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Strong convergence theorems for variational inequalities
and fixed point problems in Banach spaces

M. O. NNAKWE1,2 and J. N. EZEORA3

ABSTRACT. In this paper, using a sunny generalized non-expansive retraction which is different from the
metric projection and generalized metric projection in Banach spaces, we present a retractive iterative algorithm
of Krasnosel’skii-type, whose sequence approximates a common solution of a mono-variational inequality of
a finite family of η-strongly-pseudo-monotone-type maps and fixed points of a countable family of generalized non-
expansive-type maps. Furthermore, some new results relevant to the study are also presented. Finally, the theorem
proved complements, improves and extends some important related recent results in the literature.

1. INTRODUCTION

In this paper, we study the mono-variational inequality problem of Jouymandil and Morad-
loul [17] and J-fixed points for a countable family of generalized non-expansive-type
maps in Lp spaces, 1 < p <∞.

The first problem involving variational inequality was developed to solve equilibrium
problems, precisely, the Signorini problem, posed in the year 1959, by Signorini [30], and
was solved in the year 1963, by Fichera [13]. Hartman and Stampacchia studied the exis-
tence of solutions of variational inequality; see, for example, [15, 23].

Variational inequality has been found to have numerous applications in many areas
of mathematics, such as in partial differential equations, optimal control, optimization,
mathematical programming and some other nonlinear problems; see, for example, [1–4,
11, 12, 14, 34].

Numerous iterative methods have been proposed for solving variational inequality in
the setting of real Hilbert spaces and more general Banach spaces; see, for example [5,20].

Let Q∗ be the dual space of a real normed linear space, Q. A map A : Q → 2Q with
domain D(A) inQ is called accretive, if for all u, v ∈ D(A), there exists j(u− v) ∈ J(u− v)
such that

(1.1) 〈ηu − ηv, j(u− v)〉 ≥ 0, ηu ∈ Au, ηv ∈ Av,

where J : Q → 2Q
∗

is the normalized duality map.
The map A is called m-accretive, if A is accretive and R(I + sA) = Q, for all s > 0, where
R(I + sA) denotes the range of (I + sA) and I is the identity map on Q. In real Hilbert
spaces, accretive maps are called monotone.

Accretive maps were introduced independently in the year 1967 by Browder [3] and
Kato [19]. Interest in this class of maps stems mainly from their firm connection with the
existence theory for nonlinear equations of evolution.
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A fundamental problem in the study of accretive maps is the following:

(1.2) find u ∈ D(A) such that 0 ∈ Au.

To study the inclusion (1.2) whenA is accretive, Browder [3] defined a self map T onQ by
T := (I −A) and called such a map pseudo-contractive. It is obvious that fixed points of T
correspond to solutions of the inclusion (1.2), assuming existence of a solution. For earlier
and more recent results on the approximation of fixed points of pseudo-contractive maps,
the reader may consult any of the following; [2, 9, 21, 26, 28, 31].

A mapA : Q → 2Q
∗

is called monotone, if for each u, v ∈ Q, the following inequality holds:〈
ηu − ηv, u− v

〉
≥ 0, ηu ∈ Au, ηv ∈ Av.(1.3)

We recall in [29] that the sub-differential of a proper and convex function f , denoted by
∂f , is a monotone map, and for each u ∈ Q, 0 ∈ ∂f(u) if and only if u is a minimizer of
f . In particular, setting ∂f ≡ A, where A is monotone, we have the fact that, 0 ∈ Au. This
also reduces to Au = 0, where A is single-valued.

Approximating zeros of such monotone maps is equivalent to finding a minimizer of f .

We observe that, the fixed point technique introduced by Browder [3], in the year 1967,
for approximating zeros of accretive maps in a real Hilbert, for obvious reasons, is not
applicable in this case, where A is a monotone map from a real Banach space to its dual
space.

Hence, there is the need to introduce and develop new techniques for approximating
zeros of such monotone maps.

To approximate zeros of monotone maps, Chidume and Idu [8], in the year 2016, intro-
duced a map, T , from a real normed space to its dual space, by T := (J − A), where
A : Q → 2Q

∗
is monotone. They called such a map J-pseudo-contractive.

Interest in J-pseudo-contractive maps stems mainly from their firm connection with the
important class of nonlinear monotone maps (see also, [27]).

Let T : Q → Q∗ be a map. An element u ∈ Q is called a J-fixed point of T , if

(1.4) Tu = Ju,

where J is single-valued in this case. Examples of J-fixed points include:

Example 1.1. [8] It is known (see e.g., Alber [1], pp.36) that in lp spaces, 1 < p <∞,

Ju = ||u||2−plp
v ∈ lq, v = {|u1|p−2u1, |u2|p−2u2, |u3|p−2u3, · · · }, u = {u1, u2, . . . } ∈ lp.

For 1 < q < p, and any λ ∈ R, set γp := (1 + 1
2p )

2−p
p and define T : lp → lq by

T (u1, u2, u3, . . . ) = (γpu1,
γp

2p−1
u2, 0, 0, 0, . . . ).

Let uλ = (λ, λ2 , 0, 0, . . . ). Then, Tuλ = γp(λ,
λ
2p , 0, 0, . . . ) and Juλ = γp(λ,

λ
2p , 0, 0, . . . ).

Hence, uλ ∈ FJ(T ).

Example 1.2. Let A, T : LR
p ([0, 1])→ LR

q ([0, 1]), 1 < p <∞, 1
p + 1

q = 1, be defined by

Au(t) := (1 + t)Ju(t), ∀ t ∈ [0, 1] and T := J −A.

Clearly, A is a monotone map. Hence, u(t) = 0 is the fixed point of T, for all t ∈ [0, 1].
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We observe that, in a real Hilbert space and a strictly convex space, the notion of J-fixed
point coincides with the classical definition of fixed point. However, if the space is not
strictly convex, J may fail to be one-to-one. Hence, the inverse of J will not exist.

Therefore, approximating zeros of such monotone maps, is equivalent to approximat-
ing J-fixed points of J-pseudo-contractive maps, assuming existence of such zeros, which
is also equivalent to finding minimizers of some convex functions.

In the year 2016, Chidume and Idu [8] studied this notion of fixed point and called it J-
fixed point. This notion of fixed point has turned out to be very useful and applicable. For
example, Chidume and Idu [8] studied the concept of J-fixed points and proved a strong
convergence of a sequence, that approximates a J-fixed point of a J-pseudo-contractive
map. As an application of their theorem, they proved a strong convergence of a sequence,
that approximates a zero of an m-accretive map. They also applied their theorem on J-
fixed points, to approximate solutions of Hammerstein integral equations. Nnakwe [24] in
2020, also applied this concept of J-fixed point and proved a strong converge theorem for
approximating a common solution of variational inequality and two convex minimization
problems. For more recent works on J-fixed points; see, for example, [10, 25, 32, 35].

Motivated by the ongoing research in this direction, it is our purpose in this paper to
continue with the study of J-fixed points and some of it’s applications. Here, we study
a retractive iterative algorithm of Krasnosel’skii-type and prove a strong convergence of the se-
quence generated by the algorithm for approximating a common element in the set of
solutions of mono-variational inequality of a finite family of η-strongly J-pseudo-monotone
maps and fixed points of a countable family of generalized J-non-expansive maps in Lp
spaces, 1 < p < ∞. Furthermore, we give some new definitions and lemmas relevant
to the study. Finally, examples of η-strongly J-pseudo-monotone maps which are nei-
ther strongly J-monotone nor J-monotone and generalized J-non-expansive maps are
constructed.

2. PRELIMINARIES

LetQ∗ be the dual space of a smooth real Banach spaceQ. Consider a map φ : Q×Q →
R defined by

φ(u, v) = ||u||2 − 2〈u, Jv〉+ ||v||2, for all u, v ∈ Q.
This map which was introduced by Alber [1] will play a central role in the sequel. The
following is a property of φ;

(P1) φ(u,w) = φ(u, v) + φ(v, w) + 2〈u− v, Jv − Jw〉, for all, u, v, w ∈ Q.

The following lemmas and definitions will be needed in the sequel.

Definition 2.1. Let V : Q×Q∗ → R be defined by V (u, u∗) = ||u||2 − 2〈u, u∗〉+ ||u∗||, for
all u ∈ Q, u∗ ∈ Q∗. It is easy to see that V (u, u∗) = φ(u, J−1u∗), ∀ u ∈ Q, u∗ ∈ Q∗.

Definition 2.2. [17] Let M be a nonempty, closed and convex subset of Q. The mono-
variational inequality is to find an element u ∈M , such that 〈ψ(u), Jz − Ju〉 ≥ 0, ∀ z ∈M,
where ψ : M → Q. The set of solutions of mono-variational inequality will be denoted by
VJ(ψ,M).

Definition 2.3. Let Q and Y be real normed spaces, and ψ : Q → Y be a map.
(a) ψ is calledL-Lipschitz, if there existsL > 0 such that ||ψ(u)−ψ(v)|| ≤ L||u−v||, ∀ u, v ∈Q.
(b) ψ is Hölder continuous, if there exists H > 0 such that ||ψ(u)− ψ(v)|| ≤ H||u− v||β , for
all u, v in Q and β ∈ (0, 1]. It is known that in Lp spaces, p ≥ 2, Jp is Lipschitz and for
1 < p < 2, Jp is Hölder continuous. In this case, β = p− 1, for 1 < p < 2.
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Definition 2.4. [10] A map T : M → Q∗ is called generalized J-nonexpansive, if
FJ(T ) 6= ∅ and φ((J−1oT )x, p) ≤ φ(x, p), for all x ∈ M , for all p ∈ FJ(T ).

NST-Condition. Let {Sn} and Υ be two families of generalized J-nonexpansive maps
fromM intoQ∗ such that∩∞n=1F (Sn) = F (Υ) 6= ∅, where F (Sn) is the set of fixed points of
Sn and F (Υ) is the set of fixed points of Υ. A sequence {Sn} fromM toQ∗ is said to satisfy
the NST-condition with Υ, if for each bounded sequence {xn} ⊂ Q, lim||Jxn − Snxn|| = 0
=⇒ lim||Jxn − Sxn|| = 0, ∀ S ∈ Υ.

Lemma 2.1. [22] Let M be a nonempty closed and convex subset of a smooth, strictly convex and
reflexive Banach space Q. Then, the following are equivalent.
(i) M is a sunny generalized nonexpansive retract of Q
(ii) M is a generalized nonexpansive retract of Q
(iii) JM is closed and convex.

Lemma 2.2. [16] Let M be a nonempty closed and convex subset of a smooth and strictly convex
Banach spaceQ such that there exists a sunny generalized nonexpansive retraction R fromQ onto
M . Then, the following hold:
(i) z = Rx iff 〈y − z, Jz − Jx〉 ≥ 0, for all y ∈M and,
(ii) φ(x,Rx) + φ(Rx, z) ≤ φ(x, z), for all z ∈M.

Lemma 2.3. [18] Let Q be a uniformly convex and uniformly smooth real Banach space and
{un}, {vn} be sequences in Q such that either {un} or {vn} is bounded. If limφ(un, vn) = 0,
then, lim||un − vn|| = 0.

Lemma 2.4. [7] Let Q = Lp, p ≥ 2. Then, this inequality holds:

||u− v||2 ≥ φ(u, v)− p||u||2, for all u, v ∈ Q.

Lemma 2.5. [6] Let Q = Lp, 1 < p < 2. Then, this inequality holds:

||u+ v||2 ≥ 2||u||2 + 2〈v, Ju〉+ cp||v||2, for all u, v ∈ Q, and some constant cp > 0.

Lemma 2.6. [10] Let Q∗ be the dual space of a uniformly convex and uniformly smooth real
Banach space Q. Let M be a closed subset of Q such that JM is closed and convex. Let T be
a generalized J-nonexpansive map from M to Q∗ with FJ(T ) 6= ∅. Then, FJ(T ) is closed and
JFJ(T ) is closed and convex.

3. MAIN RESULT

Let M be a nonempty, closed and convex subset of Q = Lp spaces, 1 < p < ∞, with
dual spaceQ∗. In this section, we present some new definitions, prove some new lemmas
which are used to prove the main result of the section.

Definition 3.5. Let ψ be a map from M to Q.
(a) ψ is called η-strongly J-monotone, if there exists η > 0 such that 〈ψ(u)−ψ(v), Ju−Jv〉 ≥
η||u− v||2, ∀ u, v ∈M,

(b) ψ is called J-monotone, if 〈ψ(u)− ψ(v), Ju− Jv〉 ≥ 0, ∀ u, v ∈M,

(c) ψ is called η-strongly J-pseudo-monotone, if there exists η > 0, such that
〈ψ(u), Jv − Ju〉 ≥ 0 =⇒ 〈ψ(v), Jv − Ju〉 ≥ η||u− v||2, ∀ u, v ∈M,

(d) ψ is J-pseudo-monotone, if 〈ψ(u), Jv − Ju〉 ≥ 0 =⇒ 〈ψ(v), Jv − Ju〉 ≥ 0, ∀ u, v ∈M .
In a real Hilbert spaceH , J is the identity map onH and (a)-(d) of Definition 3.5 coincides
with the usual definition of (a)-(d) in the literature.

We observe that (a) =⇒ (b) =⇒ (d) and (a) =⇒ (c) =⇒ (d). The converse is not true.
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Lemma 3.7. Let Q be a uniformly convex and uniformly smooth real Banach space with dual
space Q∗. Let M be a closed subset of Q such that JM is closed and convex. Let ψ be a J-pseudo-
monotone and Lipschitz map from M to Q with VJ(ψ,M) 6= ∅. Then, VJ(ψ,M) is closed and
JVJ(ψ,M) is closed and convex.

Proof. First, we prove that VJ(ψ,M) and JVJ(ψ,M) are closed. Obviously, VJ(ψ,M) is
closed. Let {v∗n} ⊂ JVJ(ψ,M) such that v∗n → v∗, for some v∗ ∈ Q∗. Since JM is closed,
we have that v∗ ∈ JM . Hence, there exist v ∈M and {vn} ⊂ VJ(ψ,M) such that v∗ = Jv
and v∗n = Jvn, ∀ n ∈ N. Utilizing the definition of ψ and the fact that J−1 is uniformly
continuous on bounded subset of Q∗, we have

0 ≤ lim
n→∞

〈ψJ−1v∗n, Jy − v∗n〉 = 〈ψJ−1v∗, Jy − v∗〉.

Thus, we have that v∗ = Jv ∈ JVJ(ψ,M). Hence, JVJ(A,M) is closed.

Let u∗, v∗ ∈ JVJ(ψ,M). Then, u∗ = Ju, v∗ = Jv ∈ JM , for some u, v ∈ M . For
t, k ∈ (0, 1), let z∗ = ku∗+(1−k)v∗ ∈ JM , and for any y ∈M , we set x∗t = tJy+(1− t)z∗.
We compute as follows:

0 = 〈ψJ−1x∗t , x
∗
t − x∗t 〉 = 〈ψJ−1x∗t , Jy − x∗t 〉 − 〈ψJ−1x∗t , Jy − x∗t 〉

≤ (1− t)〈ψJ−1x∗t , Jy − z∗〉 ≤ 〈ψJ−1(z∗ + t(Jy − z∗)), Jy − z∗〉.(3.5)

Taking lim sup
t↓0

on (3.5); 〈ψJ−1z∗, Jy − z∗〉 ≥ 0, ∀ y ∈M. Thus, z∗ ∈ JVJ(ψ,M). �

Remark 3.1. From Lemmas 2.6 and 3.7, we have that JFJ(T ) and JVJ(ψ,M) are closed
and convex. Since J is one-to-one, we have that J(FJ(T ) ∩ VJ(ψ,M)) = JFJ(T ) ∩
JVJ(ψ,M). By Lemma 2.1, we have FJ(T ) ∩ VJ(ψ,M) is a sunny generalized J-non-
expansive retract of Q.

Lemma 3.8. Let Q = Lp spaces, 1 < p < 2 or p ≥ 2, and Q∗ be the dual space of Q. Then, for
each u, v ∈ Q, u∗ ∈ Q∗, the following inequalities hold:

Vp(u, u
∗) + 2〈v, Ju− u∗〉 ≤ Vp(u+ v, u∗), 1 < p < 2,(3.6)

Vp(u, u
∗) + 2〈v, Ju− u∗〉 ≤ Vp(u+ v, u∗) + (p− 1)||v||2, p ≥ 2.(3.7)

Proof. For 1 < p < 2; from Definition 2.1, property of φ, (P1) and Lemma 2.5, we have

Vp(u, u
∗) + 2〈v, Ju− u∗〉 = φ(u, u+ v) + φ(u+ v, J−1u∗)− 2〈v, J(u+ v)− u∗〉

+ 2〈v, Ju− u∗〉
= Vp(u+ v, u∗) + φ(u, u+ v) + 2〈v, Ju− J(u+ v)〉
= Vp(u+ v, u∗) + ||u||2 + 2〈v, Ju〉 − ||u+ v||2(3.8)

≤ Vp(u+ v, u∗)− cp||v||2, cp > 0.

Also, for p ≥ 2, from inequality (3.8), Lemma 2.4 and interchanging u, v ∈ Q, we have

Vp(u, u
∗) + 2〈v, Ju− u∗〉 = Vp(u+ v, u∗)− ||u+ v||2 + ||u||2 + 2〈v, Ju〉

≤ Vp(u+ v, u∗)− φ(v,−u) + p||v||2 + ||u||2 + 2〈v, Ju〉
= Vp(u+ v, u∗) + (p− 1)||v||2.

�

We shall make the following assumptions.

C1. The map ψi is ηi-strongly-J-pseudo-monotone and L-Lipschitz on M , with L > 0,
ηi > 0, i = 1, 2, · · · , N .
C2. ||ψi(v)|| ≤ ||ψi(u)− ψi(v)||, for all v ∈M , u ∈ VJ(ψ,M), i = 1, 2, · · · , N .
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3.1. Convergence theorem in Lp spaces, 1 < p < 2..

Theorem 3.1. Let M be a nonempty closed convex subset of Q = Lp, 1 < p < 2, such that JM
is closed and convex. Let ψi : M → Q, i = 1, 2, · · · , N be a finite family of maps satisfying
conditions C1 and C2. Let Sn : M → Q∗, n = 1, 2, . . . be a countable family of generalized
J-non-expansive maps and Γ be a family of closed and generalized J- non-expansive maps from
M toQ∗ such that F =:

[
∩∞n=1FJ(Sn)

]
∩
[
∩Ni=1VJ(ψi,M)

]
= FJ(Γ)∩

[
∩Ni=1VJ(ψi,M)

]
6= ∅.

Let {vn} be a sequence generated by

(3.9)


v1 ∈M,

yn = RM (vn − τψn(vn)),

vn+1 = βvn + (1− β)J−1oSn(yn), ∀ n ≥ 1,

where ψn =: ψn(mod N), β ∈ (0, 1) and τ ∈
(
0, p−1

√
η

HLp

)
, where η := min{ηi, i =

1, 2, · · · , N}. Assume that {Sn} satisfies the NST -condition with Γ, then, {vn} converges
strongly to RFJ (Γ)∩VJ (ψ,M)v1, where RFJ (Γ)∩VJ (ψ,M) is the sunny generalized J-non-expansive
retraction of Q onto FJ(Γ) ∩ VJ(ψ,M).

Proof. Let u ∈ F. Set zn = vn − τψn(vn). By Lemma 3.8, we have

φ(yn, u) ≤ φ(zn, u) = V (vn − τψn(vn), Ju)

≤ V (vn, Ju)− 2τ〈ψn(vn), J(vn − τψn(vn))− Ju〉
= φ(vn, u)− 2τ〈ψn(vn), J(vn − τψn(vn))− Jvn〉(3.10)

− 2τ〈ψn(vn), Jvn − Ju〉.
Since u ∈ VJ(ψn,M), then, 〈ψn(u), Jx− Ju〉 ≥ 0, ∀ x ∈ M . By η-pseudo-J-monotonicity
of ψn on M , we have that 〈ψn(x), Jx−Ju〉 ≥ η||x−u||2. In particular, for x = vn, we have
that 〈ψn(vn), Jvn − Ju〉 ≥ η||vn − u||2. From inequality (3.10), conditions C1, C2 and the
fact that J is Hölder continuous on Q, we have

φ(yn, u) ≤ φ(vn, u)− 2τ〈ψn(vn), J(vn − τψn(vn))− Jvn〉 − 2τη||vn − u||2

≤ φ(vn, u) + 2τ ||ψn(vn)||||J(vn − τψn(vn))− Jvn|| − 2τη||vn − u||2

≤ φ(vn, u) + 2Hτp||ψn(vn)||p − 2τη||vn − u||2

≤ φ(vn, u) + 2HτpLp||vn − u||2 − 2τη||vn − u||2

≤ φ(vn, u)− 2τ
(
η −HLpτp−1

)
||vn − u||2.(3.11)

φ(vn+1, u) = φ(βvn + (1− β)J−1oSn(yn), u)

≤ βφ(vn, u) + (1− β)φ(J−1oSnyn, u)− β(1− β)g(||vn − J−1oSn(yn)||)
≤ βφ(vn, u) + (1− β)φ(yn, u)− β(1− β)g(||vn − J−1oSn(yn)||)(3.12)
≤ βφ(vn, u) + (1− β)

[
φ(vn, u)− 2τ

(
η −HLpτp−1

)
||vn − u||2

]
= φ(vn, u)− 2τ(1− β)

(
η −HLpτp−1

)
||vn − u||2 ≤ φ(vn, u).(3.13)

Hence, limφ(vn, u) exists. Furthermore, {vn} and {yn} are bounded.
Set Θ = 2τ(1− β)

(
η −HLpτp−1

)
> 0, from inequality (3.13), we have that

(3.14) ||vn − u|| ≤
√

Θ−1
(
φ(vn, u)− φ(vn+1, u)

)
→ 0 as n→∞.

φ(yn, vn) = φ(vn − τψn(vn), vn) = V (vn − τψn(vn), Jvn)

= V (vn, Jvn)− 2τ〈ψn(vn), J(vn − τψn(vn)− Jvn)〉
≤ φ(vn, vn) + 2HτpLp||vn − u||p.(3.15)

From inequality (3.14), limφ(yn, vn) = 0. By Lemma 2.3, we have that lim ||yn − vn|| = 0.
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From inequalities (3.12) and (3.13), we have

(3.16) g(||vn − J−1oSn(yn)||) ≤ (β(1− β))−1
[
φ(vn, u)− φ(vn+1, u)

]
.

Thus, lim g(||vn − J−1oSn(yn)||) = 0. By the property of g, lim ||vn − J−1oSn(yn)|| = 0.

Now,

||yn − J−1oSn(yn)|| ≤ ||yn − vn||+ ||vn − J−1oSn(yn)|| → 0 ( as n→∞).

By Hölder continuity of J onQ, we have ||Jyn − Sn(yn)|| ≤ H||yn − J−1oSn(yn)||p−1 → 0.
Since {Sn} satisfies the NST-condition with Γ, then, lim||Jyn − Syn|| = 0, ∀ S ∈ Γ. But S
is closed, hence, u ∈ FJ(S). �

3.2. Convergence theorem in Lp spaces, p ≥ 2..

Theorem 3.2. Let M be a nonempty closed convex subset of Q = Lp, p ≥ 2, such that JM
is closed and convex. Let ψi : M → Q, i = 1, 2, · · · , N be a finite family of maps satisfying
conditions C1 and C2. Let Sn : M → Q∗, n = 1, 2, . . . be a countable family of generalized J-
non-expansive maps and Γ be a family of closed and generalized J-non-expansive maps from M
to Q∗ such that F =:

[
∩∞n=1 FJ(Sn)

]
∩
[
∩Ni=1 VJ(ψi,M)

]
= FJ(Γ) ∩

[
∩Ni=1 VJ(ψi,M)

]
6= ∅.

Let {vn} be a sequence generated iteratively by algorithm (3.9). Assume that {Sn} satisfies the
NST -condition with Γ and τ ∈

(
0, 2η

(2+p)L2

)
, where η := min{ηi, i = 1, 2, · · · , N}. Then,

{vn} converges strongly to RFJ (Γ)∩VJ (ψ,M)v1, where RFJ (Γ)∩VJ (ψ,M) is the sunny generalized
J-non-expansive retraction of Q onto FJ(Γ) ∩ VJ(ψ,M).

Proof. Let u ∈ F . Set zn = vn − τψn(vn). By Lemma 3.8, we have

φ(yn, u) ≤ V (vn − τψn(vn), Ju)

≤ V (vn, Ju)− 2τ〈ψn(vn), J(vn − τψ(vn))− Ju〉+ τ2(p− 1)||ψn(vn)||2

≤ φ(vn, u)− 2τ〈ψn(vn), J(vn − τψn(vn))− Jvn〉 − 2τ〈ψn(vn), Jvn − Ju〉(3.17)
+ τ2p||ψn(vn)||2.

since u ∈ VJ(ψn,M), then, 〈ψ(u), Jx− Ju〉 ≥ 0, ∀ x ∈M . By η-pseudo-J-monotonicity of
ψn on M , we have that 〈ψn(x), Jx − Ju〉 ≥ η||x − u||2. In particular, for x = vn, we have
that 〈ψn(vn), Jvn − Ju〉 ≥ η||vn − u||2. From inequality (3.17), conditions C2, C1 and the
fact that J is Lipschitz on Q, we have

φ(yn, u) ≤ φ(vn, u)− 2τ〈ψn(vn), J(vn − τψn(vn))− Jvn〉 − 2τη||vn − u||2

+ τ2p||ψn(vn)− ψn(u)||2

≤ φ(vn, u) + 2τ2L2||vn − u||2 − 2τη||vn − u||2 + τ2L2p||vn − u||2

= φ(vn, u)− τ
(
2η − τL2(2 + p)

)
||vn − u||2.(3.18)

φ(vn+1, u) = φ(βvn + (1− β)J−1oSn(yn), u)

≤ βφ(vn, u) + (1− β)φ(J−1oSnyn, u)− β(1− β)g(||vn − J−1oSn(yn)||)
≤ βφ(vn, u) + (1− β)φ(yn, u)− β(1− β)g(||vn − J−1oSn(yn)||)(3.19)
≤ βφ(vn, u) + (1− β)

[
φ(vn, u)− τ

(
2η − τL2(2 + p)

)
||vn − u||2

]
= φ(vn, u)− τ(1− β)

(
2η − τL2(2 + p)

)
||vn − u||2 ≤ φ(vn, u).(3.20)

Hence, limφ(vn, u) exists. Furthermore, {vn}, {yn} are bounded.
Set Θ = τ(1− β)

(
2η − τL2(2 + p)

)
> 0, from inequality (3.20), we have

(3.21) ||vn − u|| ≤
√

Θ−1
(
φ(vn, u)− φ(vn+1, u)

)
→ 0 as n→∞.
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Furthermore, using condition C2 and Lipschitz property of J on Q, we have

φ(yn, vn) = φ(vn − τψn(vn), vn) = V (vn − τψn(vn), Jvn)

≤ V (vn, Jvn)− 2τ〈ψn(vn), J(vn − τψn(vn)− Jvn)〉+ τ2p||ψn(vn)||2

≤ φ(vn, vn) + (2 + p)τ2L2||vn − u||2.(3.22)

From inequality (3.21), limφ(yn, vn) = 0. By Lemma 2.3, lim ||yn − vn|| = 0.

From inequalities (3.19) and (3.20), we have

(3.23) g(||vn − J−1oSn(yn)||) ≤ (β(1− β))−1
[
φ(vn, u)− φ(vn+1, u)

]
.

Thus, lim g(||vn − J−1oSn(yn)||) = 0. By the property of g, lim ||vn − J−1oSn(yn)|| = 0.

Now,

||yn − J−1oSn(yn)|| ≤ ||yn − vn||+ ||vn − J−1oSn(yn)|| → 0 ( as n→∞).

By Lipschitz property of J on Q, we get that ||Jyn − Sn(yn)|| → 0 as n → ∞. Since {Sn}
satisfies the NST-condition with Γ, then, lim||Jyn − Syn|| = 0, ∀ S ∈ Γ. But S is closed,
hence, u ∈ FJ(S). �

4. EXAMPLES

We demonstrate the applicability of our result obtained in Theorems to this example.

Example 4.3. Let Q = Lp([0, 1]), 1 < p < 2. Let α, β ∈ R such that 0 < β
2 < α ≤ β ≤ 1.

Define Mα := {v ∈ Lp([0, 1]) : ||v||Lp
≤ α} ⊆ BLp

(0, 1) and ψβ : Mα → Q be defined by

(ψβ(v))(t) := (β − ||v||)v(t).

Clearly, V I(ψβ ,Mα) = {0} and u ∈ V I(ψβ ,Mα) if and only if u ∈ ψ−1
β (0) satisfying

conditions C2. Also, let u, v ∈Mα, we have

||ψβ(u)− ψβ(v)|| = ||(β − ||u||)v1 − (β − ||v||)v||
≤ β||u− v||+ ||u||||u− v||+ ||v||||u− v|| ≤ (β + 2α)||u− v||.

Hence, ψβ is L-Lipschitz with L = (β + 2α).

Furthermore, let u, v ∈ Mα such that 〈ψβ(u), Jv − Ju〉 ≥ 0. Since ||u||Lp
≤ α ≤ β, this

implies that 〈u, Jv − Ju〉 ≥ 0. Applying a result of Xu [33], we have

〈ψβ(v), Jv − Ju〉 = (β − ||v||)〈v, Jv − Ju〉
≥ (β − ||v||)(〈v, Jv − Ju〉 − 〈u, Jv − Ju〉)
≥ (β − α)〈v − u, Jv − Ju〉 ≥ (β − α)(p− 1)||v − u||2.

Hence, ψβ is γ-strongly-J-pseudo-monotone with γ = (β − α)(p− 1) satisfying condition
C1.

Let S : Mα → Q∗ be defined by Su = Ju, ∀ u ∈Mα. Let Sn : Mα → Q∗ be defined by

Snu = J(αnu+ (1− αn)J−1oSu), ∀ n ≥ 1, u ∈Mα and αn ∈ (0, 1).

Clearly, FJ(Sn) = FJ(S), ∀ n ∈ N. Hence, ∩
n≥1

FJ(Sn) = FJ(S). For any u ∈ M and

v ∈ FJ(Sn), we have

φ(J−1oSnu, v) = φ(αnu+ (1− αn)J−1oSu, v)

≤ αnφ(u, v) + (1− αn)φ(J−1oSu, v)

= αnφ(u, v) + (1− αn)φ(u, v) = φ(u, v).
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Hence, {Sn} is a generalized J-non-expansive map, where the map φ is the Alber’s func-
tional.

Let {un} be a bounded sequence in Mα such that lim ||Jun − Snun|| = 0. Since {un} is
bounded, then, {J−1oSun} is bounded. Using the definition of Sn, we have

||un − J−1oSun|| =
1

1− βn
||un − J−1oSnun|| ≤ 2||un − J−1oSnun||.

Since lim ||Jun − Snun|| = 0 and the fact that J−1 and J are uniformly continuous on
bounded subsets of Q∗ and Q, respectively, we have that lim ||Jun − Sun|| = 0, which
implies that {Sn} satisfies NST condition with S.
Hence, the sequence generated by Algorithm (3.9), converges strongly toRFJ (Γ)∩VJ (ψ,M)v1.

For p ≥ 2 and Q = Lp([0, 1]). Let α, β ∈ R such that 0 < β
2 < α ≤ β ≤ 1.

Define Mα := {v ∈ Lp([0, 1]) : ||v||Lp
≤ α} ⊆ BLp

(0, 1) and S : Mα → Q∗ by Su =
Ju, ∀ u ∈Mα. Let Sn : Mα → Q∗ be defined by

Snu = J(αnu+ (1− αn)J−1oSu), ∀ n ≥ 1, u ∈Mα and αn ∈ (0, 1).

Clearly, ∩
n≥1

FJ(Sn) = FJ(S) and {Sn} is a generalized J-non-expansive map that satisfies

NST condition with S.

Let ψβ : Mα → Q be defined by

(ψβ(v))(t) := (β − ||v||)v(t).

Clearly, ψβ is L-Lipschitz and V I(ψβ ,Mα) = {0}; u ∈ V I(ψβ ,Mα) if and only if u ∈
ψ−1
β (0) satisfying conditions C2.

Let u, v ∈ Mα such that 〈ψβ(u), Jv − Ju〉 ≥ 0. Since ||u||Lp
≤ α ≤ β, this implies that

〈u, Jv − Ju〉 ≥ 0. Applying a result of Xu [33], we have

〈ψβ(v), Jpv − Jpu〉 = (β − ||v||)〈v, Jpv − Jpu〉
≥ (β − ||v||)(〈v, Jpv − Jpu〉 − 〈u, Jpv − Jpu〉)

≥ (β − α)〈v − u, Jpv − Jpu〉 ≥
p−1cp

2
(β − α)||v − u||p, cp > 0.

In particular, for p = 2, ψβ is γ-strongly-J-pseudo-monotone with γ =
p−1cp

2 (β − α) > 0
satisfying condition C1.

Hence, the sequence generated by Algorithm (3.9), converges strongly toRFJ (Γ)∩VJ (ψ,M)v1.

Example 4.4. Let M = [0, 1] and ψ : M ⊂ R → R be given by ψ(v) = (2 − v), ∀ v ∈ M.
Clearly, V I(ψ,M) = {0} and ψ is 1-Lipschitz. Furthermore, suppose that u, v ∈ M such
that 〈ψ(u), v − u〉 ≥ 0. Since u ∈ [0, 1], this implies that u < v. Thus,

〈ψ(v), v − u〉 = 〈2− v, v − u〉 ≥ |v − u| ≥ |v − u|2, ∀ v ∈M,

which implies that ψ is 1-strongly-J-pseudo-monotone. Moreover, ψ is neither strongly-
J- monotone nor J-monotone. To see this, choose u = 1

2 and v = 1.

5. DISCUSSION

Theorems 3.1 and 3.2 which approximate a common solution of a finite family of mono-
variational inequality problems and a common fixed points of a countable family of generalized-
J-nonexpansive maps complement and extend important recent results in the literature,
in particular, the result of Khanh, [20] from a Hilbert space to Lp spaces, 1 < p < ∞
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and 1 < p < ∞, respectively. Furthermore, the theorems proved are analogue of the
result of Khanh, [20] in that if D = H , a real Hilbert space, the normalized duality map
is the identity on D. Hence, the both theorems coincide. Finally, the class of η-strongly
J-pseudo-monotone maps considered, contains the class J-monotone maps studied in [17].
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