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On fixpoints of Higham’s function

RADU T. TRÎMBIŢAŞ

ABSTRACT. We study the strange behavior in floating-point arithmetic of a function proposed by Nicholas
Higham, consisting of repeated square roots extraction followed by the same number of times squaring and find
its fixpoints. For IEEE standard double precision floating point numbers the fixpoints have the form

x ∈
{
(1 + keps)

1
eps , k =

[
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1

2
: −

1

2
, 0 : 709

]}
∪ {0},

where eps is the machine epsilon.

1. INTRODUCTION

In [4, §1.12.2], Higham considers the behavior in floating-point arithmetic of repeated
square roots extraction followed by the same number of times squaring. In [2, Problem
1.16, page 38], the authors consider a function, called Higham, that accepts a vector x as
input, takes the square root 52 times, and then squares the result 52 times1 : theoretically
the result must be x. Here is the MATLAB code
function y=Higham(x)
for i=1:52

x=sqrt(x);
end
for i=1:52

x=x.ˆ2;
end
y=x;

Then, they run the code
x = logspace( 0, 1, 2013 );
y = Higham( x );
plot( x, y, ’k.’, x, x, ’--’ )

The result is very different to input x (see Figure 1). The reader is invited to explain the
graph and as a hint, they ask the reader to find the points where y = x.

In the sequel, we will use the acronym FPN for Floating-Point Number (in the IEEE
754 standard, double precision). In fact, the set of FPN is F = F(2, 53,−1022, 1023, true),
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1 52 is the number of bits in the significant for a double precision floating point number (the hidden bit is not

taken into account).
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FIGURE 1. The graph of y = x and Higham(x)

where 2 is the radix, 53 is the precision, -1022 is the minimum exponent, 1023 is the maxi-
mum exponent, and true is the value of the denormalization flag.

We wish to find the fixpoints of Higham : F → F on the set F. These fixpoints approxi-
mate the corresponding real numbers in the usual sense of floating-point arithmetic, that
is, if fl(x) is the floating-point representation of x, then fl(x) = x(1 + δ), |δ| < eps/2, see
Section 2, and especially Fact 4.

2. SOME USEFUL FACTS ABOUT FPNS

Fact 1: eps is the distance from 1.0 to the next larger FPN, that is, 2−52 ≈ 2.2204e− 16.
It is twice machine epsilon. eps(x) returns the positive distance from |x| to the next
larger floating-point number of the same precision as x.

Fact 2: realmax is the largest FPN, realmax = 21023(2−eps) ≈ 1.7977e + 308; realmin
is the smallest normalized FPN, realmin = 2−1022 ≈ 2.2251e− 308, the smallest
positive FPN is eps · realmin = 2−52 · 2−1022 ≈ 4.9407e− 324.

Fact 3: The largest double precision FPN x for which ex does not yield overflow is
709.7827128933839731. In MATLAB, it is log(realmax). The smallest dou-
ble precision FPN for which ex does not yield underflow is −745.1332191019411.
This could be obtained with a modified variant of bisection applied to the interval
[−746, ln(eps · realmin)], since in MATLAB floating-point arithmetic exp(-746)
leads to underflow. exp(x) is within the normal range (i.e. is a normalized FPN)
for

−708.3964185322641 ≤ x ≤ 709.7827128933839731.

Fact 4: Axioms of Floating Point Arithmetic:

fl(x) = x(1 + δ), |δ| < eps/2;

fl(x} y) = (x ◦ y)(1 + δ), |δ| < eps/2,

where ◦ ∈ {+,−, ∗, /}.
For details on floating-point numbers and floating-point arithmetic, see [3], [5] and [7].
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3. REPEATED APPLICATION OF SQUARE ROOT

Case 1: x ≥ 1. Suppose x is a FPN such that

(3.1) ek ≤ x < ek+1,

where k = [lnx]. In exact arithmetic, taking square root 52 times is equivalent to rising to
the power of eps (Fact 1). So,

xeps ≥ ekeps = 1 + keps +
k2eps2

2!
+ · · ·(3.2)

xeps < e(k+1) =

(
1 + (k + 1)eps +

(k + 1)2eps2

2!
+ · · ·

)
.(3.3)

The error in floating point arithmetic can be evaluated as follows, using Fact 4 (SQRT is
the floating-point square root):

SQRT (x) = x
1
2 (1 + δ1)

SQRT (SQRT (x)) = x
1
4 (1 + δ1)

1
2 (1 + δ2)

...

SQRTn(x) = x
1
2n (1 + δ1)

1

2n−1 (1 + δ2)
1

2n−2 · · · (1 + δn−1)
1
2 (1 + δn) ,(3.4)

where |δk| < eps/2. Since n = 52, the last error is less than

(3.5)
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2
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2
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.

(3.4) and (3.5) imply

(3.6) SQRTn(x) = x
1
2n (1 + eps)

2−2eps
.

From (3.2),(3.3),(3.6), we have

[1 + keps + · · · ]
(

1 +
eps

2

)2−2eps

≤ SQRT 52(x) < [1 + (k + 1)eps + · · · ]
(

1 +
eps

2

)2−2eps

The bounds are as follows

[1 + keps + · · · ]
(

1 +
eps

2

)2−2eps

= 1 + keps + + · · ·

[1 + (k + 1)eps + · · · ]
(

1 +
eps

2

)2−2eps

= 1 + (k + 1)eps + 2eps + 2(k + 1) ln 2eps2 + · · ·

Neglecting the higher order terms, we eventually obtain

(3.7) 1 + keps ≤ SQRT 52(x) < 1 + (k + 1) eps.

The differences between the bounds in (3.7) is less than eps, we have only one FPN in the
corresponding interval. Using Fact 3, we conclude that SQRT 52(x) (i.e. the value of x in
function Higham after the first for) has the form

SQRT 52(x) = 1 + keps, k = 0, . . . , 709.

Case 2: 0 ≤ x < 1. Suppose

e−
k+1
2 < x ≤ e− k

2 .
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It follows

1− k + 1

2
eps +

1

2!

(k + 1)
2

4
eps2 + · · · = e−

k+1
2 eps < xeps ≤ e− k

2 eps

= 1− k

2
eps +

1

2!

k2

4
eps2 + · · ·

The error in floating point arithmetic is the same as for Case 1 (see formula (3.5)). Using
Fact 3, we obtain:

Conclusion: After the first for of Higham’s function x has the form

(3.8) x = 1 + keps, k =

[
−745 :

1

2
: −1

2
, 0 : 709

]
4. REPEATED SQUARING

We use the following inequalities: for x ≥ 0 and n ≥ 0 (see [6, pp. 266–268])

(4.9) 0 ≤ ex −
(

1 +
x

n

)n
≤ ex

[
1− 1(

1 + x
n

)x/2
]

and for x 6= 0 (see [1, page 84])

(4.10) ex >
(

1 +
x

n

)n
> ex

(
1 +

x

n

)−x

, n ∈ N,

From (4.9) and (4.10) it follows

(4.11) ex
(

1 +
x

n

)−x/2

≤
(

1 +
x

n

)n
≤ ex, x > 0.

Starting from (3.8), we consider two cases for k.
Case 1. k = 0, 1, . . . , 709. Using (4.11) we obtain(

1 +
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n

)n
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≥ ex+1

(
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[
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2
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]
≥ ex > eps (ex) .

Now, setting x = k, n = 1
eps = 252, we conclude that (1 + keps)

1
eps and [1 + (k + 1) eps]

1
eps

for k = 0, 1, . . . , 709 are distinct FPN.
Case 2. k =

[
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]
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Using (4.10), we have(
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since
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(We neglected higher order terms). So,
(
1− k

2 eps
) 1

eps and
(
1− k+1

2 eps
) 1

eps are distinct
FPNs.

Conclusion: The fixpoints of Higham’s function have the form

(4.12) x = fl
(

(1 + keps)
1

eps

)
, k =

[
−745 :

1

2
: −1

2
, 0 : 709

]
,

and the trivial fixpoint x = 0.

5. NUMERICAL CHECKING

We performed all numerical tests in MATLAB2.
First, we checked (3.8). Within each interval [k, k+1), we generate 1000 equally spaced

poins and 1000 random points x, compute exp(x) and then apply SQRT 52 times. If
exp(x) is within the normal range (see Fact 3), we get only one distinct value, 1 + keps, as
(3.8) states.

As usual, the denormalized numbers are problematic (see [5, 3, 7]) . In the nonnormal
range we have some exceptions, for k ∈ { −743, −742, −741, −740.5, −739, −738, −734.5,
−733.5, −733, −731.5, −730}.

Using (4.12), the computation of fixpoints is straightforward. For fixed points within
the normal range, the value |higham(x) − x| = 0. Table 1 gives some fixpoints for k =
−5 : 1/2 : −1/2 and k = 0 : 9. Again, for the nonnormal range we have some exceptions,
for k ∈ { −743, −742, −741, −740.5, −739, −738, −734.5, −733.5, −733, −731.5, −730}.
Nevertheless, the absolute error is small, see Table 2.

k = −5 : 1/2 : −1/2 k = 0 : 9
0.00673794684861067 1
0.011108996496683 2.71828180818247
0.0183156383435951 7.38905598869578
0.0301973828606 20.0855367735334
0.0497870672555764 54.5981484040809
0.0820849977073196 148.41315356324
0.135335281222581 403.428787480964
0.223130157655966 1096.63311750602
0.367879438434089 2980.95780915404
0.606530657456067 8103.08314213023

TABLE 1. Fixpoints of higham function for k = −5 : 1/2 : −1/2 (left) and
k = 0 : 9 (right)

2 MATLAB R© is a trademark of MathWorks R© Inc., Natick, MA



360 Radu T. Trı̂mbiţaş

k fixpoints |higham(x)− x|
−743.0 1.48219693752374e− 323 4.94065645841247e− 324
−742.0 3.45845952088873e− 323 1.97626258336499e− 323
−741.0 9.38724727098368e− 323 5.92878775009496e− 323
−740.5 1.53160350210786e− 322 9.88131291682493e− 323
−739.0 6.91691904177745e− 322 4.44659081257122e− 322
−738.0 1.87744945419674e− 321 1.21540148876947e− 321
−734.5 6.21682802162041e− 320 4.03256380135625e− 320
−733.5 1.68985272847082e− 319 1.09623285499256e− 319
−733.0 2.78608558346337e− 319 1.80739094561645e− 319
−731.5 1.24864222542167e− 318 8.10015685700265e− 319
−730.0 5.5960197156515e− 318 3.63025108660419e− 318

TABLE 2. Fixpoints in the nonnormal range

If we try to find the fixpoints in the normal range using the fixpoint iteration with
starting value x0 = exp(k), we find the corresponding fixpoint in at most 2 iterations.

6. CONCLUSIONS

From the definition of Higham function, if follows Higham (x) = x, for each x ∈ R. Due
to floating-point arithmetic on the set F, the previous relation holds only for the points
given by formula (4.12). Numerical tests confirm the formula with a few exceptions within
the nonnormal range given in Table 2.

These explain completely the strange behavior of Higham function and the graph in
Figure 1.

The results in this paper illustrates the statement that the behavior of FPNs is very
different to from that of real numbers. The study of such a freak object as Higham’s
function should be relevant for Numerical Analysis practitioner.
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STR. PLOIEŞTI NO. 27, 400157, CLUJ-NAPOCA, ROMANIA

E-mail address: tradu@math.ubbcluj.ro


