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Formal concept analysis model for static code analysis
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ABSTRACT. Tools that focus on static code analysis for early error detection are of utmost importance in
software development, especially since the propagation of errors is strongly related to higher costs in the de-
velopment process. Formal Concept Analysis is a prominent field of applied mathematics that uses conceptual
landscapes to discover and represent maximal clusters of data. Its expressive visualization method makes it suit-
able for exploratory analyses in different fields. In this paper we present a Formal Concept Analysis framework
for static code analysis that can serve as a model for quantitative and qualitative exploration and interpretation
of such results.

1. INTRODUCTION

Progresses in programming languages, software development methodologies and as-
sociated tooling, such as integrated development environments (IDEs) have made it pos-
sible to produce larger and more complex software applications, developed over longer
periods of time by larger teams. In these conditions, software development should also
include practices to control the process and assure the desired quality. Code review has
been acknowledged as a fundamental step in software development with clear benefits of
early error detection and quality control.

Even as manual code review is still used, code review tools are introduced to com-
plement existing human expertise, especially for large and complex applications. The
introduction of static analysis techniques in these tools has significantly improved their
capabilities.

The main benefit of static code analysis resides in the fact that it provides important
information about the source code prior to its execution. Several formal methods have
been applied to construct strategies such as abstract interpretation [5], data flow analysis
[9], symbolic execution [10] and many others. Static analysis tools are regarded as of third
generation, since the strategies started to be applied on the program abstract syntax tree
[13]. Thus, they allow early detection of several issues including software defects, bad
practices, code smells and security vulnerabilities.

Such tools are available for several programming languages, can be easily integrated
in development processes and customized according to the programmers’ needs. Some
existing tools, such as SonarQube, Coverity or PMD can analyze code in several program-
ming languages, while others are language specific, such as Checkstyle and Findbugs for
Java, FxCop and NDepend for .NET and Pylint for Python. Their increasing use in indus-
try has been reported as detecting on average 55% up to 60% of defects [14].

A deeper analysis of the issues detected by such tools can provide important benefits:
(i) Help developers better understand how such issues are introduced and how they can
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be resolved; (ii) Improve application efficiency, maintainability, reliability and security;
and (iii) Enhance code comprehension.

The purpose of our study is to use Formal Concept Analysis (FCA) techniques to inves-
tigate static analysis results, in order to perform an in depth analysis of detected issues.
We applied this model for Pylint, a static analysis tool for the Python language, and con-
ducted a case study targeting student assignments for the Fundamentals of Programming
first year course at the Babeş-Bolyai University. We show how this model can be used for
further investigation and analysis of the collected data.

2. RELATED WORK

In 2005, Tilley [20] published a survey with different applications of FCA to several
problems from software engineering (SE). Their study showed that most applications
were in software design and maintenance, solving problems related to re-engineerings
and class identification, with an increase in the last years in application to testing. Since
then, several other proposals have been made in this direction, such as detecting causal
dependencies in execution traces [16], or combining FCA with information retrieval tech-
niques in order to solve problems related to concept location, enhancing program compre-
hension. Another survey [6], published in 2011, extended to solving SE problems using
RCA (Relational Concept Analysis) and presented such an application to learning model
transformation patterns. As FCA is constructing conceptual hierarchy based on data, and
the whole software development processes can collect data, it is definitely clear that this
remains an unexploited domain of study. Our approach to apply FCA to source code
static analysis is, to the best of our knowledge, the first such attempt of its kind.

Tools that support construction of contexts and concept line diagram rendering [1, 4,
7, 11, 12] have simplified the application of this mathematical framework to different do-
mains in computer science but also to other fields such as Economics, Biology or Medicine.

Code review and static analysis results may offer important information to improve
software comprehension, specifically for understanding changes [3] or can be successfully
used in programming education [15]. Information provided by such tools are of immedi-
ate use for developers to correct bugs, improve several aspects of code such as efficiency
or security [2], but qualitative analysis of these results can offer additional benefits, which
we aim to identify using our FCA-based approach.

3. FCA MODEL

3.1. Research objectives. Pylint is a static analysis and code review tool assisting pro-
grammers with error detection, coding style and code smell detection. It reports all found
issues in terms of messages that are classified as shown in Table 1.

TABLE 1. Pylint message types ([22])

Message Type Abbrev Usage
Information I Information message (does not contribute to analysis score)

Refactor R Usually associated with code smells
Convention C Coding standard violation

Warning W Stylistic problem, minor programming issue
Error E Important programming issue (probably a bug)
Fatal F Internal error which prevents further processing

www.pylint.org
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Each message contains a unique code and a corresponding description, which can be
used to automatically aggregate issues across Python modules or projects, and offers a
clear diagnosis that helps programmers understand and address detected issues. Table 2
offers a snippet of possible messages, including their codes and descriptions, as defined
in [18].

The analysis is performed on modules, and for each module a list with all detected
issues is produced as output. This analysis is especially useful in the case of applications
that consist of many modules, when it becomes difficult to assess all the issues and decide
their individual importance and potential impact.

Our main research objective is to investigate how FCA can provide a mathematical foun-
dation for the analysis of issues detected using Pylint. Then we examine how the FCA
model can be used to investigate the distribution, frequency and correlations between
Pylint messages.

3.2. Basic notions in Formal Concept Analysis. FCA is based on complete lattices theory
and was developed at the end of the 1980’s in order to restructure the lattice theory in a
form suitable for applications in data analysis [8, 21]. The basic notions of FCA are those
of a formal context and a formal concept.

Definition 3.1. A formal context K := (G,M, I) consists of two sets G (objects) and M
(attributes) and the incidence relation I between the sets of objects and the attributes [8].

In order to express that an object g is in a relation I with an attribute m, we write
gIm ∈ I and we read ”the object g has the attribute m”. Next, we define concept forming
operators as certain derivations in the power sets of G and M , respectively.

Definition 3.2. For A ⊆ G, we define A′ := {m ∈ M | ∀ g ∈ A, gIm}, and for B ⊆ M we
define B′ = {g ∈ G | ∀ m ∈ B, gIm}. A′ represents the set of attributes common to the
objects in A, and likewise, B′ represents the set of objects with all attributes in B [8].

Definition 3.3. A formal concept of the context (G,M, I) is a maximal pair (A,B) with
A ⊆ G and B ⊆ M with A′ = B and B′ = A. A is called the extent and B the intent of the
concept (A,B) [8].

A formal concept contains a set of objects with a common set of attributes. Intuitively,
the maximality property of A refers to the fact that for every object that is not in A there
exists an attribute in B that the object does not have. Similarly, the maximality of B means
that for every attribute that is not in B, there is some object in A that does not have that
attribute. For example in Figure 2(B) the highlighted concept contains 107 objects having
the attributes Recommendation and Convention Messages in common. In this particular
example we can see that the rest of the objects are not part of the extent because they do
not have the attribute Recommendation Messages.

B(G,M, I) denotes the set of all concepts of the context (G,M, I). The order rela-
tion ≤ over the formal context, i.e. the subconcept-superconcept relation is formalized by:
(A1, B1) ≤ (A2, B2) ⇐⇒ A1 ⊆ A2 ⇐⇒ B1 ⊇ B2. The basic theorem of FCA proves that
the set of all concepts of a context K together with the order relation≤ is a complete lattice
and every complete lattice occurs as a concept lattice of a suitable chosen formal context.

Usually, the attributes are not used only to describe a property that an object may or
may not have. When considering different attributes, such as grades or colors, we notice
that multiple values may be allowed for the attributes. In that case the data sets can be
interpreted as many-valued contexts.

Definition 3.4. A many-valued context is a tuple (G,M,W, I), where G,M are sets, I ⊆
G × M × W is a ternary relation and for all g ∈ G and m ∈ M if (g,m,w) ∈ I and
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(g,m, v) ∈ I then w = v, i.e. the value of the object g on the attribute m is uniquely
determined. We write m(g) = w instead of (g,m,w) ∈ I and read ”the attribute m has the
value w for the object g”. [8]

In order to assign concepts to a many-valued context, the common approach is to trans-
form it into a one-valued context through conceptual scaling. A scale for an attribute m
of a many-valued context is a formal context Sm := (Gm,Mm, Im) with m(G) ⊆ Gm. The
set of scales can be used in order to navigate the conceptual structure of the many-valued
context. There is a list of predetermined scales, such as nominally, ordinally, etc., but for
more complex views particular scales can be defined to unveil patterns in the analyzed
data. After the scales are defined, concept lattices are built and analyzed in order to visu-
alize knowledge clusters and to understand connections between the data.

Definition 3.5. Let (M,≤) be an ordered set and a ∈M . An ideal (or a downset) of (M,≤)
is a subset D ⊆M such as ∀d ∈ D and m ∈M with m ≤ d then m ∈ D [8].

Definition 3.6. Let (M,≤) be an ordered set and a ∈ M . A filter (or an upset) of (M,≤) is
a subset D ⊆M such as ∀d ∈ D and m ∈M with m ≥ d then m ∈ D [8].

When representing the concept lattice, reduced labeling is usually used to improve
readability, such that each object and attribute is assigned to a single label. When using
reduced labelling, the extent of a concept is equal to the set of objects in the principal
ideal generated by that concept, meaning all the objects contained in the extents of the
subconcepts of the corresponding concept. Similarly, the intent of the concept contains
the attributes that can be found in the principal filter generated by the concept.

3.3. Applying FCA to static analysis results. In this section we present the stages, as
depicted in Figure 1, through which FCA can be used to cluster and analyze results pro-
duced by static analysis tools. The first step is performed once and then all the other steps
can be defined depending on the desired criteria. This assures a large applicability of the
model, and even more, this approach can be applied for any data collection that satisfies
the requirements for constructing the objects and attributes of the FCA model.

FIGURE 1. Stages of applying FCA to code review results

A. Data collection Our data set was built based on the introductory Fundamentals of Pro-
gramming (FoP) first year course, taken by undergraduate students in computer science.
Students are evaluated continuously during the semester using several assessment meth-
ods. These include a number of programming assignments ranging from introductory to
the development of a turn-based board game, two practical tests taken during the semes-
ter as well as a final examination with both a written and practical component. Our study
covers the 2019-2020 academic year. 225 students were registered for the first-semester
course, which was not affected by the subsequent pandemic.
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Assignments were submitted to a designated email address using the students’ faculty
email, which allowed staff to identify students. Tooling was employed to download and
pre-process submissions. Data validity was ensured through automated checks, includ-
ing checking that the correct source code was submitted, as well as a plagiarism check
using Stanford’s MOSS [19]. For the purposes of our work, an additional manual ex-
amination was carried out in order to ensure that all submissions were assigned to the
correct assignment and to eliminate any third-party, or instructor-provided source code
that could skew obtained results. Our case study covers five assignments and two coding
tests handed in during the semester, as well as the practical session for the regular and
retake examinations. This resulted in 1090 submissions, as not all students resolved given
assignments, or they refrained from submitting non-working code for the examination.
B. Criteria selector The purpose of the performed analysis can be defined in two different
ways, as exemplified in the following section: use the classification given by the Pylint
tool, or define a specific goal, and then associate attributes corresponding to this goal
(such as prevent errors).
C. Attribute selector Depending on the specified criterion, from all possible codes pro-
duced by the static analysis tool, we select a subset that will become the current set of
attributes for building the FCA model.
D. Formal Concept Analysis For the qualitative approach the FCA framework contains
the following elements:

objects: set of oi, represented by students who handed in a specific assignment. Data
uniformity is provided by the fact that all assignments are solving identical requirements.

attributes: set of ai, represented by messages that correspond to the attribute selector,
generated by Pylint for the chosen assignment.

the incidence relation: set of pairs (oi, aj) which represent the set of messages aj found
in the Pylint results for the student oi and the selected assignment.

extent: all objects that share the attributes.
intent: all attributes that share the objects.
However, we aim to further increase the generality of our model. When switching

to a quantitative approach, for instance, the set of attributes can be adjusted to include
information about the messages as well as their number of occurrences.
E. Concept Lattice As the main advantage of an FCA based analysis is its graphical rep-
resentation of the data clusters, we built conceptual scales using the ToscanaJ system [4].

We have used Elba, which is the most advanced editor implemented in the ToscanaJ
suite. Our main goal was to build more complex scales than the classic ones (i.e. nominal,
ordinal, grid). Thus, we have generated some particular scales based on the selected
criterion for each case. Afterwards, we used Toscana to visualise conceptual schemas and
to display information filtered and clustered accordingly in the lattice diagram.

The data set can be interpreted as a many-valued context due to the fact that objects
(i.e. students submitting an assignment) have attributes (i.e. codes) with specific val-
ues (i.e. how many times the code was present in the Pylint output for the given stu-
dent/assignment pair). For this proof of concept we focus on a qualitative approach while
analysing the data set, but due to the many-valued attribute, we are able to switch when-
ever it is necessary to a more quantitative analysis, in order to analyze not only whether a
particular assignment encounters messages from one category, but also to see how many
such messages it encounters.

https://sourceforge.net/projects/toscanaj/
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(A) Show only exact matches (B) Show all matches with highlight over a
concept

FIGURE 2. Students’ assignments for the mid-term test: An overview
over Pylint general message types

In Figure 2(A), the criteria is defined as the correlation between the students’ assign-
ments and the general message types (attributes of the FCA model described in Table 1),
with the purpose of highlighting the most common problems.

We represent the queried data in order diagrams consisting of nodes, edges and labels.
Each node represents a formal concept, characterized by its extent and intent. Some nodes
are connected by edges, which emphasize the concept order. When a node is selected, as
shown in Figure 2(B), its filter and ideal are highlighted [4]. This feature enhances the
readability of the subconcept-superconcept hierarchy.

As mentioned previously, reduced labeling is used to improve lattice readability. La-
bels below nodes represent objects and labels above nodes represent attributes. However,
the tool allows for different visualizations of the diagram and the labels containing ob-
jects/attributes can be replaced with labels showing information regarding the size of the
extent/intent or the number of objects/attributes that match only the corresponding in-
tent/extent of the node (as shown in Figure 2). For this particular example we have 192
objects (i.e. student IDs) and 5 attributes (i.e. Convention Messages, Warning Messages, Error
Messages, Recommendation Messages and Internal Error Messages) which are attached to one
of the formal concepts and are written above the node. In order to read the components of
a formal concept, i.e. a node of the lattice, one has to look at the object labels of its subcon-
cepts and at the attribute labels of its superconcepts. For instance, the intent of the formal
concept highlighted in Figure 2(B) contains attributes ’Recommendation Messages’, and
’Convention Messages’. The top node represents the concept containing all the objects in
its extent, while the bottom one represents the concept containing all the attributes in its
intent.

Figure 2 illustrates the same concept lattice represented once with labels containing the
extent size in Figure 2(B) and once with labels containing the number of objects that match
only the attributes of the node intent (without matching additional attributes) in Figure
2(A). In order to understand the correlation between them, let us consider the highlighted
concept in Figure 2(B) with extent size 107. Among these 107 students, as it can be seen
in Figure 2(A), 2 of them had recommendation and convention messages, 78 had recom-
mendation, convention and warning messages, 3 had recommendation, convention and
error messages, and 24 had recommendation, convention, warning and error messages.
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Node colors are employed to encode the size of the concept’s extent, so that extreme
values can be quickly determined by examining a node’s color gradient, in descending
order from blue to yellow [4]. The correlation between node colors and the extent size can
be easily observed in Figure 2(B), where the lower label of the nodes contains exactly the
size of the extent.
F. Data Analysis Based on the selected criterion and constructed concept lattice, data anal-
ysis can be performed, providing an in depth investigation of the dataset.

For example, considering Figure 2(A), we see that all assignments had convention mes-
sages, but none of them had internal error messages. Moreover, 3 of the 192 analyzed
solutions only had convention messages, without messages from any other category. An-
other 24 solutions had messages from all four categories (convention, recommendation,
warning and error).

4. CASE STUDIES

The available dataset and the constructed model can be used for several goals. In this
section we describe two case studies, one for a goal corresponding to a check provided by
a Pylint feature, and another for a user-defined goal.

4.1. Design checker. In this example, the criterion is selected as being ”design checker”,
namely it will identify issues in code related to design problems. The set of attributes
for this criterion is taken as defined in the Pylint documentation [18]. The FCA model
was run for Assignment 4, for which 179 solutions were handed in. The corresponding
concept lattice is presented in Figure 3.

FIGURE 3. Design checker criterion for assignment 4

When analyzing the concept lattice for the design checker criterion we noticed that 31
students did not have any design problem for this assignment, while the recommenda-
tion message labeled R0912 is one of the most frequently encountered messages in our
data. Basically, that means that source code cyclomatic complexity was too high, making
code comprehension difficult. There are two other concepts that have a big extent size,
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TABLE 2. Set of attributes for criterion ”prevent errors”

Code Description Code Description
R1707 Disallow trailing comma tuple W0102 Dangerous default value %s as arg
W0106 Expr. ”%s” assigned to nothing W0109 Duplicate key %r in dictionary
W0123 Use of eval W0126 Using a cond with potent. wrong func
W0128 Redeclared var %r in assign. W0141 Used builtin function %s
W0231 init from base class %r not called W0232 Class has no init method
W0233 init from a non direct %r called W0236 Method %r was expected to be %r
W0601 Global var %r undef at module level W0602 Using global for %r but no assign.
W0621 Redef name %r from outer scope W0631 Using possibly undef loop var %r
W0642 Invalid assign to %s in method W0702 No exception type(s) specified
W0703 Catching too general exception %s W1113 Keyword arg position in %s function
W1309 Using an f-string no interpolated var

shown with a gray background. The concept labeled with R0915 emphasizes that stu-
dents usually write functions or methods that have too many statements. The other gray
concept has edges towards the nodes corresponding to the concepts mentioned above.
Therefore, there are 39 students for whom both messages were generated (i.e R0912 and
R0915). Thus, we may recommend to a large number of students to split the code into
smaller functions in order to improve its understandability.

4.2. Prevent errors. The second example consists of a specific criterion that we defined,
namely to identify the situations (corresponding to Pylint messages) that might result
in future source code errors. Given the authors’ experience, the list of attributes was
constructed from all possible Pylint codes that identified situations that might generate
errors. As a result, the set of attributes is (for complete corresponding description see
[18]) presented in table 2.

In the next step, with the selected set of attributes, we construct the correspondent
conceptual lattices for different data sets. Our case study takes into account data from
assignment 4, resulting in the conceptual lattice from Figure 4, respectively data from as-
signment 10, with the corresponding conceptual lattice from Figure 5. This use case shows
how the two models can be used to observe that the most common mistakes, namely:
W0621, i.e. ’Redefining name from outer scope’ [18], W0702, i.e. ’No exception type(s)
specified’ [18] and W0703, i.e. ’Catching too general exception’ [18]. The results may
be used to observe patterns of errors and their frequencies, or to study student progress
during the semester, in order to determine whether programming skills have improved.

5. CONCLUSIONS AND FUTURE WORK

Static code analysis and code review are two processes that can significantly improve
source code quality, which makes analysis and interpretation of their results of great in-
terest in software development research. In this study, we proposed a model based on
Formal Concept Analysis that can be applied for any such tool, and the objectives of the
analysis may be specified depending on user requirements. We showed how such a model
can be used to analyze the results produced by Pylint for an extensive set of student as-
signments, and described two case studies in detail.

Moreover, we showed that the essential characteristics of Formal Concept Analysis -
concept hierarchy and clustering, provide a strong mathematical background for deep
data analysis for this type of problem.

In conclusion, we believe that our approach can be successfully used as a mathematical
foundation for analysis and interpretation of static analysis results. Our main goal is to
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FIGURE 4. Prevent errors criterion for assignment 4

FIGURE 5. Prevent errors criterion for assignment 10

further extend the model to be able to deal with many-valued contexts in order to facilitate
new analysis possibilities through knowledge discovery and data mining.

Future plans include several application of this model from different perspectives, such
as analysis of software system quality based on static analysis tool results, or in case of
software development education for student assessment, by detecting common errors, the
misuse of programming artefacts, as well as to analyse student progress through the use
of data covering several academic years.
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