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Iterative numerical method for fractional order two-point
boundary value problems

ALEXANDRU MIHAI BICA and ZOLTAN SATMARI

ABSTRACT. In this paper we develop an iterative numerical method based on Bernstein splines for solving
two-point boundary problems associated to differential equations of fractional order α ∈ (0, 1). The conver-
gence of the method is proved by providing the error estimate and it is tested on a numerical example.

1. INTRODUCTION

The interest for the study of fractional order differential and integral equations is moti-
vated by their applications in fluid dynamics, viscoelasticity (see [4] for the Bagley-Torvik
fractional differential model), heat transfer, diffusive transport, signal processing and var-
ious areas of engineering, economy, plasma physics, hematopoiesis, epidemiology (see
[3], [6], [7], [9] and [14]). A significant development in the fractional calculus, including
fractional differential and integral equations, was realized in recent years and the results
are presented in the monographs of Baleanu et al. (see [2]), Diethelm (see [6]), Kilbas et al.
(see [9]), Lakshmikantham et al. (see [10]), Podlubny (see [16]). Fundamental definitions
and results concerning the Caputo fractional derivative can be found in [6]. The con-
struction of the fractional integral equation equivalent with boundary value problems for
nonlinear fractional differential equations with Caputo fractional derivative and the cor-
responding existence results can be found in [1] and the existence of solutions is realized
with the Schauder’s, Weissinger’s and Banach’s fixed point theorems (see [1] and [6]). The
numerical methods developed for fractional differential equations and for the equivalent
integral equation use various techniques such as quadrature based product integration
(see [2] and [13]), backward differentiation and Adams type predictor-corrector formulas
(see [2]), Adams-Bashforth-Moulton procedures (see [2] and [6]), collocation (see [15]),
Runge-Kutta formulas (see [12]), Legendre polynomials (see [8]), shooting method (see
[5]), wavelets (see [14]), Bernstein polynomial approximation (see [17]), and variational
iteration (see [18]).

Motivated by the above presented potential applications and by the results from [1],
in this work we construct an iterative numerical method based on a Bernstein splines ap-
proximation procedure involved at each iterative step, for solving the following fractional
order boundary value problem

(1.1)
{
Dαx (t) = f (t, x (t)) , t ∈ [0, T ]

a · x (0) + b · x (T ) = c
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with α ∈ (0, 1), a, b, c ∈ R, a + b 6= 0 and f ∈ C ([0, T ]× R). For b = 0, this bound-
ary value problem contains as particular case the initial value problem of fractional order
α ∈ (0, 1). The existence and uniqueness of the solution of the boundary value problem
(1.1) was investigated in [1] and [6] by using the Banach’s fixed point theorem and the nu-
merical solution was obtained in [15] by applying the piecewise polynomial collocation
method. In that follows, we establish the uniform boundedness of the sequence of suc-
cessive approximations associated to the fixed point operator and develop the Bernstein
splines iterative method for solving this boundary value problem. The paper is organized
as follows: in Section 2 we investigate the integral equation equivalent to the boundary
value problem (1.1) proving the uniform boundedness of the corresponding sequence of
successive approximations and presenting the iterative numerical method based on Bern-
stein splines for the solution of (1.1). Section 3 is devoted to the convergence analysis
including the discrete and continuous error estimates. In the last section we present two
numerical experiments that illustrates the accuracy and the performances of the proposed
method and point out some concluding remarks.

2. THE ITERATIVE NUMERICAL METHOD

According to Lemma 3.2 in [1] and Lemma 6.40 from [6], the boundary value problem
(1.1) is equivalent with the following Volterra-Fredholm integral equation

x (t) =
c

a+ b
+

1

Γ (α)

t∫
0

(t− s)α−1
f (s, x (s)) ds−

− b

(a+ b) Γ (α)

T∫
0

(T − s)α−1
f (s, x (s)) ds.

(2.2)

The existence and uniqueness of the solution of (1.1) in the Banach space (C[0, T ], ‖·‖∞)
is proved in Theorem 6.41 from [6], where C[0, T ] = {f : [0, T ] → R, f continuous on
[0, T ]} and ‖f‖∞ = max{|f (t)| : t ∈ [0, T ]}.

Theorem 2.1. (Theorem 6.41 in [6]) If a + b 6= 0, f ∈ C ([0, T ]× R), and if f satisfies a
Lipschitz condition with Lipschitz constant L with respect to its second argument, then under the
condition LTα

(
1 + |b|

|a+b|

)
< Γ (α+ 1), the boundary value problem (1.1) has unique solution

x∗ ∈ C[0, T ].

The proof uses the Banach’s fixed point theorem applied to the integral operator A :
C[0, T ]→ C[0, T ], given by

A (x (t)) =
c

a+ b
+

1

Γ (α)

t∫
0

(t− s)α−1
f (s, x (s)) ds−

− b

(a+ b) Γ (α)

T∫
0

(T − s)α−1
f (s, x (s)) ds, t ∈ [0, T ] .

This operator is a contraction with the constant γ =
LTα(1+

|b|
|a+b| )

Γ(α+1) < 1, and considering
the sequence of successive approximations associated to this integral operator, xm+1 =
A (xm), m ∈ N, by the Banach’s fixed point theorem we get the following estimates:

(2.3) |x∗ (t)− xm (t)| ≤ γm

1− γ
· |x1 (t)− x0 (t)|
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and

(2.4) |x∗ (t)− xm (t)| ≤ γ

1− γ
· |xm (t)− xm−1 (t)| , ∀m ∈ N∗, ∀t ∈ [0, T ].

Proposition 2.1. Under the conditions of Theorem 2.1 the sequence of successive approximations
is uniformly bounded.

Proof. Taking x0 (t) = c
a+b , the sequence of successive approximations can be written as

xm (t) =
c

a+ b
+

1

Γ (α)

t∫
0

(t− s)α−1
f (s, xm−1 (s)) ds−

− b

(a+ b) Γ (α)

T∫
0

(T − s)α−1
f (s, xm−1 (s)) ds, t ∈ [0, T ] , m ∈ N∗

(2.5)

and since the operator A is a contraction, we have

|xm (t)− xm−1 (t)| = |A (xm−1 (t))−A (xm−2 (t))| ≤ γ |xm−1 (t)− xm−2 (t)| , ∀t ∈ [0, T ],

and by induction we get

(2.6) |xm (t)− xm−1 (t)| ≤ γm−1 |x1 (t)− x0 (t)| ≤
M0T

α
(

1 + |b|
|a+b|

)
Γ (α+ 1)

, ∀t ∈ [0, T ]

for all m ∈ N∗, where M0 ≥ 0 is such that |f (t, x0 (t))| ≤M0, ∀t ∈ [0, T ] . Consequently,

|xm (t)| ≤ |xm (t)− x0 (t)|+ |x0 (t)| ≤

≤
(
1 + γ + ...+ γm−1

)
·
M0T

α
(

1 + |b|
|a+b|

)
Γ (α+ 1)

+
|c|
|a+ b|

≤ R

for all t ∈ [0, T ] and m ∈ N∗, that is the uniform boundedness of the sequence (xm)m∈N∗ ,

where R =
M0T

α(1+
|b|
|a+b| )

Γ(α+1)(1−γ) + |c|
|a+b| . Denoting Fm (t) = f (t, xm (t)) for t ∈ [0, T ] and m ∈ N,

and using the Lipschitz property it obtains,

|Fm (t)| ≤ |f (t, xm (t))− f (t, x0 (t))|+ |f (t, x0 (t))| ≤
LM0T

α
(

1 + |b|
|a+b|

)
Γ (α+ 1) (1− γ)

+M0 = M

for all t ∈ [0, T ] and m ∈ N∗, and thus the sequence (Fm)m∈N is uniformly bounded,
too. �

In order to construct the iterative method consider a uniform mesh of the interval [0, T ]
with the knots ti = i · h, i = 0, n, where h = T

n is the stepsize. For each m ∈ N, and
on each subinterval [ti−1, ti], i = 1, n, we approximate the continuous function Fm by the
Bernstein polynomial of a given degree q ≥ 1 :

(2.7) Bm,i (t) =
1

hq

q∑
k=0

Ckq (t− ti−1)k(ti − t)q−k · Fm
(
ti−1 +

kh

q

)
, t ∈ [ti−1, ti]

where Ckq = q!
k!·(q−k)! . By the inequality of Lorentz (see [11]), in the Bernstein uniform

approximation formula Fm (t) = Bm,i (t) + Rm,i (t) , we obtain the estimate in terms of
the modulus of continuity

(2.8) |Rm,i (t)| ≤ 5

4
· ω
(
Fm,

h
√
q

)
, ∀t ∈ [ti−1, ti], ∀i = 1, n, ∀m ∈ N.
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Now, based on (2.5) and (2.7), for m ∈ N∗ = N r {0} we get the following iterative form
of (2.5) on the knots:

(2.9) xm (t0) =
c

a+ b
− b

(a+ b) Γ (α)

n∑
i=1

ti∫
ti−1

(T − s)α−1
(Bm−1,i (s) +Rm−1,i (s)) ds

xm (tk) =
c

a+ b
+

1

Γ (α)

k∑
i=1

ti∫
ti−1

(tk − s)α−1
(Bm−1,i (s) +Rm−1,i (s)) ds−

− b

(a+ b) Γ (α)

n∑
i=1

ti∫
ti−1

(T − s)α−1
(Bm−1,i (s) +Rm−1,i (s)) ds, k = 1, n.

(2.10)

If we compute the integrals from (2.10) by using the Bernstein polynomial formula (2.7)
and the change variable s = ti−1 + uh, we obtain

ti∫
ti−1

(s− ti−1)
j

(ti − s)q−j (tk − s)α−1
ds = hq+α · ψj,k(i)

where ψj,k(i) =
1∫
0

uj (1− u)
q−j

(k − i− u+ 1)
α−1

du . In this way, for m ∈ N∗, consider-

ing x0 (t) = c
a+b , ∀t ∈ [0, T ], it obtains the following iterative algorithm:

(2.11) xm (t0) =
c

a+ b
− bhα

(a+ b) Γ (α)

n∑
i=1

q∑
j=0

Cjqψj,n(i)Fm−1,i

(
ti−1 +

jh

q

)
+Rm,0

xm

(
tk +

lh

q

)
=

c

a+ b
+

hα

Γ (α)
[

k∑
i=1

q∑
j=0

Cjqψj,k+ l
q
(ν)Fm−1,i

(
ti−1 +

jh

q

)
+

+

q∑
j=0

Cjq · ψj,k+ l
q
(ν′)Fm−1,k

(
tk +

jh

q

)
]−

− bhα

(a+ b) Γ (α)

n∑
i=1

q∑
j=0

Cjqψj,n(i)Fm−1,i

(
ti−1 +

jh

q

)
+Rm,k+ l

q

(2.12)

for k = 0, n− 1, l = 0, q, where ψj,k+ l
q
(ν) =

1∫
0

uj (1− u)
q−j

(ν − u)
α−1

du, with ν =

k + l
q − (i− 1) and

ψj,k+ l
q
(ν′) =

1∫
0

uj (1− u)
q−j

(
l

q
− u
)α−1

du.

Here, we have denoted Fm−1,i

(
ti−1 + jh

q

)
= f

(
ti−1 + jh

q , xm−1

(
ti−1 + jh

q

))
and the

first sum in (2.12) appears only for k ≥ 1. The expressions (2.11)-(2.12) can be written
in the form xm

(
tk + lh

q

)
= xm

(
tk + lh

q

)
+ Rm,k+ l

q
, with k = 0, n− 1, l = 0, q. The

algorithm has the following stopping criterion: with given ε > 0 find the first natural
number m ∈ N∗ for which |xm (tk)− xm−1 (tk)| < ε, ∀k = 0, n, and stop at this iteration
”m”.
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The iterative method of Bernstein splines provides a continuous approximation of the
solution, too. More precisely, by using the values xm

(
tk + lh

q

)
, k = 0, n− 1, l = 0, q,

computed at the last iterative step, we construct the Bernstein spline Bm,q : [0, T ] → R,
that on each subinterval [ti−1, ti], i = 1, n, has the expression

(2.13) Bm,q (t) =
1

hq

q∑
j=0

Cjq (t− ti−1)j(ti − t)q−j · xm
(
ti−1 +

jh

q

)
, t ∈ [ti−1, ti].

3. CONVERGENCE ANALYSIS

Now we can state our main result.

Theorem 3.2. Under the conditions of Theorem 2.1, the terms xm (tk), k = 0, n, m ∈ N∗
computed in (2.11)-(2.12) approximate the solution of the boundary value problem (1.1) on the
mesh knots with the error estimate,

|x∗ (tk)− xm (tk)| ≤
M0T

α
(

1 + |b|
|a+b|

)
γm

(1− γ) Γ (α+ 1)
+

+
5Tα

(
1 + |b|

|a+b|

)
ω
(
Fm−1,

h√
q

)
4 (1− γ) Γ (α+ 1)

, ∀k = 0, n, m ∈ N∗.

(3.14)

Moreover, the error estimate in the continuous approximation of the solution is:

∣∣x∗ (t)−Bm,q (t)
∣∣ ≤ γm

1− γ
·
M0T

α
(

1 + |b|
|a+b|

)
Γ (α+ 1)

+

+
5Tα

(
1 + |b|

|a+b|

)
ω
(
Fm−1,

h√
q

)
4 (1− γ) Γ (α+ 1)

+
5

4
ω

(
Vm,

h
√
q

)
, ∀t ∈ [0, T ], m ∈ N∗

(3.15)

where Vm is given in (3.18).

Proof. In inductive manner, by (2.9)-(2.10) we get

x1 (t0) =
c

a+ b
− b

(a+ b) Γ (α)

n∑
i=1

q∑
j=0

Cjqh
αψj,n(i)F0

(
ti−1 +

jh

q

)
−

− b

(a+ b) Γ (α)

n∑
i=1

ti∫
ti−1

(T − s)α−1
R0,i (s) ds = x1 (t0) +R1,0

with |R1,0| ≤ 5|b|Tα
4|a+b|Γ(α+1) · ω

(
F0,

h√
q

)
, and

x1 (tk) =
c

a+ b
+

1

Γ (α)

k∑
i=1

ti∫
ti−1

(tk − s)α−1
(B0,i (s) +R0,i (s)) ds−

− b

(a+ b) Γ (α)

n∑
i=1

ti∫
ti−1

(T − s)α−1
(B0,i (s) +R0,i (s)) ds

= x1 (tk) +R1 (tk) , k = 1, n,
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with
∣∣R1 (tk)

∣∣ ≤ 5Tα

4Γ(α+1)

(
1 + |b|

|a+b|

)
·ω
(
F0,

h√
q

)
. Consequently, by using the change vari-

able s− ti−1 = uh, we have

k∑
i=1

ti∫
ti−1

 q∑
j=0

Cjq (s− ti−1)
j

(ti − s)q−j
 (tk − s)α−1

ds =

= hq+α
k∑
i=1

1∫
0

 q∑
j=0

Cjqu
j (1− u)

q−j

 (k − i+ 1− u)
α−1

du ≤ Tαhq

α
.

and since for k = 1, n :

x2 (tk) =
c

a+ b
+

+
1

Γ (α)

k∑
i=1

ti∫
ti−1

1

hq

q∑
j=0

Cjq (s− ti−1)
j

(ti − s)q−j F1(ti−1 +
jh

q
) · (tk − s)α−1

ds+

+
1

Γ (α)

k∑
i=1

ti∫
ti−1

1

hq

q∑
j=0

Cjq (s− ti−1)
j

(ti − s)q−j R1(ti−1 +
jh

q
) (tk − s)α−1

ds−

− b

(a+ b) Γ (α)

n∑
i=1

ti∫
ti−1

1

hq

q∑
j=0

Cjq (s− ti−1)
j

(ti − s)q−j F1(ti−1 +
jh

q
) · (tn − s)α−1

ds−

− b

(a+ b) Γ (α)

n∑
i=1

ti∫
ti−1

1

hq

q∑
j=0

Cjq (s− ti−1)
j

(ti − s)q−j R1(ti−1 +
jh

q
) · (tn − s)α−1

ds

= x2 (tk) +R2 (tk)

it obtains

∣∣R2 (tk)
∣∣ ≤

1 +
LTα

(
1 + |b|

|a+b|

)
Γ (α+ 1)

 · 5Tα

4Γ (α+ 1)

(
1 +

|b|
|a+ b|

)
ω

(
F1,

h
√
q

)

and similarly,
∣∣R2 (t0)

∣∣ ≤ [
1 + |b|LTα

|a+b|Γ(α+1)

]
· 5|b|Tα

4|a+b|Γ(α+1)ω
(
F1,

h√
q

)
. By induction, for

m ≥ 2, we get

∣∣Rm,0∣∣ ≤ [1 +
|b|LTα

|a+ b|Γ (α+ 1)
+ · · ·+

(
|b|LTα

|a+ b|Γ (α+ 1)

)m−1
]
·

· 5 |b|Tα

4 |a+ b|Γ (α+ 1)
· ω
(
Fm−1,

h
√
q

)(3.16)

and ∣∣Rm (tk)
∣∣ ≤ [1 + γ + · · ·+ γm−1

]
·

· 5Tα

4Γ (α+ 1)

(
1 +

|b|
|a+ b|

)
ω

(
Fm−1,

h
√
q

)
, k = 1, n.

(3.17)

Considering |x∗ (tk)− xm (tk)| ≤ |x∗ (tk)− xm (tk)| + |xm (tk)− xm (tk)|, by (3.16)-(3.17)
and according to the estimates (2.3)-(2.6), the inequality (3.14) follows. Now we define the
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auxiliary function Vm : [0, T ]→ R which on each subinterval [ti, ti+1], i = 0, n− 1 has the
expression

(3.18) Vm (t) = xm (t) +
ti+1 − t

h
(xm (ti)− xm (ti)) +

t− ti
h

(xm (ti+1)− xm (ti+1)) .

We see that Vm is continuous on [0, T ] with Vm (ti) = xm(ti), ∀i = 0,m, and thus Bm,q
interpolates Vm on the mesh knots, having

∣∣Vm (t)−Bm,q (t)
∣∣ ≤ 5

4ω
(
Vm,

h√
q

)
for all t ∈

[ti, ti+1], i = 0, n− 1. Then, because

|xm (t)− Vm (t)| ≤ max
i=0,n−1

{|xm (ti)− xm (ti)| , |xm (ti+1)− xm (ti+1)|} ,

from the inequality

∣∣x∗ (t)−Bm,q (t)
∣∣ ≤ |x∗ (t)− xm (t)|+ |xm (t)− Vm (t)|+

∣∣Vm (t)−Bm,q (t)
∣∣

we obtain the estimate (3.15). By the continuity of the functions Fm and Vm, for m ∈ N∗,
we infer that lim

h→0
ω
(
Fm−1,

h√
q

)
= lim

h→0
ω
(
Vm,

h√
q

)
= 0, and since γ ∈ (0, 1), by (3.14) and

(3.15) the convergence of the iterative method follows. �

4. NUMERICAL EXPERIMENTS

In order to test the convergence theoretical result stated in Theorem 3.2 and to illustrate
the accuracy of the iterative method we consider the following numerical examples.

Example 1. The boundary value problem

D
0.5x (t) =

4
√
t

Γ
(

3
2

) + 2t
√
t−
√
t · x (t) , t ∈ [0, 1]

x (0) + x (1) = 2

has the exact solution x∗ (t) = 2t (see [15]). Applying the iterative algorithm with q =
1 and q = 4, and considering m = 10 iterations, in Table 1 we represent the obtained
numerical results for en,i = |xm(ti)− x∗(ti)|, i = 0, n. The convergence was tested taking
n = 20, n = 50, and n = 100. Investigating the columns of Table 1, we see that the
errors decrease by passing through n = 20, n = 50, n = 100 in both cases q = 1 and
q = 4, and in addition, the results for q = 4 are better. Denoting σ = max

i=0,n
en,i, the

values of σ are represented in the first line of Table 1. In order to compare the values
of σ with the similar results εN = max

i=0,N
|xN (ti)− x∗(ti)| obtained in [15], Table 5.1 for

uniform partitions (which means r=1, in the context of graded mesh), we have specified
in the last two lines of Table 1 the corresponding values of εN for N=32, N=64 and N=128,
respectively.
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q : 1 4
σ : 8, 06E − 03 2, 03E − 03 7, 53E − 04 2, 38E − 03 6, 47E − 04 2, 70E − 04
ti n = 20 n = 50 n = 100 n = 20 n = 50 n = 100
0, 0 7, 26E − 04 1, 41E − 04 1, 35E − 05 1, 77E − 04 2, 95E − 06 3, 51E − 05
0, 1 8, 06E − 03 2, 03E − 03 7, 53E − 04 2, 38E − 03 6, 47E − 04 2, 70E − 04
0, 2 4, 83E − 03 1, 26E − 03 4, 89E − 04 1, 47E − 03 4, 25E − 04 1, 96E − 04
0, 3 3, 44E − 03 9, 14E − 04 3, 68E − 04 1, 07E − 03 3, 23E − 04 1, 60E − 04
0, 4 2, 61E − 03 7, 02E − 04 2, 88E − 04 8, 18E − 04 2, 54E − 04 1, 31E − 04
0, 5 2, 05E − 03 5, 48E − 04 2, 23E − 04 6, 40E − 04 1, 96E − 04 9, 87E − 05
0, 6 1, 63E − 03 4, 25E − 04 1, 62E − 04 4, 98E − 04 1, 40E − 04 6, 22E − 05
0, 7 1, 31E − 03 3, 21E − 04 1, 06E − 04 3, 82E − 04 8, 79E − 05 2, 37E − 05
0, 8 1, 06E − 03 2, 37E − 04 5, 80E − 05 2, 87E − 04 4, 31E − 05 1, 03E − 05
0, 9 8, 67E − 04 1, 76E − 04 2, 58E − 05 2, 19E − 04 1, 32E − 05 3, 17E − 05
1, 0 7, 26E − 04 1, 41E − 04 1, 35E − 05 1, 77E − 04 2, 95E − 06 3, 51E − 05
εN 5, 14E − 03 2, 59E − 03 1, 30E − 03 5, 14E − 03 2, 59E − 03 1, 30E − 03
N: N = 32 N = 64 N = 128 N = 32 N = 64 N = 128

Table 1. The numerical results for the cases q = 1 and q = 4, versus the results in [15]
Comparing the results provided by the Bernstein splines method with those obtained

in [15] (last 2 rows in the table), we see that the Bernstein splines method gives better
results and the order of accuracy is improved for n = 50 and n = 100, when q = 4 is
chosen.

Example 2. The exact solution of the following boundary value problem involving a
nonlinear differential equation:D

0.5x (t) =

√
t

Γ
(

3
2

) +
1

4
· [x (t)]

2 − t2

4
, t ∈ [0, 1]

x (0) + x (1) = 1

is x∗ (t) = t and applying the iterative algorithm with q = 1 and q = 4, after m = 10
iterations we obtain the numerical results expressed for en,i = |xm(ti)− x∗(ti)|, i = 0, n
in Table 2. Here, max=max

i=0,n
|xm(ti)− x∗(ti)|, and investigating the results from Table 2

we infer that the convergence of the iterative method is confirmed and taking q = 4 the
results are improved again, similarly to the case of the first linear example.

q : 1 4
ti n = 20 n = 50 n = 100 n = 20 n = 50 n = 100
0, 2 2, 49E − 03 6, 24E − 04 2, 20E − 04 7, 37E − 04 1, 86E − 04 6, 59E − 05
0, 5 1, 37E − 03 3, 46E − 04 1, 22E − 04 4, 09E − 04 1, 04E − 04 3, 66E − 05
0, 8 1, 05E − 03 2, 64E − 04 9, 34E − 05 3, 13E − 04 7, 93E − 05 2, 80E − 05
max 3, 92E − 03 9, 64E − 04 3, 39E − 04 1, 14E − 03 2, 87E − 04 1, 01E − 04

Table 2. Numerical results in the cases q = 1 and q = 4 for Example 2

5. CONCLUSION

In this work we proved that the proposed iterative method of Bernstein splines, suit-
able for fractional order differential and integral equations, is convergent and effective
both for linear and nonlinear equations. The convergence is obtained in Theorem 3.2
providing the error estimate in terms of the modulus of continuity for the discrete and
continuous approximation. The presented numerical examples confirm this theoretical
result and the results are improved by increasing the degree q of the involved Bernstein
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polynomials. We chosed the degree q = 4 in order to ensure an equilibrium between the
increased accuracy requirement and the accumulating errors due to the complexity of cal-
culus. The choice of using piecewise Bernstein polynomials is based on their nice uniform
approximation and shape preserving properties.
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