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Criteria of closedness of nilradicals in zero dimensional
locally compact rings
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ABSTRACT. We study in this paper conditions under which nilradicals of totally disconnected locally com-
pact rings are closed. In the paper is given a characterization of locally finite compact rings via identities.

1. INTRODUCTION

Classical radicals are important tools in the study of the structure of rings. Sometimes
studying properties of a ring we can reduce its study to the radical and to the factor ring
with respect to the radical. For example, Jacobson uses in the proof of the theorem of
I. Kaplansky ([10]) that a nil PI-algebra is locally nilpotent the Levitzki nilradical (see [8],
Chapter X, Theorem 1, p. 232). Initially the Jacobson radical was used for Banach algebras
([21]), locally compact rings ([11], [12], [13], [14]) and left linearly compact rings (see also
[18], [19]). It is well known that the Jacobson radical is closed in a Banach algebra, in a
locally compact, in a compact, and in a linearly compact riing. These results are important
in the structure theory of the corresponding classes of topological rings. However there
are some obstacles in the class of all topological rings because the Jacobson radical of
a topological ring is not necessarily closed. Thus the factor ring of a topological ring
with respect to the radical is not Hausdorff and we have no information about it. The
closedness of radicals was studied since forties of the last century (see [1], [11], [22], [25]).
We study in this paper the following question: Let R be a totally disconnected locally
compact ring and ρ a nilradical. Under which conditions ρ(R) is closed?
We give a complete answer to this question. Moreover, we will find criteria of closedness
of the weakly finite and locally finite radicals of a locally compact totally disconnected
ring.

2. NOTIONS AND NOTATION

Rings are assumed associative not necessarily with identity. By N is denoted the set
{1, 2, 3, . . .}. A ring R has a finite charactersitic if there exists n ∈ N such that nx = 0 for all
x ∈ R.
The additive group of a ring R is denotedR+. The subring of a ring generated by a subset
S is denoted 〈S〉. Ideal means a two-sided ideal. The symbol ∼= (∼=top) means abstract
(topological) isomorphism.
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The symbol A denotes the closure of a subset A of a topological space. Neighborhoods
of points are not assumed to be open. Topological rings are assumed to be Hausdorff and
associative.

All topogical spaces are assumed to be completely regular. We refer to [5] for all facts
from the set-theoretic topology used in this paper.

Recall that a topological ring is called totally bounded if its completion is compact, equiv-
alently, it is a subring of a compact ring.
We will recall for the reader’s convenience the notion of a radical in the sense of Kurosh
in the class of associative rings (see [15], p. 15):
Consider a class of rings having a property S. These rings are called S-rings. An ideal
of a ring which also is an S-ring is called S-ideal. If a ring R has an S-ideal J containing
all S-ideals, then we will say that J is the S-radical of R. A ring which does not contain
nonzero S-ideals is called S-semisimple.

We say that in the class of associative rings is defined the S-radical if:

(1) A homomorphic image of an S-ring is an S-ring.

(2) Every ring has the S-radical.

(3) The factor ring of a ring with respect to the S-radical is S-semisimple.

We say that a radical ρ is a nilradical if all ρ-radical rings are nilrings and all nilpotent
rings are radical.

Radical ring means always radical in the sense of Jacobson. We will recall briefly the
construction of the lower nilradical, the Levitzki nilradical and the upper nilradical. Recall that
the lower nilradical (the Baer’s radical) of a ringR is constructed by transfinite induction: Set
B(0) = 0 and B(α + 1) is the inverse image of the sum of all nilpotent ideals of the ring
R/B(α) under the canonical homomorphism of R on R/B(α). If α is a limit ordinal, put
B(α) = ∪β<αB(α). There exists an ordinal α such that B(α) = B(α+ 1). The ideal B(α)
is called the Baer radical or the lower nilradical of R and is denoted B(R).
The Levitzki’s nilradical Le(R) of a ring R is the sum of all locally nilpotent ideals of a ring
([8], page 197). The upper nilradical(=Köthe’s radical), K(R), of a ring R is the sum of all
nilideals of a ring.

It is known that B(R) ⊆ Le(R) ⊆ K(R) for every ring R. However there exist rings
R,S such that Le(R) * B(R) and K(S) * Le(S).

A topological ring R is called locally pseudocompact (locally countably compact) if its un-
derlying topological group is locally pseudocompact (locally countably compact) (see [2]),
i.e., if it has a pseudocompact (countably compact) neighborhood of zero.

Recall that an element x of a ring R is called right (left) quasi–regular if there exists an
element y ∈ R such that x + y + xy = 0 (x + y + yx = 0). An element is called quasi-
regular if it is left and right quasi-regular. An element a of a ring is called nilpotent if there
exists n ∈ N such that an = 0. A ring R is called nilpotent if there exists n ∈ N such that
x1x2 · · ·xn = 0 for all x1, x2, . . . , xn ∈ R.

A right ideal I of a ring R is called right quasi-regular if every element of I is right
quasi-regular.

Recall that a right ideal I of a ring R is called modular if there exists e ∈ R such that
x− ex ∈ I for all x ∈ R.

The Jacobson radical of a ring has different characterizations.
We will recall the following characterization ([8], Chapter I, §6, Theorem 1(2), p. 9):

The Jacobson radical of a ring R is a quasi-regular ideal which contains every quasi-regular
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right ideal.
Every nilring is a radical ring. The Jacobson radical of a ring R is denoted J(R).

Recall that a module is said to be artinian if each nonempty set of submodules contains a
minimal element. A ring R is called left (right) artinian if the left (right) R-module RR(RR)
is artinian. Basic theory of artinian rings can be found in ([8], Chapter 3).

A topological ring R is called a Qr-ring provided the set of all right quasi-regular ele-
ments is open and a Q-ring if the set of all quasi-regular elements is open. It is unknown
if there exists a Qr-ring which is not a Q-ring ([11], p.155). It is well-known that every
right maximal modular ideal of a Qr-ring is closed ([23], Theorem 6.2, p.124). Therefore
the Jacobson radical of a Qr-ring is closed.

3. PRELIMINARIES

Theorem 3.1. [2] The completion of a locally pseudocompact (locally countably compact) topo-
logical ring is a locally compact ring.

Remark 3.1. Let R be a ring whose Jacobson radical J(R) is a nilring of bounded degree,
i.e., there exists n ∈ N such that ∀x∈J(R)[x

n = 0].
Then the Jacobson radical is closed for every ring topology T . In particular, if R is a ring
and J(R) is nilpotent then the Jacobson radical is closed for every ring topology T .

Theorem 3.2. (Levitzki) [6] Let R be a ring and 0 6= ρ a right ideal which is a nilring of
bounded degree. Then R has a nonzero nilpotent ideal.

Corollary 3.1. Every nilring R of bounded degree is ρ-radical for every nilradical ρ.

Indeed, R/ρ(R) has no nonzero nilpotent ideals, hence R/ρ(R) = 0, i.e., R = ρ(R).

Theorem 3.3. [24] Any compact nilring is a nilring of bounded degree.

Corollary 3.2. A compact nilring is ρ-radical for every nilradical ρ.

Theorem 3.4. ([12], Lemma 4) A locally compact totally disconnected ring R has a fundamental
system of neighborhoods of zero consisting of compact open subrings.

Theorem 3.5. ([8], Chapter 3, Theorem 1, p. 38) The Jacobson radical of a left artinian ring is
nilpotent.

4. CONDITIONS UNDER WHICH NILRADICALS OF ZERO DIMENSIONAL LOCALLY
COMPACT RINGS ARE CLOSED

The study of locally compact rings started after publication of classical results of L.
S. Pontryagin about classification of connected locally compact division rings and H. J.
Kowalsky about nondiscrete totally disconnected locally compact division rings.

The papers of Kaplansky [11], [12], [13], [14] contain basic results about locally compact
rings. Kaplansky has proved [12] that the Jacobson radical of a locally compact ring is
closed and is the intersection of all closed left (or right) maximal modular ideals.

An important tool in the study of locally compact rings plays Lemma 4 from [12] (see
Theorem 3.4). It should be mentioned that this theorem has a counterpart in the theory of
locally compact groups, namely, the van Dantzig theorem stating that every locally com-
pact totally disconnected group has a fundamental system of neighborhhods of identity
consisting of compact subgroups ([7], Theorem (7.8), p. 78).

Remark 4.2. For any radical ρ the class of ρ-radical rings is closed under extensions.

Indeed, let A be a ring and B an ideal of A such that A/B and B are ρ-radical. Then
B ⊆ ρ(A). The induced homomorphism λ : A/B → A/ρ(A) is surjective. Since A/B is
ρ-radical and A/ρ(A) is ρ-semisimple, A/ρ(A) = 0, i.e., A = ρ(A).
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Lemma 4.1. Let R be a totally disconnected locally compact ring having a compact open nilsub-
ring V and ρ be a nilradical. If I is a dense ρ-radical ideal, then R is a ρ-radical ring.

Proof. By Theorem 3.3, V is a nilring of bounded degree. As follows from Corollary 3.2,
V is ρ-radical. Since I is dense, we have R = V + I . The factor ring R/I is isomorphic to
the ring V/(V ∩ I), hence it is ρ-radical. Since the class of ρ-radical rings is closed under
extensions , R is a ρ-radical ring. �

Theorem 4.6. Let R be a totally disconnected locally compact ring and ρ be a nilradical. Then
ρ(R) is closed iff there exists an open compact subring V of R such that V ∩ ρ(R) is a nilring of
bounded degree.

Proof. ” ⇒ ” : Let V be any compact open subring. Then V ∩ ρ(R) is a compact nilring.
By Theorem 3.3 it is a nilring of bounded degree.

” ⇐ ” : Let V be a compact open subring of R such that V ∩ ρ(R) is a nilring of
bounded degree. The closure V ∩ ρ(R) is an open compact nilsubring of bounded degree
of the closure ρ(R) of ρ(R). By Lemma 4.1 ρ(R) is ρ-radical, hence ρ(R) ⊆ ρ(R) and so
ρ(R) = ρ(R).

�

5. THE WEAKLY FINITE AND LOCALLY FINITE RADICALS IN LOCALLY COMPACT RINGS

Definition 5.1. [4] A ring is called weakly locally finite if each its element is contained in
a finite subring.

Definition 5.2. A ring is called locally finite if every finite subset is contained in a finite
subring.

Proposition 5.1. Every commutative weakly locally finite ring is locally finite.

We leave the proof to the reader.

Lemma 5.2. If a ring R has a weakly locally finite ideal I such that R/I is weakly locally finite,
then R is a weakly locally finite ring.

Proof. If x ∈ R, then (〈x〉+ I)/I is finite. Since (〈x〉+ I)/I ∼= 〈x〉/(〈x〉 ∩ I)

and by Proposition 5.1 〈x〉 ∩ I is locally finite, 〈x〉 is finite. �

Corollary 5.3. If A is a subring and B a weakly locally finite ideal of a ring R, then the subring
A+B is weakly locally finite.
In particular, the sum of two weakly locally finite ideals of a ring is a weakly locally finite ideal.

From Lemma 5.2 and Corollary 5.3 follows:

Theorem 5.7. For every ring R there exists a weakly locally finite ideal W(R) such that
R/W(R) does not contain nonzero weakly locally finite ideals.

Theorem 5.8. For every ring R there exists a locally finite ideal L(R) such that R/L(R) does not
contain nonzero locally finite one-sided ideals.

See, for instance, ([23], Theorem 18.21, p. 220).
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Theorem 5.9. (compare with [23], Lemma 27.35) For a compact ring R the following conditions
are equivalent:

(a) R is weakly locally finite;

(b) R has a finite characteristic and there exist n,m ∈ N, n > m such that

∀x∈R[xn − xm = 0];

(c) R is locally fiinite.

Proof. ”(a) ⇒ (b)” : We notice that the additive group R+ is a torsion group. Since R+ is
compact there exists k ∈ N such that ∀x∈N[kx = 0], i.e. R has a finite characteristic.

If x ∈ J(R), then the subring 〈x〉 ⊆ J(R) is finite, hence left artinian. By Theorem
3.5 〈x〉 is a nilring. By ([11], Theorem 4), J(R) is closed, hence compact. It follows from
Theorem 3.3 that J(R) is a nilring of bounded degree.

Obviously, R/J(R) is a weakly locally finite ring. As follows from Kaplansky’s Theo-
rem, ([11], Theorem 16),R/J(R) ∼=top

∏∞
l=1M(l, Fl)

ml for some numbers l, whereM(l, Fl)
is the ring of l × l matrices over a finite field Fl and ml are cardinal numbers.

Claim 1. The number of nonisomorphic fields Fl is finite.

Indeed, otherwise the ring R/J(R) will contain an invertible element of infinite order,
a contradiction with the periodicity of R/J(R).

Claim 2. The sizes of matrices are bounded in totality.
Indeed, otherwise we can find an infinite sequence R1, R2, · · · of factors of R/J(R),

containing nilpotent elements x1, x2, . . . whose indexes of nilpotency are not bounded in
totality. It is clear that R/J(R) will contain an infinite one-generated subring, a contradic-
tion.

It follows that there exist a finite number F1, F2, · · · , Fn of finite fields, natural numbers
m1, . . . ,mn and cardinal numbers m1, . . . ,mn such that
R/J(R) ∼=top

∏n
i=1M(mi, Fi)

mi . This implies that there exists a finite ring A and a cardi-
nal number τ such that R/J(R) is embedded in Aτ . It follows there exist n,m ∈ N, n > m
such that ∀x∈R/J(R)[x

n − xm = 0].
Since J(R) is a nilring of bounded degree there exists a natural number s such that

∀x∈R[(xn − xm)s = 0].
We claim that the cardinalities of one-generated subrings of R are bounded in totality.

For, xns ∈ 〈xns−1, xns−2, . . . , xms〉+. It follows that 〈x〉 ⊆ 〈xns−1, xns−2, . . . , x〉+, hence
|〈x〉| ≤ kns−1.

This implies that R belongs to a variety of rings generated by some finite ring B. For,
there exists a finite number B1, · · · , Bq of nonisomorphic finite rings of characteristic k
and of cardinality ≤ kns−1. Put B = B1 × · · · × Bq . Then every one-generated subring of
R is a homomorphic image of B.

Since B satisfies the identity xa = xb, where a, b ∈ N, a > b, kx = 0, the ring R satisfies
the same identity.
”(b) ⇒ (c)” : Every one-generated subring of R is finite. Clearly, the cardinalities of

one-generated subrings are bounded in totality. It follows that R belongs to a variety
generated by a finite ring. Since any variety generated by a finite ring is locally finite
([20], p. 359), R is a locally finite ring.
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”(c)⇒ (a)” : Obvious. �

Remark 5.3. The implication (b)⇒ (c) has been proved also in [17], Proposition 2.1.

Corollary 5.4. The completion of a totally bounded ring R is a locally finite ring iff the following
two conditions are satisfied:
i) R has a finite characteristic;
ii) there exist n,m ∈ N, n > m such that

∀x∈R[xn − xm = 0].

Remark 5.4. Compact locally finite rings were studied also in [4].

Theorem 5.10. The weakly locally finite radical W(R) (the locally finite radical L(R)) of a totally
disconnected locally compact ring is closed iff there exists an open compact subring V such that
V ∩W(R) has a finite characteristic and there exist n,m ∈ N, n > m such that ∀x∈V ∩W(R)[x

n−
xm = 0].

Proof. The proof is given only for the weakly finite radical because the proof for the locally
finite radical is analogous.

” ⇒”: Let U be an open compact subring of R. Then the subring of V = U ∩W(R)
will be a compact weakly locally finite subring of R. Applying Theorem 5.9, we finish the
proof.

” ⇐”: Let V be a compact open subring such that such that V ∩ W(R) has a finite
characteristic and there exist n,m ∈ N, n > m such that ∀x∈V ∩W(R)[x

n − xm = 0].
The subring V ∩W(R) = W is compact, open in W(R), has a finite characteristic and

there exist n,m ∈ N, n > m such that ∀x∈W [xn − xm = 0].
It follows from Theorem 5.9 that W is locally finite. We have W(R) = W + W(R).

By Corollary 5.3, W(R) is weakly locally finite, hence W(R) ⊆ W(R) and so W(R) =
W(R). �

Theorem 5.11. LetR be a locally compact totally disconnected ring. Then every maximal modular
left ideal is closed iff R is a Q-ring.

Proof. ”⇐ ” : Is true for every topologicalQ-ring ([23], Chapter 2, §6, Theorem 6.2, p. 124).

” ⇒ ” : Assume on the contrary that every maximal modular left ideal is closed how-
ever R is not a Q-ring. Let V be a compact open ring. Then V 6= J(V ) and by ([11],
Theorem 16), V/J(V ) is a ring with identity. Since idempotents of the factor ring V/J(V )
can be lifted modulo J(V ) (see, for instance, [11], Lemma 12), there exists an idempotent
e ∈ V such that e+ J(V ) is the identity of V/J(V ).

Let V/J(V ) =
∏
α∈Ω Pα be the product of finite simple rings and e′α be the identity of

Pα. Let f : V → V/J(V ) be the canonical homomorphism. There exists a family {eα}α∈Ω

of orthogonal idempotents of V such that e =
∑
α∈Ω eα and f(eα) = eα for each α ∈ Ω.

We notice that Re =
∑
α∈ΩReα.

Since R is not a Q-ring, the set Ω is infinite. Let RR be R considered as a left R-module.
Consider the Peirce decomposition RR = Re⊕R(1− e) which is a topological direct sum
of R-submodules. Let M = {L| ⊕α∈Ω Reα ⊆ L ⊆ Re} where L is a submodule of RR and
L 6= Re. By Zorn’s lemma there exists a maximal module H in M. Then H ⊕ Re will be
a maximal modular left ideal of R. Since ⊕α∈ΩReα ⊆ H 6= Re and ⊕α∈ΩReα is dense in
Re, H is not closed. Then H ⊕ R(1− e) will is a nonclosed maximal modular left ideal, a
contradiction. �
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Example of a compact ring with nonclosed Baer radical
Let p be a prime number and Rn = Z/pnZ(n ∈ N) and R =

∏
n∈N(Z/pnZ) the product

of discrete rings Z/pnZ. Then R is a commutative compact zero dimensional ring, hence
all nilradicals of R coincide.

Its Jacobson radical J(R) is
∏
n∈N(pZ/pnZ) = pR. The element x = (p+ pnZ)n∈N is not

nilpotent and is a limit of nilpotent elements. Therefore the nilradical N(R) is not closed.
Recall that a topological space is said to be pseudocompact if each continuous real-valued

function on it is bounded. A topological space is called countably compact if each its count-
able open cover contains a finite subcover.

Lemma 5.3. Any countably compact ring R without nonzero idempotents is radical.

Proof. We will reduce the proof to the case when R has a fundamental system of neigh-
borhoods of zero consisting of ideals.

Since every countably compact space is pseudocompact, by ([3], Theorem 1.1), the com-
pletion R̂ is compact. Let (R̂)0 be its component of zero of R̂ and ϕ : R̂ → R̂/(R̂)0 be the
canonical homomorphism. Then ([11], Theorem 8) R̂ · (R̂)0 = (R̂)0 · R̂ = 0.
The ring ϕ(R) = (R + (R̂)0)/(R̂)0 is countably compact and has a fundamental sys-
tem of neighborhoods of zero consisting of ideals. It is isomorphic as an abstract ring
to R/(R ∩ (R̂)0).

We claim that (R + (R̂)0)/(R̂)0 has no nonzero idempotents. Indeed, on the contrary
R/(R ∩ (R̂)0) will have a nonzero idempotent. Since idempotents can be lifted modulo
ideals with trivial multiplication (see [16], §3.6, Proposition 1) R will contain a nonzero
idempotent, a contradiction.

We reduced the proof to the case when R has a fundamental system of neighborhoods
of zero consisting of ideals.

If x ∈ R, then 〈x〉 is metrizable, hence 〈x〉 is countably compact and metrizable, hence
compact. Since 〈x〉 has no nonzero idempotents it is radical ([23], Theorem 5.29, p. 123).
The element x was arbitrary, hence R is radical. �

Lemma 5.4. IfR is a countably compact ring having a dense idealAwithout nonzero idempotents,
then R is a radical ring.

Proof. It is known that the Jacobson radical of a countably compact ring is closed ([23],
Corollary 13.8, page 182). By Lemma 5.3 a countably compact ring without nonzero idem-
potents is radical in the sense of Jacobson. If a ∈ A, then Ra is countably compact and
Ra ⊆ A, hence Ra ⊆ J(R) and so RA ⊆ J(R). Since J(R) is closed, by continuity of ring
operations R2 ⊆ RA ⊆ J(R), hence R = J(R). �

Theorem 5.12. The Jacobson radical of a topological ring R having a fundamental system of
neighborhoods of zero consisting of open countably compact subrings is closed.

Proof. Fix an open countably compact subring V of R. Assume that J(R) 6= J(R). Then
we may assume that J(R) is dense in R. The ideal V ∩ J(R) of V is dense and has no
nonzero idempotents. By Lemma 5.4 V is radical in the sense of Jacobson, hence R is a
Q−ring. It follows that J(R) = J(R), a contradiction.

�

Openquestion1. For which locally compact rings its von Neumann radical (= the
largest regular ideal) is closed?
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Openquestion2. For which locally compact rings with identity the Brown-McCoy
radical (i.e. the intersection of all maximal two-sided ideals) is closed?

Openquestion3. For which radicals ρ, ρ(R) is closed for every compact ring R?

The following radicals possess this property: a) the Jacobson radical; b) von Neumann
radical.
Acknowledgements. The authors are grateful to the referee for his careful reading of the
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referee’s suggestions. The authors are indebted to Yaling Tapo and Alexander Pipco for
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