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On the structure of the Levinson center for monotone
non-autonomous dynamical systems with a first integral

DAVID CHEBAN

ABSTRACT. In this paper we give a description of the structure of compact global attractor (Levinson cen-
ter) for monotone Bohr/Levitan almost periodic dynamical system x′ = f(t, x) (*) with the strictly monotone
first integral. It is shown that Levinson center of equation (*) consists of the Bohr/Levitan almost periodic
(respectively, almost automorphic, recurrent or Poisson stable) solutions. We establish the main results in the
framework of general non-autonomous (cocycle) dynamical systems. We also give some applications of theses
results to different classes of differential/difference equations.

1. INTRODUCTION

The aim of this paper is to study the structure of the compact global attractor (Levinson
center) of differential equation

(1.1) u′(t) = f(t, u(t)), (f ∈ C(R× Rn,Rn))

with the strictly monotone first integral, when the right hand side is monotone with re-
spect to spacial variable, and Bohr/Levitan almost periodic (respectively, almost automor-
phic, recurrent or Poisson stable) in t ∈ R uniformly with respect to u on every compact
subset from Rn. It is proved that

(1) Levinson center of equation (1.1) consists of Bohr/Levitan almost periodic (re-
spectively, almost automorphic, recurrent or Poisson stable) solutions;

(2) each solution of equation (1.1) converges as t → ∞ to some Bohr/Levitan almost
periodic (respectively, almost automorphic, recurrent or Poisson stable) solution
of equation (1.1) lying in the Levinson center.

Theses results we establish in the framework of general non-autonomous (cocycle) dy-
namical systems.

This study is a continuation of the author’s work [10], which gives a positive answer
to the I. U. Bronshtein’s conjecture for monotone systems.

I. U. Bronshtein’s conjecture [4, ChIV,p.273]. If an equation (1.1) with right hand side
(Bohr) almost periodic in t satisfies the conditions of uniform positive stability and posi-
tive dissipativity, then it has at least one (Bohr) almost periodic solution.

If n ≤ 3, then the positive answer to this conjecture follows from the results of V. V.
Zhikov [44, ChII] (see also [27, ChVII] and [4, ChIV]).

Even for scalar equations (n = 1) as was shown by A. M. Fink and P. O. Frederickson
[20] (see also [19, ChXII]), dissipation (without uniform positive stability) does not imply
the existence of almost periodic solutions.
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The paper is organized as follows.
In Section 2 we collected some notions and facts from the theory of dynamical sys-

tems (both autonomous and non-autonomous) which we use in this paper: cocycles,
skew-product dynamical systems, shift (Bebutov’s) dynamical systems, Poisson stable
(Bohr/Levitan almost periodic, almost automorphic and so on) motions and functions
and their comparability by character of recurrence, monotone non-autonomous dynami-
cal systems, global attractors of cocycle etc.

Section 3 is dedicated to the study the structure of global compact attractors of mono-
tone non-autonomous (cocycles) dynamical systems having the strictly monotone first
integral. The main result of this paper (Theorem 3.8) gives a description of the structure
of Levinson center (compact global attractor) for this type of dynamical systems.

Section 4 is dedicated to the applications of our general results for different classes of
evolution equations (linear and nonlinear ordinary differential/difference equations).

2. PRELIMINARIES

In this section we collect some notions and facts from the theory of autonomous and
non-autonomous dynamical systems [6] (see also, [9, Ch.IX]) which we will use in the
paper.

2.1. Cocycles. Let Y be a complete metric space, let R := (−∞,+∞), Z := {0,±1,±2, . . .},
T = R or Z, T+ = {t ∈ T| t ≥ 0} and T− = {t ∈ T| t ≤ 0}. Let (Y,T, σ) be an au-
tonomous two-sided dynamical system on Y and E be a real or complex Banach space
with the norm | · |.

Definition 2.1. (Cocycle on the state space E with the base (Y,T, σ)). The triplet 〈W,
ϕ, (Y,T, σ)〉 (or briefly ϕ) is said to be a cocycle (see, for example, [9] and [32]) on the
state space W with the base (Y,T, σ) if the mapping ϕ : T+ × Y ×W → W satisfies the
following conditions:

(1) ϕ(0, y, u) = u for all u ∈W and y ∈ Y ;
(2) ϕ(t+ τ, y, u) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for all t, τ ∈ T+, u ∈W and y ∈ Y ;
(3) the mapping ϕ is continuous.

Definition 2.2. (Skew-product dynamical system). Let 〈W,ϕ, (Y,T, σ)〉 be a cocycle on
W,X := W ×Y and π be a mapping from T+×X toX defined by equality π = (ϕ, σ), i.e.,
π(t, (u, y)) = (ϕ(t, ω, u), σ(t, y)) for all t ∈ T+ and (u, y) ∈W × Y . The triplet (X,T+, π) is
an autonomous dynamical system and it is called [32] a skew-product dynamical system.

Definition 2.3. (Non-autonomous dynamical system.) Let T1 ⊆ T2 be two sub-semigroup
of the group T, (X,T1, π) and (Y,T2, σ) be two autonomous dynamical systems and h :
X → Y be a homomorphism from (X,T1, π) to (Y,T2, σ) (i.e., h(π(t, x)) = σ(t, h(x)) for
all t ∈ T1, x ∈ X and h is continuous), then the triplet 〈(X,T1, π), (Y, T2, σ), h〉 is called
(see [4] and [9]) a non-autonomous dynamical system.

Example 2.1. (The non-autonomous dynamical system generated by cocycle ϕ.) Let 〈W,
ϕ, (Y ,T, σ)〉 be a cocycle, (X,T+, π) be a skew-product dynamical system (X = W ×
Y, π = (ϕ, σ)) and h = pr2 : X → Y, then the triplet 〈(X,T+, π), (Y,T, σ), h〉 is a non-
autonomous dynamical system.

2.2. Bohr/Levitan almost periodic, almost automorphic, recurrent and Poisson stable
motions.

Definition 2.4. A number τ ∈ T is called an ε > 0 shift of x (respectively, almost period
of x), if ρ(π(τ, x), x) < ε (respectively, ρ(π(t+ τ, x), π(t, x)) < ε for all t ∈ T).
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Definition 2.5. A point x ∈ X is called almost recurrent (respectively, Bohr almost peri-
odic), if for any ε > 0 there exists a positive number l such that at any segment of length l
there is an ε shift (respectively, almost period) of point x ∈ X .

Definition 2.6. If the point x ∈ X is almost recurrent and the set H(x) := {π(t, x) | t ∈ T}
is compact, then x is called recurrent.

Denote by Nx := {{tn} ⊂ T : such that {π(tn, x)} converges to x }.

Definition 2.7. A point x ∈ X of the dynamical system (X,T, π) is called Levitan almost
periodic [27], if there exists a dynamical system (Y,T, σ) and a Bohr almost periodic point
y ∈ Y such that Ny ⊆ Nx.

Definition 2.8. A point x ∈ X is called stable Lagrange stable, if its trajectory Σx :=
{π(t, x) : t ∈ T} is relatively compact.

Definition 2.9. A point x ∈ X is called almost automorphic in the dynamical system
(X,T, π), if the following conditions hold:

(1) x is Lagrange stable;
(2) the point x ∈ X is Levitan almost periodic.

Definition 2.10. A point x0 ∈ X is called [39, 41]
- pseudo recurrent if for any ε > 0, t0 ∈ T and p ∈ Σx0 there exist numbers L =
L(ε, t0) > 0 and τ = τ(ε, t0, p) ∈ [t0, t0 + L] such that τ ∈ T(p, ε));

- pseudo periodic (or uniformly Poisson stable) if for any ε > 0, t0 ∈ T there exists
a number τ = τ(ε, t0) > t0 such that τ ∈ T(p, ε)) for any p ∈ Σx0

;
- Poisson stable in the positive (respectively, negative) direction if for any ε > 0 and
l > 0 (respectively, l < 0) there exists a number τ > l (respectively, τ < l) such
that ρ(π(τ, x0), x0) < ε. The point x0 ∈ X is called Poisson stable if it is stable (in
the sense of Poisson) in the both directions.

Remark 2.1. 1. Every pseudo periodic point is pseudo recurrent.
2. If x ∈ X is pseudo recurrent, then

- it is Poisson stable;
- every point p ∈ H(x) is pseudo recurrent;
- there exist pseudo recurrent points for which the set H(x0) is compact but not

minimal [36, ChV];
- there exist pseudo recurrent points which are not almost automorphic (respec-

tively, pseudo periodic) [36, ChV].
3. If x0 is a Lagrange stable point and p ∈ ωp for any p ∈ H(x0), then the point x0 is

pseudo recurrent.

Below we will present some notions and results stated and proved by B. A. Shcherbakov
[36]-[39].

Let (X,T1, π) and (Y,T2, σ) (T1 ⊆ T2) be two dynamical systems.

Definition 2.11. A point x ∈ X is said to be comparable with y ∈ Y by the character of
recurrence, if for all ε > 0 there exists a δ = δ(ε) > 0 such that every δ–shift of y is an
ε–shift for x, i.e., d(σ(τ, y), y) < δ implies ρ(π(τ, x), x) < ε, where d (respectively, ρ) is the
distance on Y (respectively, on X).

Theorem 2.1. Let x be comparable with y ∈ Y . If the point y ∈ Y is stationary (respectively,
τ–periodic, Levitan almost periodic, almost recurrent, Poisson stable), then the point x ∈ X is so.
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Definition 2.12. A point x ∈ X is called uniformly comparable with y ∈ Y by character of
recurrence, if for all ε > 0 there exists a δ = δ(ε) > 0 such that every δ–shift of σ(t, y) is an
ε–shift for π(t, x) for all t ∈ T1, i.e., d(σ(t + τ, y), σ(t, y)) < δ implies ρ(π(t + τ, x), x) < ε
for all t ∈ T1 (or equivalently, d(σ(t1, y), σ(t2, y)) < δ implies ρ(π(t1, x), π(t2, x)) < ε for
all t1, t2 ∈ T1).

Denote by Mx := {{tn} ⊂ T : such that {π(tn, x)} converges }.

Definition 2.13. A point x ∈ X is said [5],[8, ChII] to be strongly comparable by character
of recurrence with the point y ∈ Y , if My ⊆Mx.

Theorem 2.2. Let X and Y be two complete metric spaces, the point x be uniformly comparable
with y ∈ Y by the character of recurrence. If the point y ∈ Y is recurrent (respectively, almost
periodic, almost automorphic, uniformly Poisson stable), then so is the point x ∈ X .

Definition 2.14. Let (X,h, Y ) be a fiber space [22], i.e., X and Y be two metric spaces
and h : X → Y be a homomorphism from X into Y . The subset M ⊆ X is said to be
conditionally precompact [6],[9, Ch.IX],[11, Ch.III], if the primage h−1(Y ′)

⋂
M of every

precompact subset Y ′ ⊆ Y is a precompact subset of X . In particularly My = h−1(y)
⋂
M

is a precompact subset of Xy for every y ∈ Y . The set M is called conditionally compact
if it is closed and conditionally precompact.

Remark 2.2. Let W be a compact metric space, X := W × Y and (X,h, Y ), where h :=
pr2 : X → Y , then X is conditionally pre-compact (with respect to (X,h, Y )).

Lemma 2.1. [11, ChIII] Suppose that the following conditions are fulfilled:
(1) y ∈ Y is a two-sided Poisson stable point;
(2) 〈(X,T, π), (Y,T, σ), h〉 is a two-sided non-autonomous dynamical system;
(3) X is a conditionally compact space;
(4)

inf
t≤0

ρ(π(t, x1), π(t, x2)) > 0

for any x1, x2 ∈ Xy (x1 6= x2).
Then for any pair of points x1, x2 ∈ Xy with x1 6= x2 there are the sequences {t−k } ∈ N−∞y

and {t+k } ∈ N+∞
y such that

lim
k→∞

π(t±k , xi) = xi (i = 1, 2).

2.3. Global Attractors of Cocycles. Let W (respectively, Y be a complete metric space
and (Y,R, σ) be a two-sided dynamical system.

Definition 2.15. The family {Iy | y ∈ Y } (Iy ⊂ W ) of nonempty compact subsets W is
called (see, for example, [1] and [21]) a compact pullback attractor (respectively, uniform
pullback attractor ) of a cocycle ϕ, if the following conditions hold:

(1) the set I :=
⋃
{Iy | y ∈ Y } is relatively compact;

(2) the family {Iy | y ∈ Y } is invariant with respect to the cocycle ϕ, i.e. ϕ(t, Iy, y) =
Iσ(t,y) for all t ∈ T+ and y ∈ Y ;

(3) for all y ∈ Y (respectively, uniformly in y ∈ Y ) and K ∈ C(W )

lim
t→+∞

β(ϕ(t,K, σ(−t, y)), Iy) = 0,

where β(A,B) := sup{ρ(a,B) : a ∈ A} is a semi-distance of Hausdorff.

Remark 2.3. 1. Let {Iy| y ∈ Y } be a family of compact subsets from W such that I =⋃
{Iy| y ∈ Y } is precompact, then the set J =

⋃
{Jy| y ∈ Y } ⊂ X = W × Y , where

Jy = Iy × {y}, is conditionally compact with respect to (X,h, Y ) (h = pr2).
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2. Let I = {Iy| y ∈ Y } be the pullback attractor (respectively, compact global attractor)
of cocycle ϕ, then the set J =

⋃
{Jy| y ∈ Y } (Jy = Iy × {y}) is conditionally compact with

respect to (X,h, Y ) (h = pr2).

Proof. Let Y ′ be a compact subset of Y , then h−1(Y ′)
⋂
J =

⋃
{Jy| y ∈ Y ′} ⊆ I × Y ′ and,

consequently, it is precompact.
The second statement follows from the first one. �

Definition 2.16. A cocycle ϕ over (Y,T, σ) with the fiber W is said to be compactly dissi-
pative, if there exits a nonempty compact K ⊆W such that

(2.2) lim
t→+∞

sup{β(U(t, y)M,K) | y ∈ Y } = 0

for any M ∈ C(W ), where U(t, y) := ϕ(t, ·, y).

Definition 2.17. A family {Iy | y ∈ Y }(Iy ⊂ W ) of nonempty compact subsets is called
a compact (forward) global attractor of the cocycle ϕ, if the following conditions are ful-
filled:

(1) the set I :=
⋃
{Iy | y ∈ Y } is relatively compact;

(2) the family {Iy | y ∈ Y } is invariant with respect to the cocycle ϕ;
(3) the equality

lim
t→+∞

sup
y∈Y

β(ϕ(t,K, y), I) = 0

holds for every K ∈ C(W ).

Let M ⊆W and
ωy(M) :=

⋂
t≥0

⋃
τ≥t

ϕ(τ,M, σ(−τ, y))

for any y ∈ Y .

Theorem 2.3. [9, ChII] Let 〈W,ϕ, (Y,T, σ)〉 be compactly dissipative and K be the nonempty
compact subset of W appearing in the equality (2.2), then:

1. Iy = ωy(K) 6= ∅, is compact, Iy ⊆ K and

lim
t→+∞

β(U(t, σ(−t, y))K, Iy) = 0

for every y ∈ Y ;
2. U(t, y)Iy = Iσ(t,y) for all y ∈ Y and t ∈ T+;
3.

lim
t→+∞

β(U(t, σ(−t, y))M, Iy) = 0

for all M ∈ C(W ) and y ∈ Y ;
4. the set I is relatively compact, where I := ∪{Iy | y ∈ Y }.
5. if Y is compact, then

lim
t→+∞

sup{β(U(t, σ(−t, y))M, I)| y ∈ Y } = 0

for any M ∈ C(W ).

Definition 2.18. Let 〈W,ϕ, (Y,T, σ)〉 be compactly dissipative, K be the nonempty com-
pact subset of W appearing in the equality (2.2) and Iy := ωy(K) for any y ∈ Y . The
family of compact subsets {Iy| y ∈ Y } is said to be a Levinson center (compact global
attractor) of non-autonomous (cocycle) dynamical system 〈W,ϕ, (Y,R, σ)〉.

Remark 2.4. According to Theorem 3.6 [10] by definition 2.18 is defined correctly the
notion of Levinson center (compact global attractor) for non-autonomous (cocycle) dy-
namical system 〈W,ϕ, (Y,T, σ)〉.
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Corollary 2.1. Let Y be compact, 〈W,ϕ, (Y,T, σ)〉 be compactly dissipative, I : {Iy| y ∈ Y } be
its Levinson center and I = ∪{Iy | y ∈ Y }, then

lim
t→+∞

sup{β(U(t, σ(−t, y))M, I)| y ∈ Y } = 0

for all M ∈ C(W ).

Proof. This statement follows from Theorem 2.3 (item 5.), because

sup{β(U(t, y))M, I)| y ∈ Y } = sup{β(U(t, σ(−t, y))M, I)| y ∈ Y }

for all M ∈ C(W ). �

Definition 2.19. A cocycle ϕ is said to be positively uniformly Lyapunov stable if for any
ε > 0 and nonempty compact subset K ⊆ W there exists a positive number δ = δ(ε,K)
such that ρ(u1, u2) < δ (u1, u2 ∈ K) implies

ρ(ϕ(t, u1, y), ϕ(t, u2, y)) < ε

for any t ≥ 0 and y ∈ Y .

3. LEVINSON CENTER FOR MONOTONE NON-AUTONOMOUS DYNAMICAL SYSTEMS WITH
THE STRICTLY MONOTONE FIRST INTEGRAL

Assume that E is an ordered Banach space [23, Ch.II]. A subset U of E is called lower-
bounded (respectively, upper-bounded) if there exists an element a ∈ E such that a ≤ U
(respectively, a ≥ U ). Such an a is said to be a lower bound (respectively, upper bound)
for U . A lower bound α is said to be the greatest lower bound (g.l.b.) or infimum, if any
other lower bound a satisfies a ≤ α. Similarly, we can define the least upper bound (l.u.b.)
or supremum.

Let (X,h, Y ) be a Banach vector bundle with fiber E (see, for example, [26, Ch.I]). A
bundle (X,h, Y ) [22] is said to be ordered if each fiber Xy := h−1(y) (y ∈ Y ) is ordered.
Note that only points on the same fiber may be order related: if x1 ≤ x2 or x1 < x2, then
it implies h(x1) = h(x2). We assume that the order relation and the topology on X are
compatible in the sense that x ≤ x̃ if xn ≤ x̃n for all n and xn → x, x̃n → x̃ as n→∞.

Definition 3.20. For given bundle (X,h, Y ), a non-autonomous dynamical system 〈(X,
T+, π), (Y,T, σ), h〉 defined on it is said to be monotone if x1 ≤ x2 implies π(t, x1) ≤ π(t, x2)
for any t > 0.

For given non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉, let S ⊆ X be a
nonempty closed ordered and positively invariant subset possessing the following prop-
erties:

(1) h(S) = Y ;
(2) S is positively invariant with respect to π, i.e. 〈(S,T+, π), (Y,T, σ), h〉 is a non-

autonomous dynamical system.
Below we will use the following assumptions:
(C1) For every conditionally compact subsetK of S and y ∈ Y the setKy := h−1(y)

⋂
K

has both infimum αy(K) and supremum βy(K).
(C2) For every x ∈ S, the semi-trajectory Σ+

x is conditionally precompact and its ω-limit
set ωx is positively uniformly stable.

(C3) The non-autonomous dynamical system

〈(S,T+, π), (Y,T, σ), h〉

is monotone.
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Let Rd+ := {x ∈ Rd : such that xi ≥ 0 (x := (x1, . . . , xn)) for any i = 1, 2, . . . , d} be
the cone of nonnegative vectors of Rd. By Rd+ on the space Rd is defined a partial order.
Namely: u ≤ v if v − u ∈ Rd+. Let K ⊂ Rd be a compact subset of Rd, and for each
1 ≤ i ≤ d, define αi(K) := min{xi| x = (x1, . . . , xd) ∈ K} and βi(K) := max{xi| x =
(x1, . . . , xd) ∈ K}. Then α(K) := (α1(K), . . . , αd(K)) and β(K) := (β1(K), . . . , βd(K))
are the greatest lower bound (infimum) and least upper bound (supremum) of with respect
to the order on Rd, respectively.

Definition 3.21. Let 〈E,ϕ, (Y,T, σ)〉 be a cocycle and 〈(X,T+, π), (Y,T, σ), h〉 be a non-au-
tonomous dynamical system associated by cocycle ϕ (i.e., X := E × Y , π = (ϕ, σ) and
h := pr2 : X → Y ). The cocycle ϕ is said to be monotone if u1 ≤ u2 implies ϕ(t, u1, y) ≤
ϕ(t, u2, y) for any t > 0 and y ∈ Y .

Recall that a forward orbit {π(t, x0)| t ≥ 0} of non-autonomous dynamical systems
〈(X,R+, π), (Y,T, σ), h〉 is said to be uniformly stable if for any ε > 0, there is a δ = δ(ε) >
0 such that ρ(π(t0, x0), π(t0, x0)) < δ implies d(π(t, x0), π(t, x0)) < ε for every t ≥ t0.

Lemma 3.2. [14] Assume that (C1)–(C3) hold, x0 ∈ X such that ωx0 is positively uniformly
stable. Let K := ωx0 be fixed and y0 := h(x0). Then if q ∈ ωq ⊆ ωy0 , αq := αq(K), K1 := ωαq ,
then the set K1

q := ωαq

⋂
Xq (respectively, ωβq

⋂
Xq) consists a single point γq (respectively, δq),

i.e., K1
q = {γq} (respectively, {δq}).

Definition 3.22. A point x0 ∈ X is said to be uniformly Poisson stable [2] (or pseudo
periodic [3, ChII,p.32]) if for arbitrary ε > 0 and l > 0 there exists a number τ > l such
that ρ(π(t+ τ, x), π(t, x)) < ε for any t ∈ T.

Definition 3.23. Let (X,T, π) be a two-sided dynamical system. A point x ∈ X is said to
be strongly Poisson stable in the positive (respectively, in the negative) direction if p ∈ ωp
(respectively, p ∈ αp) for any p ∈ H(x). The point x ∈ X is said to be strongly Poisson
stable if it is strongly Poisson stable in the both directions.

Remark 3.5. Every pseudo recurrent point is strongly Poisson stable. The inverse state-
ment, generally speaking, is not true.

Theorem 3.4. [14] Assume that (C1)–(C3) hold, x0 ∈ X and y0 := h(x0) ∈ Y is strongly
Poisson stable. Then the following statements hold:

(1) the point γy0 (respectively, δy0 ) is strongly comparable by character of recurrence with y0
and

(2)
lim

t→+∞
ρ(π(t, αy0), π(t, γy0)) = 0.

Corollary 3.2. Under the conditions (C1)− (C3) if the point y0 is τ -periodic (respectively, quasi
periodic, Bohr almost periodic, recurrent, pseudo recurrent and Lagrange stable), then:

(1) the point uy0 is so;
(2) the point αy0 is asymptotically τ -periodic (respectively, asymptotically quasi periodic,

asymptotically Bohr almost periodic, asymptotically recurrent, pseudo recurrent).

Remark 3.6. 1. If the point y0 is recurrent (in the sense of Birkhoff), then Corollary 3.2
coincides with the results of the work of J. Jiang and X.-Q. Zhao [24].

2. In the works of B. A. Shcherbakov [33]-[35], [36, ChV, Example 5.2.1] were con-
structed examples of pseudo recurrent and Lagrange stable motions which are not recur-
rent (in the sense of Birkhoff).

Theorem 3.5. [13] Assume that the cocycle 〈E,ϕ, (Y,T, σ)〉
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1. is monotone;
2. admits a compact global attractor I := {Iy| y ∈ Y };
3. is positively uniformly Lyapunov stable and denote by α(y) (respectively, by β(y)) the

greatest lower bound of the set Iy (respectively, the least upper bound of Iy)
and the point y ∈ Y is positively Poisson stable, i.e., y ∈ ωy .

Then the following statements hold:
(1) α(y) ≤ u ≤ β(y) for any u ∈ Iy and y ∈ Y ;
(2) α(y), β(y) ∈ Iy and, consequently, Iy ⊆ [α(y), β(y)];
(3) ϕ(t, α(y), y) = α(σ(t, y)) (respectively, ϕ(t, β(y), y) = β(σ(t, y))) for any t ≥ 0;
(4) the point γ∗(y) := (α(y), y) ∈ X = E × Y (respectively, γ∗(y) := (β(y), y) ∈ X) is

comparable by character of recurrence with the point y;
(5) if u ∈ E and u ≤ α(y) (respectively, u ≥ β(y)), then ωx

⋂
Xy = {γ∗(y)} (respectively,

ωx
⋂
Xy = {γ∗(y)}), where x := (u, y);

(6) if u ≤ α(y) (respectively, u ≥ β(y)),then

lim
t→+∞

ρ(ϕ(t, u, y).γ∗(σ(t, y))) = 0

(respectively,
lim

t→+∞
ρ(ϕ(t, u, y).γ∗(σ(t, y))) = 0);

(7) if y is strongly Poisson stable, then the point γ∗(y) := (α(y), y) ∈ X = E × Y (respec-
tively, γ∗(y) := (β(y), y) ∈ X) is strongly comparable by character of recurrence with
the point y.

Corollary 3.3. [13] Under the conditions of Theorem 3.5 the following statements take place:
(1) if the point y is τ -periodic (respectively, Levitan almost periodic, almost recurrent, almost

automorphic, recurrent, Poisson stable), then the full trajectory γy passing through the
point (α(y), y) (respectively, through the point (β(y), y)) is so;

(2) if the point y is quasi periodic (respectively, Bohr almost periodic, almost automorphic,
recurrent, pseudo recurrent and Lagrange stable, uniformly Poisson stable and stable in
the sense of Lagrange), then the full trajectory γy passing through the point (α(y), y)
(respectively, through the point (β(y), y)) is so.

Proof. This statement follows from the Theorems 3.5, 2.1 and 2.2. �

Theorem 3.6. [7],[11, Ch.III] Let (X,T+, π), (Y,T, σ)〉 be a non-autonomous dynamical system
with the following properties:

(1) it admits a conditionally relatively compact invariant set J ;
(2) the non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is positively uniformly

stable on J ;
(3) every point y ∈ Y is two-sided Poisson stable.

Then
(1) all motions on J may be continued uniquely to the left and define on J a two-sided dy-

namical system (J,T, π);
(2) for every y ∈ Y with Jy 6= ∅ there are two sequences {t1n} → +∞ and {t2n} → −∞ such

that
π(tin, x)→ x (i = 1, 2)

as n→∞ for all x ∈ Jy .

Let U ⊆ Rn, V ∈ C1(U,R) and denote by ∇V :=
(
∂V
∂x1

, . . . , ∂V∂xn

)
.

Lemma 3.3. Assume that the following conditions are fulfilled:
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(i) 〈Rn+, ϕ, (Y,R, σ)〉 is a monotone cocycle;
(ii) there exists a first integral H ∈ C1(Rn+,R) for cocycle ϕ with ∇H(x) � 0 for any

x ∈ Rn+;
(iii) the family of motions ϕ(t, u0, y0) ((u0, y0) ∈ F ⊆ Rn+× Y ) of the cocycle ϕ is uniformly

bounded.
Then the family of motions ϕ(t, u0, y0) ((u0, y0) ∈ F ) is positively uniformly stable, i.e., for
arbitrary ε > 0 there exists a positive number δ = δ(ε) such that |ϕ(t0, u1, y0)−ϕ(t0, u2, y0)| < δ
implies |ϕ(t, u1, y0)− ϕ(t, u2, y0)| < ε for any t ≥ t0 and (u1, y0), (u2, y0) ∈ F .

Proof. This statement may be proved using the same ideas as in the proof of Lemma
3.1 from [40] (see also [12]). Below we will present the details of this proof. Let e :=
(1, . . . , 1) ∈ Rn+. Since the family of motions ϕ(t, u0, y0) ((u0, y0) ∈ F ) is uniformly
bounded on T+, we can choose a sufficiently large real number r > 0 such that

(3.3) 0 ≤ ϕ(t, u0, y0) ≤ q0 := re

for any t ≥ 0 and (u0, y0) ∈ F . Denote by

M := max
1≤i≤n

{
max

0≤x≤q0+e
Hxi

(x)
}
, m := min

1≤i≤n

{
min

0≤x≤q0+e
Hxi

(x)
}

Condition (ii) implies that M,m > 0. From the equality

H(y)−H(z) =

n∑
i=1

∫ 1

0

Hxi(z + s(y − z))ds(yi − zi) (∀ y, z ∈ Rn+)

it follows that

(3.4) |H(y)−H(z)| ≤ nM‖y − z‖, ∀ 0 ≤ z, y ≤ q0 + e,

and

(3.5) |H(y)−H(z)| ≥ m‖y − z‖, ∀ 0 ≤ z ≤ y ≤ q0 + e,

where ‖x‖ :=
∑n
i=1 |xi|.

Let ε0 := min{1, m
2nM }. For any given 0 < ε ≤ ε0, there is 0 < δ(ε) ≤ ε/2 such that

(3.6) ϕ(τ, u0, y0)− δ(ε)e ≤ ϕ(τ, u0, y0) ≤ ϕ(τ, u0, y0) + δ(ε)e ≤ q0 + e

for any τ ≥ 0 and (u0, y0) ∈ F . Put

p(ε, τ, (u0, y0)) := (max(ϕ1(τ, u0, y0)− δ(ε), 0), . . . ,max(ϕn(τ, u0, y0)− δ(ε), 0))

and q(ε, τ, (u0, y0)) := ϕ(τ, u0, y0) + δ(ε)e ((u0, y0) ∈ F ). Note that

0 ≤ q(ε, τ, (u0, y0))− p(ε, τ, (u0, y0)) =

[ϕ(τ, u0, y0)− δ(ε)e]− p(ε, τ, (u0, y0)) + 2δ(ε)e ≤ 2δ(ε)e

for all τ ≥ 0 and (u0, y0) ∈ F . Taking into consideration (3.4) and (3.6) we obtain

(3.7) |H(p(ε, τ, (u0, y0)))−H(q(ε, τ, (u0, y0)))| ≤ nMε

for all τ ≥ 0 and (u0, y0) ∈ F . For given τ ≥ 0 an (u0, y0) ∈ F , let

U(ε, τ, (u0, y0)) := {z ∈ Rn+| p(ε, τ, (u0, y0)) ≤ z ≤ q(ε, τ, (u0, y0))}.

Note thatϕi(τ, u0, y0) ≥ max(ϕi(τ, u0, y0)−δ(ε), 0) = pi(ε, τ, (u0, y0)) for any i = 1, 2, . . . , n
and, consequently, ϕ(τ, u0, y0) ∈ U(ε, τ, (u0, y0)). Since the cocycle ϕ is monotone, then
we will have

ϕ(t, p(ε, τ, (u0, y0)), σ(τ, y0)) ≤ ϕ(t, ϕ(τ, u0, y0), σ(τ, y0)) ≤
ϕ(t, q(ε, τ, (u0, y0)), σ(τ, y0))
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and

ϕ(t, p(ε, τ, (u0, y0)), σ(τ, y0)) ≤ ϕ(t, z, σ(τ, y0)) ≤ ϕ(t, q(ε, τ, (u0, y0)), σ(τ, y0))

for all t ≥ 0 and z ∈ U(ε, τ, (u0, y0))). Taking into consideration that H is a first integral
for the cocycle ϕ and inequality (3.7) we obtain

|H(ϕ(t, q(ε, τ, (u0, y0), σ(τ, y0)))−H(ϕ(t, ϕ(τ, u0, y0), σ(τ, y0)))| =
|H(q(ε, τ, (u0, y0)))−H(ϕ(τ, u0, y0))| ≤

|H(q(ε, τ, (u0, y0)))−H(p(ε, τ, (u0, y)))| ≤ nMε

for all t ≥ 0.
By (3.5) and (3.6), we have

(3.8) ‖ϕ(t, q(ε, τ, (u0, y0)), σ(τ, y0))− ϕ(t, ϕ(τ, u0, y0), σ(τ, y0))‖ ≤ nM

m
ε

for all t ≥ 0 with ϕ(t, q(ε, τ, (u0, y0)), σ(τ, y0)) ∈ [0, q0 + e]. We will show that

(3.9) ϕ(t, q(ε, τ, (u0, y0)), σ(τ, y0)) ∈ [0, q0 + e]

for all t ≥ 0 and (u0, y0) ∈ F . If it is not true, then there exist (u0, y0) ∈ F and a real
number t∗ > 0 (t∗ = t∗(u0, y0)) such that ϕ(t, q(ε, τ, (u0, y0)), σ(τ, y0)) ∈ [0, q0 + e] for any
t ∈ [0, t∗) and

(3.10) ‖ϕ(t∗, q(ε, τ, (u0, y0)), σ(τ, y0))‖ ≥ ‖q0‖+ 1.

On the other hand from (3.3) and (3.8) we have

‖ϕ(t∗, q(ε, τ, (u0, y0)), σ(τ, y0))‖ ≤
‖ϕ(t∗, q(ε, τ, (u0, y0)), σ(τ, y0))− ϕ(t∗, ϕ(τ, u0, y0), σ(τ, y0))‖+

‖ϕ(t∗, ϕ(τ, u0, y0), σ(τ, y0))‖ ≤ ‖q0‖+ nM
m ε ≤ ‖q0‖+ 1

2(3.11)

for any sufficiently small ε > 0. The inequalities (3.10) and (3.11) are contradictory. The
obtained contradiction proves our statement.

It then follows that for every z ∈ U(ε, τ, (u0, y0)) we have ϕ(t, z, σ(τ, y0)) ∈ [0, q0 + e]
for any t ≥ 0 . Similarly, we can show that for any z ∈ U(ε, τ, (u0, y0)) we have

(3.12) ‖ϕ(t, q(ε, τ, (u0, y0)), σ(τ, y0))− ϕ(t, z, σ(τ, y0))‖ ≤ nM

m
ε,

for any t ≥ 0. Then (3.9) and (3.12) imply that for any z ∈ U(ε, τ, (u0, y0)) and t ≥ 0,

‖ϕ(t, ϕ(τ, u0, y0), σ(τ, y0))− ϕ(t, z, σ(τ, y0))‖ ≤
‖ϕ(t, ϕ(τ, u0, y0), σ(τ, y0))− ϕ(t, q(ε, τ, (u0, y0)), σ(τ, y0))‖+

‖ϕ(t, q(ε, τ, (u0, y0)), σ(τ, y0))− ϕ(t, z, σ(τ, y0))‖ ≤ nM
m ε+ nM

m ε = 2nM
m ε.(3.13)

For any ε ∈ (0, ε0], τ ≥ 0, and (u1, y0), (u2, y0) ∈ F with

‖ϕ(τ, u1, y0)− ϕ(τ, u2, y0)‖ ≤ δ(ε),
we have ϕ(τ, u1, y0) ∈ U(ε, τ, (u2, y0)). Then from (3.13) we obtain

‖ϕ(t+ τ, u2, y0)− ϕ(t+ τ, u1, y0)‖ =

‖ϕ(t, ϕ(τ, u2, y0), σ(τ, y0))− ϕ(t, ϕ(τ, u1, y0), σ(τ, y0))‖ ≤ 2nM
m ε

for any t ≥ 0. Thus, the family of motionsϕ(t, u0, y0) ((u0, y0) ∈ F ) is uniformly stable. �

Lemma 3.4. Assume that 〈W,ϕ, (Y,T, σ)〉 is a compact dissipative cocycle, then for any compact
subsets M ⊂ W and N ⊂ Y the set ϕ(T+,M,N) := {ϕ(t, u, y)| t ∈ T+, u ∈ M, y ∈ N} is
relatively compact.
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Proof. Let ε be an arbitrary positive number,M ∈ C(W ), N ∈ C(Y ) andK be a nonempty
compact subset from W figuring in (2.2). Then there exists a positive number L(ε) such
that

(3.14) sup
y∈N

β(ϕ(t,M, y),K) < ε

for any t ≥ L(ε). Since the map ϕ : T+ × W × Y → W is continuous, then the set
Kε := ϕ([0, L(ε)],M,N) is compact and, consequently, by (3.14) the set K̃ := Kε

⋃
K is a

compact ε-net for ϕ(T+,M,N). Since the metric space W is complete then by Hausdorff’s
theorem (see, for example, [28, Ch.V]) the set ϕ(T+,M,N) is relatively compact. Lemma
is proved. �

Lemma 3.5. Assume that the following conditions are fulfilled:
(i) 〈Rn+, ϕ, (Y,T, σ)〉 is a monotone cocycle;

(ii) there exists a first integral H ∈ C1(Rn+,R) for cocycle ϕ with ∇H(x) � 0 for any
x ∈ Rn+;

(iii) the cocycle 〈Rn+, ϕ, (Y,T, σ)〉 is compact dissipative and I = {Iy| y ∈ Y } is its Levinson
center.

Then the following statement hold:
(1) for any compact subsets M ∈ C(Rn+) and N ∈ C(Y ) the family of motions ϕ(t, u0, y0)

((u0, y0) ∈ M × N ) is positively uniformly stable, i.e., for arbitrary ε > 0 there ex-
ists a positive number δ = δ(ε) such that |ϕ(t0, u1, y0) − ϕ(t0, u2, y0)| < δ implies
|ϕ(t, u1, y0)− ϕ(t, u2, y0)| < ε for any t ≥ t0 and (u1, y0), (u2, y0) ∈M ×N ;

(2) Levinson center I = {Iy| y ∈ Y } of the cocycle ϕ is positively uniformly stable.

Proof. The first statement follows from Lemma 3.3. To this end it is sufficient to take as F
(figuring in Lemma 3.3) the set M ×N and apply Lemma 3.4.

To prove the second statement we take in the quality of F the set J :=
⋃
{Jy| y ∈ Y },

where Jy = Iy × {y}, then the family of motions {ϕ(t, u, y)| (u, y) ∈ J ⊂ Rn+ × Y } is
uniformly bounded, because ϕ(t, u, y) ∈ Iσ(t,y) ⊂

⋃
{Iy| y ∈ Y } ⊆ K for any t ≥ 0 and

(u, y) ∈ J . By Lemma 3.3 the family of motions {ϕ(t, u, y)| (u, y) ∈ J ⊂ Rn+ × Y } is
positively uniformly stable. �

Let 〈Rn+, ϕ, (Y,T, σ)〉 (or shortly ϕ) be a cocycle under (Y,T, σ) with the fiber Rn+.

Theorem 3.7. [12] Assume that (C1) and (C4) hold and the following conditions are fulfilled:
(1) for every u ∈ Rn+ and y ∈ Y the semi-trajectory ϕ(T+, u, y) is relatively compact;
(2) 〈Rn+, ϕ, (Y,T, σ)〉 is a monotone cocycle with the fiber Rn+ over dynamical system (Y,T, σ);
(3) there exists a first integral V ∈ C1(Rn+,R) for the cocycle ϕ with ∇V (x) � 0 for any

x ∈ Rn+;
(4) the point y is Poisson stable (in the both direction).

Then
(1) for any x (x = (u, y) and X = Rn+ × Y ) the set ωyx = ωx

⋂
Xy consists of a single point

x∗ = (u∗, y);
(2) the point x∗ is comparable by character of recurrence with y, i.e., N+∞

y ⊆ N+∞
x∗ ;

(3)

(3.15) lim
t→+∞

ρ(π(t, x), π(t, x∗)) = 0 .

Theorem 3.8. Assume that (C1)) and (C4) hold and the cocycle 〈Rn+, ϕ, (Y,T, σ)〉
1. is monotone;
2. admits a compact global attractor I := {Iy| y ∈ Y };
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3. there exists a first integral V ∈ C1(Rn+,R) for the cocycle ϕ with ∇V (x) � 0 for any
x ∈ Rn+ and

4. every point y ∈ Y is positively Poisson stable, i.e., y ∈ ωy for any y ∈ Y .
Then

(1) for any x ∈ X (x = (u, y) and X = Rn+ × Y ) the set ωyx = ωx
⋂
Xy consists of a single

point x∗ = (u∗, y);
(2) the point x∗ is strongly comparable by character of recurrence with y, i.e., N+∞

y ⊆ N+∞
x∗ ;

(3)
lim

t→+∞
ρ(π(t, x), π(t, x∗)) = 0 ;

(4) for any y ∈ Y and x ∈ Jy the point x is strongly comparable by character of recurrence
with y.

Proof. The first three statements of Theorem follow from Theorem 3.7. Let now y be an
arbitrary point from Y and x ∈ Jy := Iy × {y}.

Since the cocycle ϕ admits a compact global attractor I = {Iy| y ∈ Y }, then ev-
ery semitrajectory ϕ(T+, u, y) (x := (u, y) ∈ X = Rn+ × Y ) is relatively compact and
ϕ(T+, u, y) ⊆ I =

⋃
{Iy| y ∈ Y } for any x = (u, y) ∈ J =

⋃
{Jy| y ∈ Y }, where

Jy := Iy × {y}. By Lemma 3.3 the cocycle ϕ is positively uniformly stable on J . Ac-
cording to Theorem 3.7 the first three statement of Theorem take place. Thus to finish the
proof of Theorem it is sufficient to establish the fourth statement of Theorem. Let y be an
arbitrary point from Y and x = (u, y) ∈ Jy . By third statement of Theorem there exist a
point x∗ ∈ ωyx = ωx

⋂
Xy which is strongly comparable and satisfies the condition (3.15).

We will show that x = x∗. In fact, if we suppose that it is not so, then x 6= x∗. By Theorem
3.6 there exists a sequence {tk} ∈ N+∞

y such that

lim
k→∞

π(tk, x) = x and lim
k→∞

π(tk, x
∗) = x∗

and, consequently,

(3.16) ρ(x, x∗) = lim
k→∞

ρ(π(tk, x), π(tk, x
∗)).

On the other hand from (3.15), taking in consideration that tk → +∞ as k →∞, we obtain

(3.17) lim
k→∞

ρ(π(tk, x), π(tk, x
∗)) = 0.

From (3.16) and (3.17) we obtain x = x∗ which contradicts to our assumption. Theorem
is completely proved. �

Corollary 3.4. Under the conditions of Theorem 3.8 if the point y is stationary (respectively,
τ -periodic, quasi-periodic with the spectrum {ν1, ν2, . . . , νm}, Bohr almost periodic, almost auto-
morphic, recurrent, Levitan almost periodic, almost recurrent, pseudo recurrent, uniformly Pois-
son stable, strongly Poisson stable), then

(1) every motion ϕ(t, u, y) (for any y ∈ Y and u ∈ Iy) is so;
(2) for any x = (u, y) ∈ Rn+ × Y there exists a point uy ∈ Iy such that

(a) the motion ϕ(t, uy, y) is stationary (respectively, τ -periodic, quasi-periodic with the
frequency spectrum {ν1, ν2, . . . , νm}, Bohr almost periodic, almost automorphic, re-
current, Levitan almost periodic, almost recurrent, pseudo recurrent, uniformly Pois-
son stable, strongly Poisson stable);

(b)
lim

t→+∞
‖ϕ(t, u, y)− ϕ(t, uy, y)‖ = 0,
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i.e., ϕ(t, u, y) is asymptotically stationary (respectively, τ -periodic, quasi-periodic
with the frequency spectrum {ν1, ν2, . . . , νm}, Bohr almost periodic, almost auto-
morphic, recurrent, Levitan almost periodic, almost recurrent, pseudo recurrent, uni-
formly Poisson stable, strongly Poisson stable).

Proof. This statement follows from the Theorems 3.8, 2.1 and 2.2. �

4. APPLICATIONS

LetX,W be two metric space. Denote by C(T×W,X) the space of all continuous map-
pings f : T ×W 7→ X equipped with the compact-open topology and σ be the mapping
from T×C(T×W,X) into C(T×W,X) defined by the equality σ(τ, f) := fτ for all τ ∈ T
and f ∈ C(T ×W,X), where fτ is the τ -translation (shift) of f with respect to variable t,
i.e., fτ (t, x) = f(t+τ, x) for all (t, x) ∈ T×W . Then [9, Ch.I] the triplet (C(T×W,X),T, σ)
is a dynamical system on C(T ×W,X) which is called a shift dynamical system (dynamical
system of translations or Bebutov’s dynamical system).

Recall that the function ϕ ∈ C(T,Rn) (respectively, f ∈ C(T × Rn,Rn)) possesses
the property (A), if the motion σ(·, ϕ) (respectively, σ(·, f)) generated by the function ϕ
(respectively, f ) possesses this property in the dynamical system (C(T,Rn),T, σ) (respec-
tively, (C(T× Rn,Rn),T, σ)).

In the quality of the property (A) there can stand stability in the sense of Lagrange (st.
L), uniform stability (un. st. L+) in the sense of Lyapunov, periodicity, almost periodicity,
asymptotical almost periodicity and so on.

For example, a function f ∈ C(T × Rn,Rn) is called almost periodic (respectively, re-
current etc) in t ∈ T uniformly with respect to (w.r.t.) w on every compact subset from Rn,
if the motion σ(·, f) is almost periodic (respectively, recurrent) in the dynamical system
(C(T× Rn,Rn),T, σ).

4.1. Nonlinear Differential Equations. We will give below an example of a skew-product
dynamical system which plays an important role in the study of non-autonomous differ-
ential equations.

Example 4.2. Consider the differential equation

(4.18) u′ = f(t, u),

where f ∈ C(R× Rd,Rd). Along with the equation (4.18) we consider its H-class [4],[17],
[27], [36],[39], i.e., the family of the equations

(4.19) v′ = g(t, v),

where g ∈ H(f) = {fτ : τ ∈ R} and fτ (t, u) = f(t+ τ, u), where the bar indicating closure
in the compact-open topology.

Condition (A1). The function f ∈ C(R × Rd,Rd) is said to be regular [32] if for ev-
ery equation (4.19) the conditions of existence, uniqueness and extendability on R+ are
fulfilled.

We will suppose that the function f is regular. Denote by ϕ(·, v, g) the solution of (4.19)
passing through the point v ∈ Rd for t = 0. Then the mapping ϕ : R+ × Rd ×H(f)→ Rd
satisfies the following conditions (see, for example, [4],[30],[31]):

1) ϕ(0, v, g) = v for all v ∈ Rd and g ∈ H(f);
2) ϕ(t, ϕ(τ, v, g), gτ ) = ϕ(t+ τ, v, g) for each v ∈ Rd, g ∈ H(f) and t, τ ∈ R+;
3) ϕ : R+ × En ×H(f)→ Rd is continuous.
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Denote by Y := H(f) and (Y,R, σ) a dynamical system of translations on Y , induced
by the dynamical system of translations (C(R×Rd,Rd),R, σ). The triple 〈Rd, ϕ, (Y,R, σ)〉
is a cocycle over (Y,R+, σ) with the fiber Rd. Hence, the equation (4.18) generates a cocy-
cle 〈Rd, ϕ, (Y,R, σ)〉 and the non-autonomous dynamical system 〈(X,R+, π), (Y,R, σ), h〉,
where X := Rd × Y , π := (ϕ, σ) and h := pr2 : X → Y .

Condition (A2). Equation (4.18) is monotone. This means that the cocycle 〈Rn, ϕ,
(H(f), R, σ)〉 (or shortly ϕ) generated by (4.18) is monotone, i.e., if u, v ∈ Rd and u ≤ v
then ϕ(t, u, g) ≤ ϕ(t, v, g) for all t ≥ 0 and g ∈ H(f).

LetK be a closed cone in Rd. The dual cone to K is the closed coneK∗ in the dual space(
Rd
)∗ of linear functions on Rd, defined by

K∗ := {λ ∈
(
Rd
)∗

: 〈λ, x〉 ≥ 0 for any x ∈ K},

where 〈·, ·〉 is the scalar product in Rd.
Recall [42],[43, ChV] that the function f ∈ C(R × Rd,Rd) is said to be quasimonotone

if for any (t, u), (t, v) ∈ R × Rd and φ ∈
(
Rd+
)∗ we have: u ≤ v and φ(u) = φ(v) implies

φ(f(t, u)) ≤ φ(f(t, v)).

Lemma 4.6. [14] Let f ∈ C(R × Rd,Rd) be a regular and quasimonotone function, then the
following statements hold:

(1) if u ≤ v, then ϕ(t, u, f) ≤ ϕ(t, v, f) for any t ≥ 0;
(2) any function g ∈ H(f) is quasimonotone;
(3) u ≤ v implies ϕ(t, u, g) ≤ ϕ(t, v, g) for any t ≥ 0 and g ∈ H(f);
(4) equation (4.18) is monotone.

Let f ∈ C(R × Rd,Rd), σ(t, f) be the motion (in the shift dynamical system (C(R ×
Rd,Rd),R, σ)) generated by f , u0 ∈ Rd, ϕ(t, u0, f) be the solution of equation (4.18), x0 :=
(u0, f) ∈ X := Rd ×H(f) and π(t, x0) := (ϕ(t, u0, f), σ(t, f)) the motion of skew-product
dynamical system (X,R+, π).

Definition 4.24. A solution ϕ(t, u0, f) of equation (4.18) is called [8],[36],[39] compati-
ble (respectively, strongly compatible or uniformly compatible) if the motion π(t, x0) is
comparable (respectively, strongly comparable or uniformly comparable) by character of
recurrence with σ(t, f).

Definition 4.25. A function f is said to be Poisson stable (respectively, strongly Poisson
stable) in t ∈ T uniformly with respect to u on every compact subset of Rd if the point f ∈
C(T × Rd,Rd) is Poisson stable (respectively, strongly Poisson stable) in shift dynamical
system (C(T× Rd,Rd),T, σ).

Theorem 4.9. Suppose that the following assumptions are fulfilled:
- the function f ∈ C(R × Rd,Rd) is strongly Poisson stable in t ∈ R uniformly with

respect to u on every compact subset from Rn;
- the cocycle ϕ, generated by equation (4.18), admits a compact global attractor and I :=
{Ig| g ∈ H(f)} is its Levinson center;

- the cocycle ϕ is monotone;
- equation (4.18) has a first integral V ∈ C1(Rn, R) such that∇V (x)� 0 .

Then under condition (A1)− (A2) the following statement hold:
(1) for any g ∈ H(f) and v ∈ Rn there exists a point p(v,g) ∈ Ig such that the solution

ϕ(t, p(v,g), g) of equation (4.19) is strongly compatible and

lim
t→∞

‖ϕ(t, v, g)− ϕ(t, p(v,g), g)‖ = 0;
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(2) for any g ∈ H(f) and v ∈ Ig the solution ϕ(t, v, g) of equation (4.19) is strongly compat-
ible;

(3) if the function g is stationary (respectively, τ -periodic, quasi-periodic with the frequency
spectrum {ν1, ν2, . . . , νm}, Bohr almost periodic, almost automorphic, recurrent, Levitan
almost periodic, almost recurrent, pseudo recurrent, uniformly Poisson stable, strongly
Poisson stable), then every solution ϕ(t, v, g) (v ∈ Ig) of equation (4.19) is so.

Proof. Let f ∈ C(R × Rd,Rd) and (C(R × Rd,Rnd),R, σ) be the shift dynamical system
no C(R × Rd,Rd). Denote by Y := H(f) and (Y,R, σ) the shift dynamical system on
H(f) induced by (C(R × Rd,Rd),R, σ). Consider the cocycle 〈Rd, ϕ, (Y,R, σ)〉 generated
by equation (4.18) (see Condition (A1)). Now to finish the proof of Theorem it is sufficient
to apply Theorem 3.5 and Corollary 3.3. Theorem is proved. �

4.2. Linear Differential Equations. Let A(t) = (aij(t))
n
i,j=1 (t ∈ R) be a matrix, satisfying

the following Condition (L1)

aij(t) ≥ 0 and
n∑
i=1

aij(t) = 0

for any i, j = 1, . . . , n and t ∈ R.
Let [Rn] be the family of all matrices A = (aij)

n
ij=1 with real coefficients aij ∈ R and

C(R, [Rn]) be the space of all matrix-functions A(t) = (aij(t))
n
i,j=1 equipped with the

distance

d(A,B) =

∞∑
k=1

1

2k
dk(A,B)

1 + dk(A,B)
,

where dk(A,B) := max{||A(t) − B(t)|| : |t| ≤ k}. Denote by (C(R, [Rn]),R, σ) the shift
dynamical system on C(R, [Rn]), i.e., σ(a, τ) = Aτ and Aτ (t) := A(t + τ) for any t, τ ∈ R
and A ∈ C(R, [Rn]) and by H(A) denote the closure of the set {Aτ | τ ∈ R} in the space
C(R, [Rn]).

Remark 4.7. If the matrix A ∈ C(R, [Rn]) satisfies Condition (L1), then every matrix B ∈
H(A) satisfies Condition (L1).

Consider the differential equation

(4.20) x′(t) = A(t)x(t)

and its H-class

(4.21) y′(t) = B(t)y(t) (B ∈ H(A)).

Lemma 4.7. [12] Suppose that the matrix A ∈ C(R, [Rn]) satisfies condition (L1). Then the
function V : Rn+ → R defined by equality

(4.22) V (x1, x2, . . . , xn) = x1 + x2 + . . .+ xn

is a first integral for equation (4.20).

Corollary 4.5. The set M := {x ∈ Rn+|
∑n
i=1 xi = 1} is invariant with respect to cocycle

〈Rn+, ϕ, (H(A),R, σ)〉.

Proof. Let v ∈M and B ∈ H(A), then by Lemma 4.7 we have

1 =

n∑
i=1

vi =

n∑
i=1

ϕi(t, v, B)

for any t ≥ 0. �
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Lemma 4.8. Let A1, A2 ∈ C(R, [Rn]). The following statements hold:
(1) ifA1(t) ≥ 0 andA2(t) ≥ 0, thenA1(t)+A2(t) ≥ 0 andA1(t)A2(t) ≥ 0 for any t ∈ R+;
(2) if A(t) ≥ 0 for any t ∈ R+, then

∫ t
0
A(s)ds ≥ 0 for all t ∈ R+;

(3) if A1(t) ≥ A2(t) ≥ 0 and B1(t) ≥ B2(t) ≥ 0, then A1(t)B1(t) ≥ A2(t)B2(t) for any
t ∈ R+;

(4) if Ak ∈ C(R, [Rn]) (k ∈ N), Ak → A as k → ∞ and Ak(t) ≥ 0 for any k ∈ N and
t ∈ R+, then A(t) ≥ 0.

Proof. The first two and fourth statements are obvious.
The third statement follows from the relation

A1(t)B1(t)−A2(t)B2(t) = (A1(t)−A2(t))B1(t) +A2(t)(B1(t)−B2(t))

for all t ∈ R. �

Let ϕ(t, u,A) be the solution of equation (4.20) passing through the point u ∈ Rn at
the initial moment and by U(t, A) the Cauchy operator of equation (4.20), i.e., U(t, A) :=
ϕ(t, ·, A) for any t ∈ R.

Recall (see, for example, [16, Ch.III]) the operator U(t, A) can be constructed as follow

(4.23) U(t, A) = lim
k→∞

Uk(t, A)

and the limit above is uniform with respect to t on every compact from R, where

U0(t, A) = E,

U1(t, A) = E +
∫ t
0
A(s)ds,

U2(t, A) = E +
∫ t
0
A(s)U1(s,A)ds,

. . . . . . . . . . . . . . . . . . . . . ,

Uk(t, A) = E +
∫ t
0
A(s)Uk−1(s,A)ds

for any k ∈ N and t ∈ R.

Lemma 4.9. Assume that A1, A2 ∈ C(R, [Rn]). If 0 ≤ A1(t) ≤ A2(t) for any t ∈ R, then
0 ≤ U(t, A1) ≤ U(t, A2) for any t ∈ R+.

Proof. To prove this statement we note that

U0(t, A1) = U0(t, A2),

0 ≤ U1(t, A1) = E +
∫ t
0
A1(s)ds ≤ E +

∫ t
0
A2(s)ds = U2(t, A2)

for any t ∈ R+. Assume that

0 ≤ Uk(t, A1) ≤ Uk(t, A2)

for any t ∈ R+ and k = 2, . . . ,m. Taking in consideration Lemma 4.8 and the assumption
above we will have

0 ≤ Um+1(t, A1) = E +
∫ t
0
A1(s)Um(s,A1)ds ≤

E +
∫ t
0
A2(s)Um(s,A2)ds = Um+1(t, A2)

for any t ∈ R+ and, consequently, we have

(4.24) 0 ≤ Uk(t, A1) ≤ Uk(t, A2)

for any k ∈ N and t ∈ R+. Passing to the limit in (4.24) as k →∞ and taking into account
(4.23) we obtain 0 ≤ U(t, A1) ≤ U(t, A2) for any t ∈ R+. Lemma is proved. �
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Corollary 4.6. Assume that A ∈ C(R, [Rn]), A(t) = (aij(t))
n
i,j=1 and there are αij ∈ R+

(i, j = 1, 2, . . . , n) such that aij(t) ≥ αij for any t ∈ R and i, j = 1, , . . . , n, then

U(t, A) ≥ eAt

for any t ∈ R+, where A := (αij)
n
i,j=1.

Proof. This statement directly follows from Lemma 4.9 because A(t) ≥ A ≥ 0 for any
t ∈ R and U(t,A) = eAt. �

Corollary 4.7. Assume that A ∈ C(R, [Rn]) and A(t) ≥ 0 for any t ∈ R+, then
(1) ϕ(t, u,A) = U(t, A)u ≥ 0 for any t ≥ 0 and u ∈ Rn+;
(2) for any u, v ∈ Rn+ with u ≤ v we have ϕ(t, u,A) ≤ ϕ(t, v, A) for any t ≥ 0.

Proof. From Corollary 4.6 (A = 0) we obtain U(t, A)u ≥ u ≥ 0 for any t ≥ 0 and u ∈ Rn+
because eAt = E if A = 0.

Let u, v ∈ Rn+ with u ≤ v and A(t) ≥ 0 for any t ≥ 0, then ϕ(t, v, A) − ϕ(t, u,A) =
U(t, A)v − U(t, A)u = U(t, A)(v − u) ≥ 0 for any t ≥ 0 because v − u ≥ 0. �

Remark 4.8. Let A ∈ C(R, [Rn]) and A(t) ≥ 0 for any t ∈ R, then
(1) for every B ∈ H(A) we have B(t) ≥ 0 for any t ∈ R;
(2) for any u, v ∈ Rn+ with v1 ≤ v2 we have ϕ(t, v1, B) ≤ ϕ(t, v2, B) for any t ≥ 0 and

B ∈ H(A).

Condition (L2). A matrix A(t) = (aij(t))
n
i,j=1 satisfies the following conditions:

aij(t) ≥ 0

for any t ≥ 0 and i, j = 1, , . . . , n with i 6= j.

Remark 4.9. If the matrix-function A ∈ C(R, [Rn]) satisfies Condition (L2), then every
matrix-function B ∈ H(A) possesses the same property.

Lemma 4.10. [12] The following statements hold
(1) if the matrix A(t) ≥ 0 for any t ∈ R, then the cocycle ϕ, generated by equation (4.20), is

monotone, i.e., ϕ(t, u,B) ≤ ϕ(t, v, B) for any t ∈ R+ and B ∈ H(A) whenever u ≤ v
(u, v ∈ Rn+);

(2) if the matrixA(t) satisfies Condition (L2), then the cocycle ϕ is componentwise monotone,
i.e., ϕi(t, u,B) < ϕi(t, v, B) for any (t, B) ∈ R+ ×H(A) whenever u ≤ v and ui < vi
(i = 1, 2, . . . , n).

Corollary 4.8. [12] If the matrixA(t) ≥ 0 for any t ∈ R, then the cone Rn+ is positively invariant
with respect to cocycle ϕ, generated by equation (4.20). This means that ϕ(t, v, B) ∈ Rn+ for any
t ∈ R+ whenever (v,B) ∈ Rn+ ×H(A).

Theorem 4.10. [12] Assume that A ∈ C(R, [Rn]) be a matrix satisfying Conditions (L1)–(L2)
and it is strongly Poisson stable in t ∈ R.

Then the following statements hold:
(1) the cone Rn+ is positively invariant with respect to cocycle 〈Rn, ϕ, (H(A), R, σ)〉 (or

shortly ϕ), generated by equation (4.20) and its H-class (4.21);
(2) the cocycle ϕ is monotone with respect to spacial variable;
(3) the cocycle ϕ is componentwise monotone;
(4) the function V : Rn+ → R, defined by equality (4.22), is a first integral for non-autonomous

dynamical system, generated by equation (4.20);
(5) every solution ϕ(t, v, B) of every equation (4.21) is bounded on R+ and positively uni-

formly stable;
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(6) for every solutionϕ(t, v, B) of every equation (4.21) there exists a unique solutionϕ(t, v̄, B)
defined and bounded on R;

(7) the solution ϕ(t, v̄, B) is strongly compatible and

lim
t→∞

|ϕ(t, u,B)− ϕ(t, ū, B)| = 0;

(8) if the matrix-function A ∈ C(R, [Rn]) is stationary (respectively, τ -periodic, Bohr almost
periodic, almost automorphic, recurrent, strongly Poisson stable) in t ∈ R, then ϕ(t, v̄, B)
is also stationary (respectively, τ -periodic, Bohr almost periodic, almost automorphic, re-
current, strongly Poisson stable) and

(9) ϕ(t, v, B) is asymptotically stationary (respectively, asymptotically τ -periodic, asymptot-
ically Bohr almost periodic, asymptotically almost automorphic, asymptotically recurrent,
asymptotically strongly Poisson stable).

Theorem 4.11. Assume that A ∈ C(R, [Rn]) be a matrix satisfying Conditions (L1)–(L2) and it
is strongly Poisson stable in t ∈ R.

Then the following statements hold:
(1) the set M := {x ∈ Rn+|

∑n
i=1 xi = 1} is positively invariant with respect to cocycle

〈Rn, ϕ, (H(A), R, σ)〉 and, consequently, it is defined the cocycle 〈M,ϕ, (H(A), R, σ)〉;
(2) the cocycle 〈M,ϕ, (H(A), R, σ)〉 is compactly dissipative and it admits a compact global

attractor I = {IB | B ∈ H(A)};
(3) for any (v,B) ∈ X := M × H(A) there exists a point pv ∈ IB such that the solution

ϕ(t, pv, B) defined and bounded on R;
(4) the solution ϕ(t, pv, B) is strongly compatible and

lim
t→∞

|ϕ(t, v, B)− ϕ(t, pv, B)| = 0;

(5) for any B ∈ H(A) and v ∈ IB the solution ϕ(t, v, B) is strongly compatible;
(6) if the matrix-function A ∈ C(R, [Rn]) is stationary (respectively, τ -periodic, Bohr al-

most periodic, almost automorphic, recurrent, strongly Poisson stable) in t ∈ R, then
for any B ∈ H(A) and v ∈ IB the solution ϕ(t, v, B) is also stationary (respectively,
τ -periodic, quasi-periodic with the spectrum {ν1, ν2, . . . , νm}, Bohr almost periodic, al-
most automorphic, recurrent, Levitan almost periodic, almost recurrent, pseudo recurrent,
uniformly Poisson stable, strongly Poisson stable) and

(7) if B ∈ H(A) and v ∈ M \ IB , then the solution ϕ(t, v, B) is asymptotically stationary
(respectively, τ -periodic, quasi-periodic with the spectrum {ν1, ν2, . . . , νm}, Bohr almost
periodic, almost automorphic, recurrent, Levitan almost periodic, almost recurrent, pseudo
recurrent, uniformly Poisson stable, strongly Poisson stable).

Proof. The first statement follows from Corollary 4.5.
The second statement follows from the compactness of M and Theorem 2.3.
The statements (iii)-(iv) and (vi)-(vii) follow from Theorem 4.10.
The statement (v) follows from Theorem 3.8 and Corollary 3.4. �

Remark 4.10. Under the conditions of Theorem 4.10 for any B ∈ H(A) the subset IB of
M is convex.

This statement follows from the fact that ϕ(t, λu1 + (1− λ)u2, B) = λϕ(t, u1, B) + (1−
λ)ϕ(t, u2, B) for any λ ∈ [0, 1]

A matrix A ∈ [Rn] satisfies Condition (L3) if the following take hold

(1) A ≥ 0, i.e., αij ≥ 0 for any i, j = 1, 2, . . . , n;
(2) αij > 0 for any i 6= j and i, j = 1, 2, . . . , n.
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Note that

(4.25) eX = E +X +
X2

2!
+ . . .+

Xn

n!
+ . . . = E +X +R(X),

where

(4.26) R(X) =
X2

2!
+ . . .+

Xn

n!
+ . . .

for any X ∈ [Rn] and E ∈ [Rn] is the unite matrix. From (4.25) and (4.26) it follows that
(1)

‖R(X)‖ ≤ e‖X‖ − 1− ‖X‖ = o(‖X‖)‖X‖
as ‖X‖ → 0;

(2) the corresponding elements of the matrices eX and E +X have the same signs, if
the norm ‖X‖ is sufficiently small.

Lemma 4.11. Assume that the matrix A satisfies Condition (L3), then the matrix B := eA =
(bij)

n
i,j=1 is positive, i.e., bij > 0 for any i, j = 1, 2, . . . , n.

Proof. Let now k ∈ N be a naturale number and Bk := eA/k. Since

Bk = E +A/k + . . . ,

then for sufficiently large k the matrix Bk is positive. Taking into consideration that

B = (Bk)k

for any k ∈ N we conclude that the matrix B is also positive. Lemma is proved. �

Denote by Int(M) the interior of the set M .

Lemma 4.12. Let A(t) ≥ A for any t ∈ R. If the matrix A satisfies Condition (L3), then
ϕ(t, M̃ , B) ⊂ Int(M) for any subset M̃ ⊆M , B ∈ H(A) and t > 0.

Proof. To prove the first statement we note that ϕ(t, v, B) = U(t, B)v. Since the matrix
A satisfies Condition (L3) with the constants αij ≥ 0 (i, j = 1, , . . . , n), then by Remark
4.9 every matrix B ∈ H(A) satisfies the same condition with the same constants αij .
According to Corollary 4.6 we have

(4.27) U(t, B) ≥ eAt

for any t ≥ 0 and B ∈ H(A), where A = (αij)
n
i,j=1. Let M̃ be a subset of M and v ∈ M̃ .

We will show that U(t, B)v ∈ Int(M) for any t > 0. To this end it is sufficient to prove
that every component of the vector U(t, B)v is positive. Since v ∈ M̃ ⊆ M , then at least
one component vj0 of the vector v is positive. Then by (4.27) for any i = 1, 2, . . . , n we
obtain

(4.28) (U(t, B)v)i ≥ ((eAt)v)i ≥ (eAt)ij0vj0 > 0

for any t > 0 because the matrix eAt (by Lemma 4.11) is positive, where by (v)i is denoted
the i-th component of the vector v ∈ Rn+ and (A)ij the element of the matrix A located
on the place with the index ij. This means that U(t, B)M̃ ⊂ Int(M) for any t > 0 and
B ∈ H(A). Lemma is proved. �

A matrix-function A ∈ C(R, [Rn]) satisfies Condition (L4) if there exists a positive
matrix A = (αij)

n
i,j=1 (i.e., αij > 0 for any i, j = 1, 2, . . . , n) such that A(t) ≥ A for any

t ∈ R.
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LetE be a real Banach space with a nonempty closed convex cone P such that P
⋂

(−P )
= {0} and Int(P ) 6= ∅. For u1, u2 ∈ E we will write u1 ≤ u2 (respectively, u1 < u2 or
u1 � u2) if u2 − u1 ∈ P (respectively, u2 − u1 ∈ P and u1 6= u2 or u2 − u1 ∈ Int(P )).

We define the part (Birkhoff) metric on Int(P ) by

p(u1, u2) := inf{lnα| α ≥ 1, and α−1u1 ≤ u2 ≤ αu1}.

Then (Int(P ), p) is a metric space (see, for example, [15, 25, 29] and the bibliography
therein).

Theorem 4.12. Assume that A ∈ C(R, [Rn]) be a stochastic matrix satisfying Condition (L4)
and it is strongly Poisson stable in t ∈ R.

Then IB consists of a single point {vB} for any B ∈ H(A).

Proof. Suppose that this statement is not true, then there exists at least one B0 ∈ H(A)
such that IB0 contains at least two different points v1, v2 ∈ IB0 . Denote by φ(t) :=
p(ϕ(t, v1, B0), ϕ(t, v2, B0)) for any t ∈ R, where p is the part metric on Int(Rn+). Note
that the function φ : R→ R+ possesses the following properties:

(1) φ(t) > 0 for any t ∈ R;
(2) it is bounded on R;
(3) it is Poisson stable in the both direction (see Theorem 4.11), i.e., there are the se-

quences {t±k } → ±∞ as k → ∞ such that φ(t+ t±k ) → φ(t) as k → ∞ in the space
C(R,R+);

(4) φ is monotone increasing.
The first two statements are evident. To prove the third statement we note that the cocycle
〈Rn+, ϕ, (H(A),R, σ)〉, generated by equation (4.20), is monotone (order-preserving) and
homogeneous (this means that ϕ(t, λv,B) = λϕ(t, v, B) for any λ > 0, t ∈ R+, v ∈ Rn+ and
B ∈ H(A)). Let B ∈ H(A), v1, v2 ∈ IB with v1 6= v2 and p(v1, v2) = lnα > 0, then α > 1
and α−1 ∈ (0, 1). Since

(4.29) α−1v1 ≤ v2 ≤ αv1
and ϕ is monotone and homogeneous we have

(4.30) α−1ϕ(t, v1, B) ≤ ϕ(t, v2, B) ≤ αϕ(t, v1, B)

for any t ≥ 0. From (4.30) it follows that

p(ϕ(t, v1, B), ϕ(t, v2, B)) ≤ p(v1, v2)

for any t ≥ 0, B ∈ H(A) and v1, v2 ∈ IB with v1 6= v2. Let now t1, t2 ∈ R with t2 ≥ t1, then

φ(t2) = p(ϕ(t2, v1, B0), ϕ(t2, v2, B0)) =

p(ϕ(t2 − t1, ϕ(t, v1, B0), σ(t1, B0)), ϕ(t2 − t1, ϕ(t, v2, B0), σ(t1, B0))) ≤
= p(ϕ(t1, v1, B0), ϕ(t1, v2, B0)) = φ(t1)

because v1 6= v2 (v1, v2 ∈ IB0
) and, consequently, ϕ(t, v1, B0) 6= ϕ(t, v2, B0) (ϕ(t, vi, B0) ∈

Iσ(t,B0), i = 1, 2) for any t ∈ R.
Taking in consideration that the function φ is bounded and decreasing we conclude

that there exist constants c−, c+ ∈ R+ such that

(4.31) lim
t→±∞

φ(t) = c±.

Since φ is Poisson stable in the both directions, then φ ∈ ωφ = αφ, where ωφ (respec-
tively, αφ) is the ω (respectively, α) limit set of φ in the shift dynamical system (C(R,R+),
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R, σ). On the other hand by (4.31) we have ωφ = {c+} (respectively αφ = {c−} and,
consequently, c− = φ(t) = c+ for any t ∈ R. From this it follows that

(4.32) p(ϕ(t, v1, B0), ϕ(t, v2, B0)) = p(v1, v2)

for any t ∈ R.
Further, let α > 1 as above. From (4.29) it follows that the relations α−1v1 6= v2 and

v2 6= αv1 take place, because if we suppose that at least one of them is not true then (for
example)

(4.33) α−1v1 = v2.

Since v1, v2 ∈ M , then from (4.33) we obtain α = 1 which contradicts to the choice of the
number α.

Thus, we have α−1v1 < v2 < αv1, then from (4.29), the last inequality and (4.28) we
receive

α−1ϕ(t, v1, B0)� ϕ(t, v2, B0)� αϕ(t, v1, B0).

We fix a positive number t0 ∈ R. Since Int(Rn+) is an open subset of Rn, then we can take
an α̃ ∈ (1, α) sufficiently close to α such that

α−11 ϕ(t0, v1, B0)� ϕ(t0, v2, B0)� α1ϕ(t0, v1, B0).

From the last inequality it follows that

p(ϕ(t0, v1, B0), ϕ(t0, v2, B0)) ≤ lnα1 < lnα = p(v1, v2),

i.e., φ(t0) < φ(0). The last inequality contradicts to relation (4.32). The obtained contra-
diction proves our statement, i.e., for any B ∈ H(A) the set IB consists a single point. �

Corollary 4.9. Under the conditions of Theorem 4.12 if the matrix-function A ∈ C(R, [Rn]) is
stationary (respectively, τ -periodic, quasi-periodic with the frequency spectrum {ν1, ν2, . . . , νm},
Bohr almost periodic, almost automorphic, recurrent, Levitan almost periodic, almost recurrent,
pseudo recurrent and Lagrange stable, pseudo periodic and Lagrange stable, strongly Poisson sta-
ble), then equation (4.20) has a unique bounded on R solution p(t) with the values from Int(M)
(p(R) ⊂ Int(M)) possessing the following properties:

(1) p(t) is stationary (respectively, τ -periodic, quasi-periodic with the frequency spectrum
{ν1, ν2, . . . , νm}, Bohr almost periodic, almost automorphic, recurrent, Levitan almost
periodic, almost recurrent, pseudo recurrent and Lagrange stable, pseudo periodic and
Lagrange stable, strongly Poisson stable);

(2) the solution p is uniformly globally asymptotically stable with respect to M , i.e.,
(a) for arbitrary positive number ε there exists a positive number δ = δ(ε) such that
‖ϕ(t0, u, A)− p(t0)‖ < δ (u ∈M ) implies ‖ϕ(t, u,A)− p(t)‖ < ε for any t ≥ t0;

(b) lim
t→+∞

‖ϕ(t, u,A)− p(t)‖ = 0 for every u ∈M .

Proof. This statement follows directly from Theorems 4.12 and 4.10. �

4.3. Difference Equations. Consider the difference equation

(4.34) un+1 = f(n, un),

where f ∈ C(Z × Rd,Rd). Along with equation (4.34) we will consider H-class of (4.34),
i.e., the family of equations

(4.35) vn+1 = g(n, vn), (g ∈ H(f))

where H(f) := {fτ | τ ∈ Z} and by bar is denoted the closure in the space C(Z× Rd,Rd).
Denote by ϕ(n, v, g) the solution of equation (4.35) with initial condition ϕ(0, v, g) = v.

From the general properties of difference equations it follows that:
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(1) ϕ(0, v, g) = v for all v ∈ Rd and g ∈ H(f);
(2) ϕ(n+m, v, g) = ϕ(n, ϕ(m, v, g), σ(m, g)) for all n,m ∈ Z+ and (v, g) ∈ Rd ×H(f);
(3) the mapping ϕ is continuous.

Thus every equation (4.34) generate a cocycle 〈Rd, ϕ, (H(f),Z, σ)〉 over (H(f),Z, σ)
with the fiber Rd.

Lemma 4.13. [10] Let f ∈ C(Z× Rd,Rd). Suppose that the following conditions hold:

(1) u1, u2 ∈ Rd and u1 ≤ u2;
(2) the function f is monotone non-decreasing with respect to variable u ∈ Rd, i.e., f(t, u1) ≤

f(t, u2) for any t ∈ Z.

Then ϕ(n, v1, g) ≤ ϕ(n, v2, g) for any n ∈ Z+, v1, v2 ∈ Rd with v1 ≤ v2 and g ∈ H(f).

Condition (D1). Equation (4.34) is monotone. This means that the cocycle 〈Rd, ϕ,
(H(f), Z, σ)〉 (or shortly ϕ) generated by (4.34) is monotone, i.e., if u, v ∈ Rn and u ≤ v
then ϕ(t, u, g) ≤ ϕ(t, v, g) for all t ≥ 0 and g ∈ H(f).

Let f ∈ C(Z × Rd,Rd), σ(t, f) be the motion (in the shift dynamical system (C(Z ×
Rd,Rd),Z, σ)) generated by f , u0 ∈ Rn, ϕ(t, u0, f) be the solution of equation (4.34), x0 :=
(u0, f) ∈ X := Rd ×H(f) and π(t, x0) := (ϕ(t, u0, f), σ(t, f)) the motion of skew-product
dynamical system (X,Z+, π).

Definition 4.26. A solution ϕ(t, u0, f) of equation (4.34) is called [8],[36],[39] compati-
ble (respectively, strongly compatible or uniformly compatible) if the motion π(t, x0) is
comparable (respectively, strongly comparable or uniformly comparable) by character of
recurrence with σ(t, f).

Theorem 4.13. Suppose that the following assumptions are fulfilled:

- the function f ∈ C(Z×Rd,Rd) is strongly Poisson stable in t ∈ Z uniformly with respect
to u on every compact subset from Rn;

- the cocycle ϕ, generated by equation (4.34), admits a compact global attractor and I :=
{Ig| g ∈ H(f)} is its Levinson center;

- the cocycle ϕ is monotone;
- equation (4.34) has a first integral V ∈ C1(Rn, R) such that∇V (x)� 0 .

Then under condition (D1) the following statements hold:

(1) for any g ∈ H(f) and v ∈ Rn there exists a point p(v,g) ∈ Ig such that the solution
ϕ(t, p(v,g), g) of equation (4.35) is strongly compatible and

lim
t→∞

‖ϕ(t, v, g)− ϕ(t, p(v,g), g)‖ = 0;

(2) for any g ∈ H(f) and v ∈ Ig the solution ϕ(t, v, g) of equation (4.35) is strongly compat-
ible;

(3) if the function g is stationary (respectively, τ -periodic, Bohr almost periodic, almost auto-
morphic, recurrent, pseudo recurrent and Lagrange stable, pseudo periodic and stable in
the sense of Lagrange), then every solution ϕ(t, v, g) (v ∈ Ig) of equation (4.35) is so.

Proof. Let f ∈ C(Z × Rd,Rd) and (C(Z × Rd,Rd),Z, σ) be the shift dynamical system
no C(Z × Rd,Rd). Denote by Y := H(f) and (Y,Z, σ) the shift dynamical system on
H(f) induced by (C(Z × Rd,Rd),Z, σ). Consider the cocycle 〈Rn, ϕ, (Y,Z, σ)〉 generated
by equation (4.34). Now to finish the proof of Theorem it is sufficient to apply Theorem
3.8 and Corollary 3.4. Theorem is proved. �
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4.4. Linear Difference Equations. Let A(t) = (aij(t))
n
i,j=1 (t ∈ Z) be a stochastic matrix,

which means that

(4.36) aij(t) ≥ 0 and
n∑
i=1

aij(t) = 1

for any i, j = 1, . . . , n and t ∈ Z. The matrix A(t) can be considered as the transition
matrix at the moment t ∈ Z for a Markov process acting on a set of n states {1, 2, . . . , n}.

Let [Rn] be the family of all matrices A = (aij)
n
ij=1 with real coefficients aij ∈ R and

C(Z, [Rn]) be the space of all matrix-functions A(t) = (aij(t))
n
i,j=1 equipped with the dis-

tance

d(A,B) =

∞∑
k=1

1

2k
dk(A,B)

1 + dk(A,B)
,

where dk(A,B) := max{||A(t) − B(t)|| : |t| ≤ k}. Denote by (C(Z, [Rn]),Z, σ) the shift
dynamical system on C(Z, [Rn]), i.e., σ(a, τ) = Aτ and Aτ (t) := A(t + τ) for any t, τ ∈ Z
and A ∈ C(Z, [Rn]).

Remark 4.11. If the matrix A ∈ C(Z, [Rn]) satisfies condition (4.36), then every matrix
B ∈ H(A) satisfies condition (4.36).

Consider the difference equation

(4.37) x(t+ 1) = A(t)x(t)

and its H-class

(4.38) y(t+ 1) = B(t)y(t) (B ∈ H(A)).

Lemma 4.14. [12] Suppose that the matrix A ∈ C(Z, [Rn]) satisfies condition (4.20). Then the
function V : Rn+ → R defined by equality

(4.39) V (x1, x2, . . . , xn) = x1 + x2 + . . .+ xn

is a first integral for equation (4.20).

Condition (D2). A matrix A(t) = (aij(t))
n
i,j=1 satisfies the following condition:

(1) A(t) ≥ 0 for any t ∈ Z+, i.e., aij(t) ≥ 0 for any i, j = 1, 2, . . . , n and t ∈ Z+;
(2) aii(t) ≥ αi > 0 for any i = 1, 2, . . . , n and t ∈ Z+, where αi (i = 1, 2, . . . , n) are

some positive numbers.

Remark 4.12. If the stochastic matrixA satisfies condition (D2) with the positive constants
α1, α2, . . . , αn, then αi ∈ (0, 1] for any i = 1, 2, . . . , n.

Condition (D3). A matrixA(t) = (aij(t))
n
i,j=1 satisfies the following conditions: A(t)�

0 for any t ∈ Z+, i.e., there exist positive number αij (i, j = 1, 2, . . . , n) such that aij(t) ≥
αij > 0 for any i, j = 1, 2, . . . , n and t ∈ Z.

Remark 4.13. If the stochastic matrixA satisfies condition (D3) with the positive constants
αij (i, j = 1, 2, . . . , n), then αij ∈ (0, 1] for any i, j = 1, 2, . . . , n.

Lemma 4.15. 1. If the matrix A(t) satisfies Condition (D3), then any matrix B ∈ H(A) satisfies
the same condition.

2. If the matrices A′(t) and A
′′
(t) satisfy Condition (D3) and α

′

ij (respectively, α
′′

ij) are the
constants which figures in Condition (D3) for matrix A′(t) (respectively, A

′′
(t)), then the matrix

A(t) = A
′
(t)A

′′
(t) possesses the same property with the constant αij =

∑n
k=1 α

′

ikα
′′

kj (i, j =

1, 2, . . . , n).
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3. Assume that the matrices Ak(t) (k = 1, 2, . . . ,m) satisfy Condition (D3) with the constants

αkij (i, j = 1, 2, . . . , n), then the matrix Ã(t) :=
m∏
k=1

Ak(t) satisfies Condition (D3) with the

constants α̃ij ≥ (
∏m
k=1Ak)ij (i, j = 1, 2, . . . , n), where Ak = (αkij)

n
i,j=1, k = 1, 2, . . . ,m and

(
∏m
k=1Ak)ij is the element of the matrix

∏m
k=1Ak on the place with the index ij.

Proof. Assume that the matrix A(t) satisfies Condition (D3), then there are positive con-
stants αij(i, j = 1, 2, . . . , n) such that

(4.40) aij(t) ≥ αij
for any t ∈ Z and i, j = 1, 2, . . . , n. If B ∈ H(A), then there exists a sequence {hk} ⊆ Z
such that B(t) = lim

k→∞
A(t + hk) and, consequently, bij(t) = lim

k→∞
aij(t + hk). From (4.40)

we have

(4.41) aij(t+ hk) ≥ αij
for any k ∈ N, t ∈ Z and i, j = 1, 2, . . . , n. Passing to the limit in inequality (4.41) as k →∞
we obtain

bii(t) ≥ αij .
Let A′(t) = (a

′

ij)
n
i,j=1 and A

′′
(t) = (a

′′

ij)
n
i,j=1 be two matrices satisfying Condition (D3)

and α
′

ij (respectively, α
′′

ij) be the constants which figures in Condition (D3) for matrix
A′(t) (respectively, A

′′
(t)) and let (aij(t))

n
i,j=1 = A(t) = A

′
(t)A

′′
(t). Since

aij(t) =

n∑
k=1

a
′

ik(t)a
′′

kj(t),

then we have

aij(t) =

n∑
k=1

a
′

ik(t)a
′′

kj(t) ≥
m∑
k=1

α
′

ikα
′′

kj

for any t ∈ Z and i, k = 1, 2, . . . , n and, consequently, A′(t)A
′′
(t) ≥ A′A′′ for any t ∈ Z.

Finally, the third statement follows from the second one in combination with the method
of mathematical induction. Lemma is completely proved. �

Lemma 4.16. [12] The following statement hold:
(1) if the matrix A(t) ≥ 0 for any t ∈ Z+, then the cocycle ϕ, generated by equation (4.20),

is monotone, i.e., ϕ(t, u,B) ≤ ϕ(t, v, B) for any t ∈ Z+ and B ∈ H(A) whenever u ≤ v
(u, v ∈ Rn+);

(2) if the matrixA(t) satisfies Condition (D2), then the cocycle ϕ is componentwise monotone,
i.e., ϕi(t, u,B) < ϕi(t, v, B) for any (t, B) ∈ Z+ ×H(A) whenever u ≤ v and ui < vi
(i = 1, 2, . . . , n).

Corollary 4.10. [12] If the matrix A(t) ≥ 0 for any t ∈ Z+, then the cone Rn+ is positively
invariant with respect to cocycle ϕ, generated by equation (4.20). This means that ϕ(t, v, B) ∈ Rn+
for any t ∈ Z+ whenever (v,B) ∈ Rn+ ×H(A).

Theorem 4.14. [12] Assume that A ∈ C(Z, [Rn]) is a stochastic matrix possessing the property
(D2) and it is strongly Poisson stable in t ∈ Z.

Then the following statements hold:
(1) the cone Rn+ is positively invariant with respect to cocycle 〈Rn, ϕ, (H(A), Z, σ)〉 (or

shortly ϕ), generated by equation (4.20) and its H-class (4.21);
(2) the cocycle ϕ is monotone with respect to spacial variable;
(3) the cocycle ϕ is componentwise monotone;
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(4) the function V : Rn+ → R, defined by equality (4.22), is a first integral for non-autonomous
dynamical system, generated by equation (4.20);

(5) every solution ϕ(t, v, B) of every equation (4.21) is bounded on Z+ and positively uni-
formly stable;

(6) for every solution ϕ(t, v, B) of every equation (4.21) there exists a unique solution ϕ(t, v̄,
B) defined and bounded on Z;

(7) the solution ϕ(t, v̄, B) is strongly compatible and

lim
t→∞

|ϕ(t, u,B)− ϕ(t, ū, B)| = 0;

(8) if the matrix-function A ∈ C(Z, [Rn]) is stationary (respectively, τ -periodic, Bohr almost
periodic, almost automorphic, recurrent, strongly Poisson stable) in t ∈ Z, then ϕ(t, v̄, B)
is also stationary (respectively, τ -periodic, Bohr almost periodic, almost automorphic, re-
current, strongly Poisson stable) and

(9) ϕ(t, v, B) is asymptotically stationary (respectively, asymptotically τ -periodic, asymptot-
ically Bohr almost periodic, asymptotically almost automorphic, asymptotically recurrent,
asymptotically strongly Poisson stable).

Theorem 4.15. Assume that A ∈ C(Z, [Rn]) is a stochastic matrix possessing the property (D2)
and it is strongly Poisson stable in t ∈ Z.

Then the following statements hold:
(1) the set M := {x ∈ Rn+|

∑n
i=1 xi = 1} is positively invariant with respect to cocycle

〈Rn, ϕ, (H(A), Z, σ)〉 and, consequently, it is defined the cocycle 〈M,ϕ, (H(A), Z, σ)〉;
(2) the cocycle 〈M,ϕ, (H(A), Z, σ)〉 is compactly dissipative and it admits a compact global

attractor I = {IB | B ∈ H(A)};
(3) for any (v,B) ∈ X := M × H(A) there exists a point pv ∈ IB such that the solution

ϕ(t, pv, B) defined and bounded on Z;
(4) the solution ϕ(t, pv, B) is strongly compatible and

lim
t→∞

|ϕ(t, v, B)− ϕ(t, pv, B)| = 0;

(5) for any B ∈ H(A) and v ∈ IB the solution ϕ(t, v, B) is strongly compatible;
(6) if the matrix-function A ∈ C(Z, [Rn]) is stationary (respectively, τ -periodic, Bohr almost

periodic, almost automorphic, recurrent, strongly Poisson stable) in t ∈ Z, then for any
B ∈ H(A) and v ∈ IB the solution ϕ(t, v, B) is also stationary (respectively, τ -periodic,
Bohr almost periodic, almost automorphic, recurrent, strongly Poisson stable) and

(7) ifB ∈ H(A) and v ∈M\IB , then the solution ϕ(t, v, B) is asymptotically stationary (re-
spectively, asymptotically τ -periodic, asymptotically Bohr almost periodic, asymptotically
almost automorphic, asymptotically recurrent, asymptotically strongly Poisson stable).

Proof. The first statement follows from Lemma 4.14.
The second statement follows from the compactness of M and Theorem 2.3.
The statements (iii)-(iv) and (vi)-(vii) follow from Theorem 4.14.
The statement (v) follows from Theorem 3.8 and Corollary 3.4. �

Remark 4.14. Under the conditions of Theorem 4.15 for any B ∈ H(A) the subset IB of
M is convex.

Proof. This statement follows from the fact that ϕ(t, λu1 + (1 − λ)u2, B) = λϕ(t, u1, B) +
(1− λ)ϕ(t, u2, B), for any λ ∈ [0, 1]. �

Denote by Int(M) the interior of the set M .

Lemma 4.17. If the matrix A(t) satisfies Condition (D3), then ϕ(t,M ′, B) ⊂ Int(M), for any
subset M ′ ⊆M , B ∈ H(A) and t ∈ T+.



92 David Cheban

Proof. To prove the first statement we note that

ϕ(t, v, B) =

t−1∏
k=0

B(k)v = U(t, B)v,

where

U(t, B) :=

t−1∏
k=0

B(k).

Since the matrix A(t) satisfies Condition (D3) with the positive constants αij (i, j = 1, . . . ,
n), then by Lemma 4.15 (item 1) every matrix B ∈ H(A) satisfies the same condition with
the same constants αij . According to Lemma 4.15 (item 3) we have

U(t, B) ≥ (A)t

for any t ≥ 0 and B ∈ H(A), where A = (αij)
n
i,j=1. Let M ′ be a subset of M and v ∈

M ′. We will show that U(τ,B)v ∈ Int(M). To this end it is sufficient to prove that
every component of the vector U(τ,B)v is positive. Since v ∈ M ′ ⊆ M , then at least one
component vj0 of the vector v is positive. Then by (4.27) for any i = 1, 2, . . . , n we obtain

(U(t, B)v)i ≥ ((A)tv)i ≥ (At)ij0vj0 > 0

because the matrix (A)t as the finite product of positive matrix is a positive matrix, where
by (v)i is denoted the i-th component of the vector v ∈ Rn+ and (A)ij the element of the
matrix A located on the pace with the index ij. This means that U(t, B)M ′ ⊂ Int(M) for
any t > 0 and B ∈ H(A). Lemma is proved. �

Theorem 4.16. Assume that A ∈ C(Z, [Rn]) be a stochastic matrix possessing the property (D3)
and it is strongly Poisson stable in t ∈ Z.

Then IB is a subset of Int(M) for any B ∈ H(A).

Proof. According to Theorem 4.15 for any B ∈ H(A) and t > 0 we have U(t, B)IB =
Iσ(t,B) and, consequently,

IB = U(t, σ(−t, B))Iσ(−t,B).

Since Iσ(−t,B) ⊆M , then by Lemma 4.17 IB = U(t, σ(−t, B))Iσ(−t,B) ⊆ Int(M). �

Theorem 4.17. Assume that A ∈ C(Z, [Rn]) be a stochastic matrix possessing the property (D3)
and it is strongly Poisson stable in t ∈ Z.

Then IB consists a single point {vB} for any B ∈ H(A).

Proof. This statement can be proved using absolutely the same arguments as in the proof
of the Theorem 4.12 so we omit the details. �

Corollary 4.11. Under the conditions of Theorem 4.17 if the matrix-function A ∈ C(Z, [Rn]) is
stationary (respectively, τ -periodic, Bohr almost periodic, almost automorphic, recurrent, Levitan
almost periodic, almost recurrent, pseudo recurrent and Lagrange stable, pseudo periodic and La-
grange stable, strongly Poisson stable), then equation (4.20) has a unique bounded on Z solution
p(t) with the values from Int(M) (p(Z) ⊂ Int(M)) possessing the following properties:

(1) p(t) is stationary (respectively, τ -periodic, Bohr almost periodic, almost automorphic, re-
current, Levitan almost periodic, almost recurrent, pseudo recurrent and Lagrange stable,
pseudo periodic and Lagrange stable, strongly Poisson stable);

(2) the solution p is uniformly globally asymptotically stable with respect to M , i.e.,
(a) for arbitrary positive number ε there exists a positive number δ = δ(ε) such that
‖ϕ(t0, u, A)− p(t0)‖ < δ (u ∈M ) implies ‖ϕ(t, u,A)− p(t)‖ < ε for any t ≥ t0;

(b) lim
t→+∞

‖ϕ(t, u,A)− p(t)‖ = 0 for every u ∈M .
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Proof. This statement directly follows from Theorems 4.17 and 4.10. �
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