
E(G) for all k ∈ N. Since T (x) is compact, without loss of generality, we may assume that
lim
k→∞

znk
= z ∈ T (x). Since T is Osilike-Berinde-G-nonexpansive,

d(xnk
, z) ≤ d(xnk

, ynk
) + d(ynk

, znk
) + d(znk

, z)

≤ d(xnk
, ynk

) +H(T (xnk
), T (x)) + d(znk

, z)

≤ (1 + L)dist(xnk
, T (xnk

)) + d(xnk
, x) + d(znk

, z).

This implies that lim sup
k→∞

d(xnk
, z) ≤ lim sup

k→∞
d(xnk

, x). Therefore, z ∈ A(C, {xnk
}) = {x}

and hence x = z ∈ T (x). This shows that I − T is demiclosed. �

As a consequence of Theorem 3.2, we can obtain the following fixed point theorem.
Notice that it is an extension of Theorem 4.2 in [17].

Theorem 3.3. Let C be a nonempty bounded closed convex subset of X and G = (V (G), E(G))
be a convex directed graph such that V (G) = C and C has property G. Let T : C → K(C) be a
Osilike-Berinde-G-nonexpansive mapping. Suppose there exist u ∈ CT and µ ≥ 0 such that

(3.4) H(T (x), T (y)) ≤ d(x, y) + µ · dist(y, αu⊕ (1− α)T (x)),

for all α ∈ [0, 1] and (x, y) ∈ E(G). Then T has a fixed point in C.

Proof. For each n ∈ N, we define Tn : C → K(C) by

Tn(x) :=
1

n
u⊕ (1− 1

n
)T (x), for all x ∈ C.

Since T is edge-preserving, by the convexity ofGwe can see that Tn is also edge-preserving.
Since u ∈ CT , again by the convexity of G we can show that u ∈ CTn

and hence CTn
6= ∅.

It follows from (W4) and (3.4) that

H(Tn(x), Tn(y)) ≤ (1− 1

n
)H(T (x), T (y))

≤ (1− 1

n
)d(x, y) + (1− 1

n
)µ · dist(y, Tn(x)),

for all (x, y) ∈ E(G). By Theorem 2.1, there exists xn ∈ C such that xn ∈ Tn(xn). Let
yn ∈ T (xn) be such that

xn =
1

n
u⊕ (1− 1

n
)yn.

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that ∆− lim

k→∞
xnk

=

x ∈ C. Notice also that

dist(xnk
, T (xnk

)) ≤ d(xnk
, ynk

) =
1

nk
d(u, ynk

)→ 0 as k →∞.

By Theorem 3.2, x ∈ T (x) and this completes the proof. �

The condition (3.4) in Theorem 3.3 seems to be strong, but the following example shows
that it is a necessary condition.
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Example 3.5. Let X = (R, | · |), C = [0, 1] and G = (V (G), E(G)) be such that V (G) = C
and E(G) = {(x, y) : x, y ∈ V (G)}. It is easy to see that G is convex and C has property
G. Let T : C → K(C) be defined by

T (x) :=

{
[ 23 , 1] if x ∈ [0, 12 ];

[0, 13 ] if x ∈ ( 1
2 , 1].

Let L = 4 and x, y ∈ C. Without loss of generality, we may assume that x ∈ [0, 12 ] and
y ∈ ( 1

2 , 1]. Thus, T (x) = [ 23 , 1] and T (y) = [0, 13 ]. This implies that dist(x, T (x)) ≥ 1
6 and

dist(y, T (y)) ≥ 1
6 . Hence,

H(T (x), T (y)) = H
([2

3
, 1
]
,
[
0,

1

3

])
=

2

3
≤ |x− y|+ L · dist(x, T (x))

and

H(T (x), T (y)) = H
([2

3
, 1
]
,
[
0,

1

3

])
=

2

3
≤ |x− y|+ L · dist(y, T (y)).

This shows that T is Osilike-Berinde-nonexpansive, and hence Osilike-Berinde-G-nonexpansive.
Next, we show that T does not satisfy (3.4). Given u ∈ CT and µ ≥ 0. Choose x = 1

2 , y = 1

and α = 0. Then (x, y) ∈ E(G), T (x) = [23 , 1], T (y) = [0, 13 ], and

dist(y, αu⊕ (1− α)T (x)) = dist(y, T (x)) = 0.

This implies that

H(T (x), T (y)) = H
([2

3
, 1
]
,
[
0,

1

3

])
=

2

3
>

1

2
= |x− y|+ µ · dist(y, αu⊕ (1− α)T (x)).

Obviously, T does not have a fixed point.

4. CONVERGENCE THEOREMS

In this section, we prove strong and ∆−convergence theorems of the Ishikawa iteration
process for G-quasinonexpansive mappings and obtain the results for Osilike-Berinde-G-
nonexpansive mappings as corollaries. Let C be a nonempty convex subset of X, and
{αn}, {βn} be sequences in [0, 1], and T : C → CB(C) be a multi-valued mapping. The
sequence of Ishikawa iteration [31] is defined by x1 ∈ C,

(4.5) yn = (1− βn)xn ⊕ βnzn, n ∈ N,

where zn ∈ T (xn), and

(4.6) xn+1 = (1− αn)xn ⊕ αnz′n, n ∈ N,

where z′n ∈ T (yn).

The following lemma is crucial.

Lemma 4.2. Let C be a nonempty convex subset of X and G = (V (G), E(G)) be a convex
directed graph such that V (G) ⊆ C. Let T : C → CB(C) be an edge-preserving mapping. Let
{yn} and {xn} be defined by (4.5) and (4.6), respectively. If x1 dominates p ∈ F (T ), then xn and
yn dominate p for all n ∈ N.

Proof. Since (x1, p) ∈ E(G) and T is edge-preserving, (z1, p) ∈ E(G). It follows from the
convexity of G that (y1, p) ∈ E(G). Since T is edge-preserving, (z′1, p) ∈ E(G). By the
convexity of G we have (x2, p) ∈ E(G). Continue in this way, we can show that (yn, p) ∈
E(G) and (xn, p) ∈ E(G) for all n ≥ 2. �
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Recall that a multi-valued mapping T : C → CB(C) is said to satisfy the endpoint
condition [30] if F (T ) 6= ∅ and T (x) = {x} for all x ∈ F (T ). A sequence {xn} in X is said
to be Fejér monotone with respect to C if

d(xn+1, c) ≤ d(xn, c) for all c ∈ C and n ∈ N.

The following lemma shows that the sequence of Ishikawa iteration defined by (4.6) is
Fejér monotone with respect to the fixed point set of G-quasinonexpansive mapping.

Lemma 4.3. Let C be a nonempty convex subset of X and G = (V (G), E(G)) be a convex
directed graph such that V (G) ⊆ C. Let T : C → CB(C) be a G-quasinonexpansive mapping
satisfying the endpoint condition. Let {xn} be defined by (4.6). If x1 dominates F (T ), then {xn}
is Fejér monotone with respect to F (T ).

Proof. Let p ∈ F (T ). By Lemma 4.2, {xn} and {yn} dominate p. Since T isG-quasinonexpansive
and satisfies the endpoint condition,

d(yn, p) ≤ (1− βn)d(xn, p) + βnd(zn, p)

≤ (1− βn)d(xn, p) + βnH(T (xn), T (p))

≤ d(xn, p).

This implies that

d(xn+1, p) ≤ (1− αn)d(xn, p) + αnd(z′n, p)

≤ (1− αn)d(xn, p) + αnH(T (yn), T (p))

≤ (1− αn)d(xn, p) + αnd(yn, p)

≤ d(xn, p).

Therefore, {xn} is Fejér monotone with respect to F (T ). �

The following lemmas are also needed.

Lemma 4.4. Let C be a nonempty closed convex subset of X and T : C → CB(C) be a multi-
valued mapping. If I − T is demiclosed, then F (T ) is closed in X.

Proof. Let {xn} be a sequence in F (T ) such that lim
n→∞

xn = x. Then dist(xn, T (xn)) = 0 for

all n ∈ N. It follows from the demiclosedness of I − T that x ∈ T (x), and hence x ∈ F (T ).
This shows that F (T ) is closed in X . �

Lemma 4.5. Let C be a nonempty closed convex subset of X and T : C → CB(C) be a multi-
valued mapping such that I − T is demiclosed. If {xn} is a bounded sequence in C such that
lim
n→∞

dist(xn, T (xn)) = 0 and {d(xn, v)} converges for all v ∈ F (T ), then ωw(xn) ⊆ F (T ).

Here ωw(xn) :=
⋃
A(C, {un}), where the union is taken over all subsequences {un} of {xn}.

Moreover, ωw(xn) consists of exactly one point.

Proof. Let u ∈ ωw(xn), then there exists a subsequence {un} of {xn} such thatA(C, {un}) =
{u}. Since {un} is bounded, there exists a subsequence {vn} of {un} such that ∆− lim

n→∞
vn =

v ∈ C. It follows from Lemma 2.1 and the demiclosedness of I − T that u = v ∈ F (T ).
This implies ωw(xn) ⊆ F (T ).Next, we show that ωw(xn) consists of exactly one point. Let
{un} be a subsequence of {xn} with A(C, {un}) = {u} and let A(C, {xn}) = {x}. Since
u ∈ ωw(xn) ⊆ F (T ), {d(xn, u)} converges. By Lemma 2.1, x = u. This completes the
proof. �

Now, we prove ∆−convergence theorem.
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Theorem 4.4. Let C be a nonempty closed convex subset of X and G = (V (G), E(G)) be a
convex directed graph such that V (G) ⊆ C. Let T : C → CB(C) be a G-quasinonexpansive
mapping satisfying the endpoint condition and I − T is demiclosed. Let αn, βn ∈ [a, b] ⊂ (0, 1)
and {xn} be defined by (4.6) such that x1 dominates F (T ). Then {xn} ∆−converges to a fixed
point of T.

Proof. Let p ∈ F (T ). It follows from (2.3) that

d2(yn, p) ≤ (1− βn)d2(xn, p) + βnd
2(zn, p)− 4cMβn(1− βn)d2(xn, zn)

≤ (1− βn)d2(xn, p) + βnH
2(T (xn), T (p))− 4cMβn(1− βn)d2(xn, zn)

≤ d2(xn, p)− 4cMβn(1− βn)d2(xn, zn).

This implies

d2(xn+1, p) ≤ (1− αn)d2(xn, p) + αnd
2(z′n, p)− 4cMαn(1− αn)d2(xn, z

′
n)

≤ (1− αn)d2(xn, p) + αnH
2(T (yn), T (p))− 4cMαn(1− αn)d2(xn, z

′
n)

≤ (1− αn)d2(xn, p) + αnd
2(yn, p)

≤ d2(xn, p)− 4cMαnβn(1− βn)d2(xn, zn).

Thus

(4.7)
∞∑
n=1

a2(1− b)d2(xn, zn) ≤
∞∑
n=1

αnβn(1− βn)d2(xn, zn) <∞.

So that lim
n→∞

d2(xn, zn) = 0, and hence lim
n→∞

dist(xn, T (xn)) = 0. By Lemma 4.3, {d(xn, v)}
converges for all v ∈ F (T ). By Lemma 4.5, ωw(xn) consists of exactly one point and is
contained in F (T ). This shows that {xn} ∆−converges to an element of F (T ). �

As a consequence of Theorems 3.2 and 4.4, we can obtain the following corollary.

Corollary 4.1. Let C be a nonempty closed convex subset of X and G = (V (G), E(G)) be
a convex directed graph such that V (G) = C and C has property G. Let T : C → K(C) be an
Osilike-Berinde-G-nonexpansive mapping satisfying the endpoint condition. Let αn, βn ∈ [a, b] ⊂
(0, 1) and {xn} be defined by (4.6) such that x1 dominates F (T ). Then {xn} ∆−converges to a
fixed point of T.

Next, we will prove strong convergence theorems. Recall that a multi-valued mapping
T : C → CB(C) is said to satisfy condition (IG) if F (T ) 6= ∅ and there exists a nonde-
creasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for r ∈ (0,∞) such that
dist(x, T (x)) ≥ f(dist(x, F (T ))) for all x which dominates F (T ). The following fact can
be found in [8].

Lemma 4.6. Let E be a nonempty closed subset of X and {xn} a Fejér monotone sequence with
respect toE. Then {xn} converges strongly to an element ofE if and only if lim

n→∞
dist(xn, E) = 0.

Theorem 4.5. Let C be a nonempty closed convex subset of X and G = (V (G), E(G)) be a
convex directed graph such that V (G) ⊆ C. Let T : C → CB(C) be a G-quasinonexpansive
mapping satisfying the endpoint condition. Suppose that T satisfies condition (IG) and I − T is
demiclosed. Let αn, βn ∈ [a, b] ⊂ (0, 1) and {xn} be defined by (4.6) such that x1 dominates
F (T ). Then {xn} converges strongly to a fixed point of T.

Proof. By Lemma 4.4, F (T ) is closed in X . As in the proof of Theorem 4.4, we can show
that lim

n→∞
dist(xn, T (xn)) = 0. Since T satisfies condition (IG), lim

n→∞
dist(xn, F (T )) = 0. By

Lemma 4.3, {xn} is Fejér monotone with respect to F (T ). The conclusion follows from
Lemma 4.6. �
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Corollary 4.2. Let C be a nonempty closed convex subset of X and G = (V (G), E(G)) be a
convex directed graph such that V (G) ⊆ C. Let T : C → CB(C) be an Osilike-Berinde-G-
nonexpansive mapping satisfying the endpoint condition. Suppose that T satisfies condition (IG).
Let αn, βn ∈ [a, b] ⊂ (0, 1) and {xn} be defined by (4.6) such that x1 dominates F (T ). Then
{xn} converges strongly to a fixed point of T.

The following example supports Theorem 4.4.

Example 4.6. LetX = (R, | · |), C = [0, 1] andG = (V (G), E(G)) be such that V (G) = [0, 1)
and E(G) = {(x, y) : x, y ∈ V (G)}. Let T : C → CB(C) be defined by

T (x) =

{
[0, x2] if x ∈ [0, 1);

{1} if x = 1.

It is easy to see that G is convex and T is edge-preserving. Notice also that F (T ) = {0, 1}
and T satisfies the endpoint condition. If x = 1 and y = 1

2 , then

H(T (x), T (y)) = H
(
{1},

[
0,

1

4

])
= 1 >

1

2
= |x− y|.

This implies that T is not quasinonexpansive. On the other hand, if (x, y) ∈ E(G) such
that y ∈ F (T ), then y = 0 and hence

H(T (x), T (y)) = H([0, x2], {0}) = x2 ≤ x = |x− y|.

This shows that T is G-quasinonexpansive. Moreover, if {vn} is a sequence in C such that
∆− lim

n→∞
vn = v and lim

n→∞
dist(vn, T (vn)) = 0, then either v = 0 or v = 1. This implies that

I − T is demiclosed. Let αn, βn ∈ [a, b] ⊂ (0, 1). By Theorem 4.4, for any starting point
x1 in [0, 1), the sequence {xn} defined by (4.6) converges to a point x in F (T ). However,
since 1 > x1 ≥ x2 ≥ ..., it must be the case that x = 0.

Finally, we prove a strong convergence theorem for hemicompact mappings. Recall
that a multi-valued mapping T : C → CB(C) is said to be hemicompact if for any se-
quence {xn} in C such that lim

n→∞
dist(xn, T (xn)) = 0, there exists a subsequence {xnk

} of

{xn} and q ∈ C such that lim
k→∞

xnk
= q. The following fact is also needed.

Lemma 4.7. ([24]) Let {αn}, {βn} be two real sequences in [0, 1) such that βn → 0 and
∑
αnβn =

∞. Let {γn} be a nonnegative real sequence such that
∑
αnβn(1 − βn)γn < ∞. Then {γn} has

a subsequence which converges to zero.

Theorem 4.6. Let C be a nonempty closed convex subset of X and G = (V (G), E(G)) be a
convex directed graph such that V (G) ⊆ C and C has property G. Let T : C → CB(C) be an
Osilike-Berinde-G-nonexpansive mapping satisfying the endpoint condition. Let αn, βn ∈ [0, 1)
be such that βn → 0 and

∑
αnβn = ∞ and {xn} be defined by (4.6) such that x1 dominates

F (T ). If T is hemicompact, then {xn} converges strongly to a fixed point of T.

Proof. From (4.7) we get that
∞∑
n=1

αnβn(1− βn)d2(xn, zn) <∞.

By Lemma 4.7, there exist subsequences {xnk
} and {znk

} of {xn} and {zn} respectively,
such that lim

k→∞
d(xnk

, znk
) = 0, and hence lim

k→∞
dist(xnk

, T (xnk
)) = 0. Since T is hemicom-

pact and C has property G, by passing to a subsequence, we may assume that there exists
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q ∈ C such that lim
k→∞

xnk
= q and (xnk

, q) ∈ E(G) for all k ∈ N. Since T is Osilike-Berinde-

G-nonexpansive, there exists L ≥ 0 such that

H(T (xnk
), T (q)) ≤ d(xnk

, q) + L · dist(xnk
, T (xnk

)) for all k ∈ N.

This implies that

dist(q, T (q)) ≤ d(q, xnk
) + dist(xnk

, T (xnk
)) +H(T (xnk

), T (q))

≤ 2d(xnk
, q) + (1 + L)dist(xnk

, T (xnk
)) → 0 as k →∞.

Thus q ∈ T (q). By Lemma 4.3, lim
n→∞

d(xn, q) exists and hence q is the strong limit of {xn}.
�
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