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On a class of nonlinear nonlocal fractional differential
equations

HOSSEIN FAZLI1, HONGGUANG SUN1, SIMA AGHCHI1 and JUAN J. NIETO2

ABSTRACT. We investigate the existence of extremal solutions for a class of fractional differential equations
in the area of fluid dynamics. By establishing a new comparison theorem and applying the classical mono-
tone iterative approach, we establish sufficient conditions to ensure the existence of the extremal solutions and
construct twin convergent monotone explicit iterative schemes. Generalized nonlinear nonlocal Bagley-Torvik
equation and generalized Basset equation with nonlinear source functions are some special cases of our dis-
cussed problem.

1. INTRODUCTION

We consider the existence of extremal solutions of the following fractional order differ-
ential equation

u(m)(t) +MDαu(t) = f (t, u(t)) , m− 1 < α < m, t ∈ [0, T ],(1.1)

subject to the nonlinear nonlocal conditions

gk

(
u(k)(t0), u(k)(t1), · · · , u(k)(tr)

)
= 0,(1.2)

where 0 = t0 < t1 < · · · < tr = T, k = 0, 1, · · · ,m − 1, m ∈ N and Dα is the Caputo
fractional derivative of order α > 0. The nonlinear functions f and gk are assumed to
satisfy certain conditions, which will be specified later.

There are two types of primary incentives for studying problem (1.1)-(1.2). The first
one is the fact that, equation (1.1) serves as a prototype for a large class of fractional dif-
ferential equations involving more than one differential operator and appears in mathe-
matical models of physical phenomena. For example, when m = 2 we obtain a general
case of Bagley-Torvik equation which arises in the modeling of the motion of a rigid plate
immersed in a Newtonian fluid [22, 24, 11]. Another example for an application of our
discussed problem is the Basset equation which describes the forces that occur when a
spherical object sinks in a incompressible viscous fluid [5, 6]. And the second one is using
nonlinear boundary conditions (1.2) as a generalization of the classical initial and bound-
ary conditions. These conditions are of significance because they have applications in the
problems of physics and other areas of applied mathematics. Conditions of this type can
be applied in the theory of elasticity with better effect than the initial or boundary condi-
tions. For the importance of nonlinear boundary conditions in different fields, we refer to
[7, 8, 9, 1, 2, 3, 23] and the references cited therein.

Differential equations of fractional order have recently proved to be valuable tools in
the modeling of many phenomena in various fields of science and engineering. For exam-
ple,, we can find numerous applications in a number of fields such as physics, geophysics,
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polymer rheology, viscoelasticity, capacitor theory, electrical circuits, electron-analytical
chemistry, biology, etc. For more details and applications, we refer the reader to the books
[16, 10] and references therein. The fractional operators are nonlocal, therefore they are
suitable for constructing models possessing memory and hereditary properties of various
materials and processes. The presence of memory term in such models not only takes
into account the history of the process involved but also carries its impact to present and
future development of the dynamic process [18].

Analysis of fractional differential equations has been carried out by various researchers.
Recently, there are many papers dealing with the existence, uniqueness, approximation
and regularity of solutions of fractional differential equations using various methods. We
refer the interested readers to the valuable monographs of Kilbas et al. [16] as well to
[10] and references [18, 12, 13, 14, 15, 21, 4, 25, 17, 19]. Among the most important of all
fractional differential equations are undoubtedly fractional differential equations involv-
ing nonlinear boundary conditions. The nonlinear boundary condition was motivated by
mathematical physical problems such as flow fluid through fissured rocks, diffusion of
gas in a transparent tube, heat conduction and so on. The pioneering work in this direc-
tion is due to Byszewski [7, 8, 9]. Subsequently, many authors contributed to the study of
nonlocal problems, see [1, 2, 3, 23] and references therein.

In the present article, we wish to investigate the existence of extremal solutions for the
problem (1.1) subject to the nonlocal nonlinear conditions (1.2) using monotone iterative
approach. Some auxiliary facts and results are stated in Section 2 which help us to give
regularity properties of the solution under some conditions on the source function f . Our
method not only establishes excellent conditions to ensure the existence of the extremal
solutions, but also constructs twin convergent monotone explicit iterative schemes to seek
them. This is done in Section 3. Finally in the last section, we provide two examples useful
in the area of fluid dynamics, illustrating the main result. The first example is nonlinear
Bagley-Torvik equation involving nonlinear boundary conditions and the other one is
nonlinear nonlocal Basset equation.

2. PRELIMINARIES AND AUXILIARY RESULTS

Here, we recall several known definitions and properties from fractional calculus the-
ory. For details, see [22, 10, 16]. Throughout the paper ACn[0, T ], n ∈ N, denotes the set
of functions having absolutely continuous n-th derivative on [0, T ], and AC[0, T ] is the set
of absolutely continuous functions on [0, T ]. It is known that u ∈ AC[0, T ] if and only if
there exists a pair (c, ϕ) ∈ R× L1[0, T ] such that u(t) = c+

∫ t
0
ϕ(τ) dτ .

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 for the function
u : [0, T ]→ R, u ∈ L1[0, T ] is defined as

Iαu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds.

Definition 2.2. Let n − 1 < α ≤ n and n ∈ N. The Caputo fractional derivative of order
α > 0 of a function u : [0, T ]→ R is defined as

Dαu(t) = DnIn−α

(
u(t)−

n−1∑
k=0

u(k)(0)

k!
tk

)
,

provided that the right-hand side integral exists and is finite. Note that if u ∈ ACn−1[0, T ],
then

Dαu(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1u(n)(s)ds = In−αu(n)(t).
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Lemma 2.1. Let α, β ≥ 0. The fractional integral and derivative operators satisfy the following
conditions:

(i) IαIβu = Iα+βu, DαIαu = u when u ∈ C[0, T ].
(ii) Iα : C[0, T ] → C[0, T ] and Iα : AC[0, T ] → AC[0, T ] are linear and continuous.

Precisely ‖Iαu‖C[0,T ] ≤ Tα

Γ(1+α)‖u‖C[0,T ].

Now, we state Weissinger’s Fixed Point Theorem [10, Theorem D.7] as a generalization
of Banach’s fixed point theorem which is needed to prove the existence of at least one
solution of (1.1).

Theorem 2.1. Assume (X, d) to be a nonempty complete metric space, and let θn ≥ 0 for every
n ∈ N ∪ {0} and such that

∑∞
n=0 θn converges. Furthermore, let the mapping A : X → X

satisfy the inequality d(Anx,Any) ≤ θnd(x, y) for every n ∈ N and every x, y ∈ X . Then, A
has a uniquely determined fixed point x∗. Moreover, for any x0 ∈ X , the sequence {Anx0}∞n=0

converges to this fixed point x∗.

In relation to (1.1)-(1.2), we introduce the following linear problem{
u(m)(t) +MDαu(t) = h(t), m− 1 < α < m, t ∈ [0, T ],
u(k)(0) = uk, k = 0, 1, · · · ,m− 1.

(2.3)

The following lemma plays a crucial role in what follows. Particularly, this lemma is very
important in discussion of regularity properties of the solution of (1.1)-(1.2).

Lemma 2.2. Let h ∈ L1[0, T ]. A function u ∈ ACm−1[0, T ] is a solution of the initial value
problem (2.3) if and only if u is a solution of the integral equation(

u(t)−
m−1∑
k=0

uk
tk

k!

)
+MIm−α

(
u(t)−

m−1∑
k=0

uk
tk

k!

)
= Imh(t),(2.4)

in the set C[0, T ].

Proof. Let u ∈ ACm−1[0, T ] be a solution of (2.3). Then, we have

u(m)(t) +MIm−αu(m)(t) = h(t),(2.5)

holds almost everywhere on [0, T ]. Applying the integral operator Im to both sides of
(2.5), we deduce the integral equation (2.4). Conversely, suppose that u ∈ C[0, T ] is a
solution of the integral equation (2.4). Applying the operator MIm−α to both sides of
(2.4), we have

MIm−α

(
u(t)−

m−1∑
k=0

uk
tk

k!

)
+M2I2(m−α)

(
u(t)−

m−1∑
k=0

uk
tk

k!

)
= MI2m−αh(t).(2.6)

Combining now (2.4) and (2.6), we deduce(
u(t)−

m−1∑
k=0

uk
tk

k!

)
−M2I2(m−α)

(
u(t)−

m−1∑
k=0

uk
tk

k!

)
= Imh(t)−MI2m−αh(t).(2.7)

Applying again the operator MIm−α to both sides of (2.7) and combining the resulting
equality with (2.4), we have(

u(t)−
m−1∑
k=0

uk
tk

k!

)
+M3I3(m−α)

(
u(t)−

m−1∑
k=0

uk
tk

k!

)
= Imh(t)−MI2m−αh(t)

+M2I3m−2αh(t).
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Repeating this process (n0 − 1) times with n0(m− α) ≥ m, we get

u(t) =

m−1∑
k=0

uk
tk

k!
+ (−M)n0In0(m−α)

(
u(t)−

m−1∑
k=0

uk
tk

k!

)
+

n0−1∑
k=0

(−M)kIm+k(m−α)h(t).

Then u ∈ ACm−1[0, T ]. Now, differentiating (2.4) m times leads to the relation u(m)(t) +
MDαu(t) = h(t) holds almost everywhere on [0, T ]. On the other hand, a simple calcula-
tion shows that the initial conditions are satisfied. �

Lemma 2.3. Let h ∈ L1[0, T ]. Then the integral equation (2.4) has a unique solution in C[0, T ].

Proof. Let A : C[0, T ]→ C[0, T ] as

Aw(t) := −MIm−αw(t) + Imh(t).

A is well defined because of Lemma 2.1. We apply the Weissinger’s fixed point theorem
to prove that A has a unique fixed point. Let n ∈ N and w1, w2 ∈ C[0, T ]. Then, using the
semigroup property of the fractional integral operator Iα, we have

‖Anw2 −Anw1‖C[0,T ] =
∥∥−MIm−α

(
An−1w2 −An−1w1

)∥∥
C[0,T ]

=
∥∥−MIm−α

(
−MIm−α

(
An−2w2 −An−2w1

))∥∥
C[0,T ]

...

=
∥∥∥(−M)nIn(m−α) (w2 − w1)

∥∥∥
C[0,T ]

≤ (−M)nTn(m−α)

Γ (n(m− α) + 1)
‖w2 − w1‖C[0,T ] ,

where the last equality following from Lemma 2.1. In order to apply Weissinger’s fixed
point theorem, we only need to show that the series

∑∞
n=0

(−MTm−α)n

Γ(n(m−α)+1) is convergent.

This, however, is trivial in view of the fact that
∑∞
n=0

(−MTm−α)n

Γ(n(m−α)+1) = Em−α(−MTm−α)

where Em−α(z) is the Mittag-Leffler function. This completes the proof. �

3. MAIN RESULT

In this section, we present an important comparison result about fractional differential
equations and use it to construct two monotone iterative sequences which converge to
extremal solutions for the problem (1.1)-(1.2).

Lemma 3.4. (Comparison result). Suppose that u ∈ ACm−1[0, T ] is a function with{
u(m)(t) +MDαu(t) ≥ 0, m− 1 < α < m, t ∈ [0, T ],
u(k)(0) ≥ 0, k = 0, 1, · · · ,m− 1,

(3.8)

where M ∈ R is a constant, then u(k)(t) ≥ u(k)(0) for k = 0, 1, · · · ,m− 1.

Proof. Since u ∈ ACm−1[0, T ] satisfies (3.8), we have{
u(m)(t) +MIm−αu(m)(t) ≥ 0,
u(k)(0) ≥ 0, k = 0, 1, · · · ,m− 1.

(3.9)

Now substitute v(t) = u(m−1)(t) into (3.9), we have{
v′(t) +MIm−αv′(t) ≥ 0,
v(0) ≥ 0,

(3.10)
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Applying the operator I1−(m−α) to both sides of (3.10) and using the monotonicity prop-
erties of Riemann-Liouville integral operator, we deduce{

Dm−αv(t) +M(v(t)− v(0)) ≥ 0,
v(0) ≥ 0.

With the substitution w(t) = v(t)− v(0) and using the fact that the Caputo derivative of a
constant is zero, we obtain {

Dm−αw(t) +Mw(t) ≥ 0,
w(0) = 0.

A similar argument to the proof of Maximum Principle Theorem [20, Theorem 3.1] implies
w(t) ≥ 0 on [0, T ]. Therefore, u(m−1)(t) ≥ u(m−1)(0) on [0, T ]. Now, applying the integral
operator to the inequality u(m−1)(t) ≥ u(m−1)(0) together with u(m−2)(0) ≥ 0, we find
that u(m−2)(t) ≥ u(m−2)(0) on [0, T ]. Finally, repeating this process m− 2 times yields the
desired result. �

Definition 3.3. We say that u ∈ ACm−1[0, T ] is called a lower solution of (1.1)-(1.2) if{
u(m)(t) +MDαu(t) ≤ f (t, u(t)) , m− 1 < α < m, t ∈ [0, T ],
gk
(
u(k)(t0), u(k)(t1), · · · , u(k)(tr)

)
≤ 0, 0 = t0 < t1 < · · · < tr = T, k = 0, 1, · · · ,m− 1,

and it is an upper solution of (1.1)-(1.2) if the above inequalities are reverted.

We list the following assumptions for the convenience.
(H1) Assume that u, u ∈ ACm−1[0, T ] are lower and upper solutions of the problem

(1.1)-(1.2), respectively, and u � u, i.e., u(k)(t) ≤ u(k)(t), k = 0, 1, · · · ,m − 1, t ∈
[0, T ].

(H2) f : [0, T ]× R→ R is a continuous and nondecreasing function with respect to the
second variable.

(H3) For every i = 0, 1, · · · , r, k = 0, 1, · · · ,m − 1, gk ∈ C(Rr+1,R) and there exist
constants λk > 0, µik ≥ 0 such that for u(k)(ti) ≤ xi ≤ x̄i ≤ u(k)(ti),

gk(x̄0, x̄1, · · · , x̄r)− gk(x0, x1, · · · , xr) ≤ λk(x̄0 − x0)−
r∑
i=1

µik(x̄i − xi).

Theorem 3.2. Suppose that conditions (H1)-(H3) hold. Then there exist sequences {uj}, {vj} ⊆
ACm−1[0, T ] such that limj→∞ uj = u and limj→∞ vj = v and u, v are minimal and maximal
solutions of the problem (1.1)-(1.2), respectively, in [u, u] where [u, u] = {u ∈ C[0, T ] | u(t) ≤
u(t) ≤ u(t), t ∈ [0, T ]}.
Proof. The proof is divided into four steps:
Step 1. Set u0 = u and v0 = u and then given {uj}∞j=0 and {vj}∞j=0 inductively define
uj+1 ∈ ACm−1[0, T ] and vj+1 ∈ ACm−1[0, T ] to be the unique solutions of the linear
problems {

u
(m)
j+1(t) +MDαuj+1(t) = f (t, uj(t)) , j ≥ 0,

u
(k)
j+1(0) = ηkj , k = 0, 1, · · · ,m− 1,

(3.11)

where ηkj = u
(k)
j (0)− 1

λk
gk

(
u

(k)
j (t0), u

(k)
j (t1), · · · , u(k)

j (tr)
)

and{
v

(m)
j+1(t) +MDαvj+1(t) = f (t, vj(t)) , j ≥ 0,

v
(k)
j+1(0) = ηkj , k = 0, 1, · · · ,m− 1,

(3.12)

where ηkj = v
(k)
j (0) − 1

λk
gk

(
v

(k)
j (t0), v

(k)
j (t1), · · · , v(k)

j (tr)
)

. From Lemma 2.2 and Lemma

2.3, we know that (3.11) and (3.12) have a unique solutions in ACm−1[0, 1].
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Step 2. We claim

u = u0 � u1 � · · · � uj � uj+1 � · · · � vj+1 � vj � · · · � v1 � v0 = u.(3.13)

To confirm this, first note from (3.11) for j = 0 that{
u

(m)
1 (t) +MDαu1(t) = f (t, u0(t)) ,

u
(k)
1 (0) = u

(k)
0 (0)− 1

λk
gk

(
u

(k)
0 (t0), · · · , u(k)

0 (tr)
)
, k = 0, 1, · · · ,m− 1.

(3.14)

Recalling the definition of lower solution u0 = u and setting w = u1 − u0, we find{
w(m)(t) +MDαw(t) ≥ 0,

w(k)(0) = − 1
λk
gk

(
u

(k)
0 (t0), u

(k)
0 (t1), · · · , u(k)

0 (tr)
)
≥ 0, k = 0, 1, · · · ,m− 1.

Consequently Lemma 3.4 implies 0 � w, so that u0 � u1. Now, from (3.14) and using
assumptions (H2) and (H3), we infer u(m)

1 (t) +MDαu1(t) ≤ f (t, u1(t)) and

gk

(
u

(k)
1 (t0), · · · , u(k)

1 (tr)
)
≤ gk

(
u

(k)
0 (t0), · · · , u(k)

0 (tr)
)

+ λk

(
u

(k)
1 (0)− u(k)

0 (0)
)

−
∑r
i=1 µ

i
k

(
u

(k)
1 (ti)− u(k)

0 (ti)
)

= −
∑r
i=1 µ

i
k

(
u

(k)
1 (ti)− u(k)

0 (ti)
)

≤ 0.

Therefore, u1 is lower solution of problem (1.1)-(1.2). We can now repeat the argument
above to deduce u1 � u2 and then an induction verifies that uj � uj+1 for j ≥ 2. Assertion
vj � vj−1 for j ∈ N follows similarly. Now, we put w = v1 − u1. From (H2) and (H3), we
have {

w(m)(t) +MDαw(t) ≥ 0,

w(k)(0) ≥
∑r
i=1

µik
λk

(
u

(k)
1 (ti)− u(k)

0 (ti)
)
≥ 0, k = 0, 1, · · · ,m− 1.

Consequently, 0 � w, so that u1 � v1. Using mathematical induction, we see that uj � vj
for j ≥ 2.
Step 3. In light of (3.13), it is easy to show {uj} and {vj} are uniformly bounded and
equicontinuous in [u, u]. By the Arzela-Ascoli Theorem, we have

lim
j→∞

uj = u∗, lim
j→∞

vj = v∗,

uniformly on [0, T ], and the limit functions u∗, v∗ satisfy (1.1)-(1.2). Moreover, u∗, v∗∈[u, u].
Step 4. Finally, we prove u∗ and v∗ are the extremal solutions of (1.1)-(1.2) in [u, u]. Let
u ∈ [u, u] be any solution of (1.1)-(1.2). We suppose that uj � u � vj for some j ∈ N. Then,
by assumption (H2), we see that f (t, uj(t)) ≤ f (t, u(t)) ≤ f (t, vj(t)) and

u
(k)
j+1(0) = u

(k)
j (0)− 1

λk
gk

(
u

(k)
j (t0), u

(k)
j (t1), · · · , u(k)

j (tr)
)

= u
(k)
j (0) + 1

λk
gk
(
u(k)(t0), u(k)(t1), · · · , u(k)(tr)

)
− 1
λk
gk

(
u

(k)
j (t0), u

(k)
j (t1), · · · , u(k)

j (tr)
)

≤ u(k)(0)−
∑r
i=1

µik
λk

(
u(k)(ti)− u(k)

j (ti)
)

≤ u(k)(0).

Similarly, we have u(k)(0) ≤ v(k)
j+1(0). Hence{

u
(m)
j+1(t) +MDαuj+1(t) ≤ u(m)(t) +MDαu(t) ≤ v(m)

j+1(t) +MDαvj+1(t),

u
(k)
j+1(0) ≤ u(k)(0) ≤ v(k)

j+1(0), k = 0, 1, · · · .m− 1.
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Consequently, uj+1 � u � vj+1. Therefore, we have

uj � u � vj , j = 0, 1, 2, · · · .(3.15)

Thus, taking limit in (3.15) as j → ∞, we have u∗ � u � v∗. That is, u∗ and v∗ are the
extremal solutions of (1.1)-(1.2) in [u, u]. �

4. APPLICATIONS

In this section we discuss some particular cases of (1.1)-(1.2) that are of importance in
the area of fluid dynamics.

Example 4.1. Consider the following nonlinear Bagley-Torvik equation involving nonlin-
ear boundary conditions u′′(t) + 5D

3
2u(t) = t+ 1

5u
2(t), 0 ≤ t ≤ 1,

4u(0)− u(1) = 0,
u′2(0) + 4u′(0)− u′(1) = 1,

(4.16)

where f(t, u) = t+ 1
5u

2, g0(x, y) = 4x−y and g1(x, y) = x2 +4x−y−1. A relatively simple
calculations, with the help of Maple, shows that u(t) = 0 and u(t) = 1 + t + t

3
2 be lower

and upper solutions of (4.16), respectively, and u � u. In addition, it is easy to verify that
the assumptions (H2) and (H3) hold and gi ∈ C(R2,R), i = 0, 1 and we have

g0(x̄, ȳ)− g0(x, y) ≤ 4(x̄− x)− (ȳ − y), 0 ≤ x ≤ x̄ ≤ 1, 0 ≤ y ≤ ȳ ≤ 3,

g1(x̄, ȳ)− g1(x, y) ≤ 6(x̄− x)− (ȳ − y), 0 ≤ x ≤ x̄ ≤ 1, 0 ≤ y ≤ ȳ ≤ 5

2
.

Therefore, all the assumptions of Theorem 3.2 hold and consequently, there exist mono-
tone iterative sequences {uj}, {vj}, which converge uniformly on [0, 1] to the extremal
solutions (u, v) of (4.16).

Example 4.2. Consider the following nonlinear nonlocal Basset equation{
u′(t) + 2D

1
2u(t) = t

(
1 + 1

2u
2(t)

)
, 0 ≤ t ≤ 1,

10u(0)− u( 1
4 )− u( 1

2 )− u( 3
4 )− u(1) = 0,

(4.17)

where f(t, u) = t
(
1 + 1

2u
2(t)

)
and g0(x0, x1, x2, x3, x4) = 10x0 − x1 − x2 − x3 − x4. A

relatively simple calculations, with the help of Maple, shows that u(t) = 0 and u(t) = 1+ t
be lower and upper solutions of (4.17), respectively, and u � u. In addition, it is easy to
verify that the assumptions (H2) and (H3) hold and g0 ∈ C(R5,R) and we have

g0(x̄0, · · · , x̄4)− g0(x0, · · · , x4) ≤ 10(x̄0 − x0)−
4∑
i=1

(x̄i − xi), 0 ≤ xi ≤ x̄i ≤ 3, i = 0, · · · , 4.

Therefore, all the assumptions of Theorem 3.2 hold and consequently, there exist mono-
tone iterative sequences {uj}, {vj}, which converge uniformly on [0, 1] to the extremal
solutions (u, v) of (4.17).
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