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Tzitzeica equations and Tzitzeica surfaces in separable
coordinate systems and the Ricci flow tensor field

WLADIMIR G. BOSKOFF, MIRCEA CRASMAREANU and LAURIAN-IOAN PIŞCORAN

ABSTRACT. The Tzitzeica equation and two well-known Tzitzeica surfaces are studied in the separable coor-
dinate systems on the plane and space respectively. We study also Tzitzeica graphs with a parameter and in-
terpret the induced class of first fundamental forms as a Riemannian flow. Consequently, we introduce a tensor
field which measures how far is a given Riemannian flow to be a Ricci one. This tensor field is explicitly com-
puted for the case of a initial isothermic metric and a flow of convex type.

1. INTRODUCTION

Let M ⊂ R3 be a regular and orientable surface in the Euclidean 3-dimensional space
with the usual Cartesian coordinates (x, y, z) for which we denote by K(p) the Gaussian
curvature at the point p ∈ M . From a historical point of view the first centro-affine in-
variant of M was introduced by Georges Tzitzeica in [17] as the function Tzitzeica(M) :
M → R:

(1.1) Tziteica(M)(p) :=
K(p)

d4(p)

where d(p) := d(O, TpM) is the Euclidean distance from the origin O to tangent space
TpM ; the historical details are presented in [1]. Hence, he introduced a class of surfaces
(and later hypersurfaces in the same manner) by asking the constancy of this function (the
constant being called below as Tzitzeica value) and these are called Tzitzeica surfaces from a
long time. This class of surfaces is intimately related to two classes of remarkable partial
differential equations (PDEs):
1) Monge-Ampère equations since for an explicit expression of M , namely z = z(x, y), the
right-hand-side of (1.1) is a Monge-Ampère expression:

(1.2) Tzitzeica(M)(x, y, z) =
zxxzyy − z2xy

(xzx + yzy − z)4
(= constant),

It follows that if z = z(x, y) is a Tzitzeica graph then a linear deformation (equivalently
centro-affine transformation) z̃(x, y) := z(x, y) + αx+ βy with α, β ∈ R is also a Tzitzeica
graph with the same Tzitzeica value. We remark here and in Example 4.2 that not all
Tzitzeica surfaces are expressed as a graph.
2) the so-called Tzitzeica equation for M given in asymptotic coordinates (u, v) (for the
hyperbolic case K < 0 i.e. Tzitzeica(M) < 0) since then the compatibility relation of the
Gauss-Weingarten equations is an equation in a function h = h(u, v):

(1.3) (lnh)uv = h− h−2.
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Although the Tzitzeica equation (1.3) was derived by Tzitzeica himself and extensively
studied, especially form a solitonic point of view ([3]), there are few examples of Tzitzeica
surfaces, see Chapter 13 of [13]; also we fix (1.3) as Tzitzieca equation since, as one re-
feree notifies: ”throughout the mathematics literature, there are a few equations that are
referred to as the Tzitzeica equation depending on how the surface is defined”. Our study
below restricts to two surfaces also found by Tzitzeica:

(1.4) M1 : xyz = 1; M2 : z(x2 + y2) = 1

which are generalized in arbitrary dimension in [8]. Their Tzitzeica value is:

(1.5) Tzitzeica(M1) =
1

27
> 0; Tzitzeica(M2) = − 4

27
< 0.

Another very interesting Tzitzeica surface was introduced in [2]:

(1.6) M3 : z = −3 + xy

x+ y
, Tzitzeica(M3) = − 1

108
< 0

which can be called as Euler-Tzitzeica surface due to its relationship with the Euler line in
triangle geometry. Let us remark also that Tzitzeica himself gives at page 1258 of [17] the
generalization of M1 with arbitrary coefficients:

(1.7) Mgeneral
1 : (a1x+ b1y + c1z)(a2x+ b2y + c2z)(a3x+ b3y + c3z) = 1

which is an algebraic surface of order 3.
The previous coordinate system (x, y, z), respectively (u, v), is without any geometrical

or physical significance; for a Lagrangian point of view regarding Tzitzeica surfaces see [4]
while for indicatrices of Tzitzeica type in Lagrangian and Hamiltonian geometries see [9]-
[10]. But is has been known that for some constant curvature spaces there exist orthogonal
separable coordinate systems, namely coordinate systems for which a given Hamiltonian
system in classical mechanics and Schrödinger equation of the quantum mechanics admit
solutions via separation of variables; hence these coordinate systems are related to the
superintegrability problem as it is pointed out in [12] and [14]. For example, in the real
2D space there are four such systems, while for the complex plane there are six. Also, the
3D Euclidean space has 11 separable systems, while for 2D sphere there are only two.

In order to enlarge the study of Tzitzeica two-dimensional geometries the aim of this
note is twofold:
1) to express the Tzitzeica equation (1.3) in the separable coordinate systems of the R2 and
study it with a solitonic expression and with separation of variables: both multiplicative
and additive,
2) to express and draw (with Mathematica) the Tzitzeica surfaces (1.4) using the separa-
ble coordinate systems of the R3. Some of the new surfaces remain Tzitzeica while other
are no longer Tzitzeica, since these transformations of coordinates are not of centro-affine
type.
To express in other words, we consider the centro-affine geometry in 2D and 3D separa-
ble coordinate systems, relating this study to centro-affine shape analysis and geometric
design.

We treat also Tzitzeica surfaces depending on a parameter for which we study the
variation of the metric (=first fundamental form of these surfaces) inspired by the well-
known Ricci flow. Also, we introduce a tensor field which is a measure of how far away is
a given Riemannian flow from being a Ricci flow and this tensor field is computed for the
surfaces with an isothermal initial metric and supports a flow of convex type. Our interest
in this subject (somehow outside of the present work) has as starting point the following
remark of [7, p. 504] ”The reader may think of the Ricci flow on surfaces as a toy model
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for developing techniques for the Ricci flow and Kähler-Ricci flow in higher dimensions”.
We finish this study with some issues concerning the present work.

2. THE ORTHOGONAL COMPANIONS OF THE TZITZEICA EQUATION AND THE
ASSOCIATED SOLITONIC ODES

In this section we start with the transform h→ exp(h) and the Tzitzeica equation beco-
mes:

(2.8) huv = exp(h)− exp(−2h))

known as Tzitzeica-Dodd-Bullough or Dodd-Bullough-Mikhailov equation, [16]. In [19,
p. 150] the unknown function h is supposed to be of solitonic type (or solitary wave type)
h = ϕ(t) = ϕ(u+ αv) with α ∈ R. Then (2.8) becomes:

(2.9) αϕ′′(t) = exp(ϕ(t))− exp(−2ϕ(t))

which can be called the solitonic Tzitzeica equation. By multiplying with ϕ′(t) and integra-
ting we obtain an ODE of first order:

(2.10) α(ϕ′(t))2 = 2 exp(ϕ(t)) + exp(−2ϕ(t)) + C

with C a real constant.
In the following we consider the Tzitzeica equation (2.8) in the separable coordinate

systems of R2.
1) Cartesian coordinates (u, v) form the first separable coordinate system of the plane.
With the separation of variables h = f(x)g(y) we have:

(2.11) f ′(x)g′(y) = exp(f(x)g(y))− exp(−2f(x)g(y)),

while the separation of variables h = f(x)+g(y) yields the constant solution h = 0, which
is studied at the end of this section.

The following three systems are:
2) polar coordinates: x = u cos v, y = u sin v. The Tzitzeica equation becomes the polar
Tzitzeica equation:

(2.12) x(hy + xhxy − yhxx) + y(−hx + xhyy − yhxy) =
√
x2 + y2(exp(h)− exp(−2h)).

2.1 By searching for h of the form h = ϕ(t) = ϕ(x+ αy) we get the polar solitonic Tzitzieca
equation:

(2.13) (αx−y)ϕ′(t)+(α(x2−y2)+(α2−1)xy)ϕ′′(t) =
√
x2 + y2(exp(ϕ(t))−exp(−2ϕ(t))).

2.2 By searching for h of the form h = f(x)g(y) we obtain:

(2.14) x(fg′ + xf ′g′ − yf ′′g) + y(xfg′′ − f ′g− yf ′g′) =
√
x2 + y2(exp(fg)− exp(−2fg)).

2.3 By searching for h of the form h = f(x) + g(y) we derive:

(2.15) x(g′ − yf ′′) + y(xg′′ − f ′) =
√
x2 + y2(exp f exp g − exp(−2f) exp(−2g)).

3) parabolic coordinates: ξ = 1
2 (u2 − v2), η = uv. The Euclidian metric g = dξ2 + dη2

becomes a Liouville one: g = (u2 + v2)(du2 + dv2) and the Tzitzeica equation is now the
parabolic Tzitzeica equation:

(2.16) hη + η(hηη − hξξ) + 2ξhξη = exp(h)− exp(−2h).

3.1 With h = ϕ(t) = ϕ(ξ + αη) we derive the parabolic solitonic Tzitzeica equation:

(2.17) αϕ′(t) + [(α2 − 1)η + 2αξ]ϕ′′(t) = exp(ϕ(t))− exp(−2ϕ(t)).
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3.2 For h = f(ξ)g(η) we get:

(2.18) fg′ + η(fg′′ − f ′′g) + 2ξf ′g′ = exp(fg)− exp(−2fg).

3.3 For h = f(x) + g(y) we obtain:

(2.19) g′ + η(g′′ − f ′′) = exp f exp g − exp(−2f) exp(−2g).

4) elliptic coordinates: x2 = c2(u − 1)(v − 1), y2 = −c2uv. The Euclidian metric g =

dx2 + dy2 becomes a Lorentzian one: g = c2(v−u)
4

(
du2

u(u−1) −
dv2

v(v−1)

)
and the Tzitzeica

equation is now the elliptic Tzitzeica equation:

(2.20) c2
(
hxx − hyy +

hx
x
− hy

y

)
− c2

xy
(x2 − y2 − c2)hxy = 4 exp(h)− 4 exp(−2h).

We point out that Tzitzeica surfaces in Minkowski 3D geometry are studied in [5].
4.1 With h = ϕ(t) = ϕ(x+ αy) we obtain the elliptic solitonic Tzitzeica equation:
(2.21)

c2
(

1

x
− α

y

)
ϕ′(t) + c2

[
1− α2 − α(x2 − y2 − c2)

xy

]
ϕ′′(t) = 4 exp(ϕ(t))− 4 exp(−2ϕ(t)).

4.2 With h = f(x)g(y) we get:

(2.22) xy(f ′′g − fg′′) + yf ′g − xfg′ − (x2 − y2 − c2)f ′g′ =
4xy

c2
[exp(fg)− exp(−2fg)].

4.3 With h = f(x) + g(y) we obtain:

(2.23) xy(f ′′ − g′′) + yf ′ − xg′ =
4xy

c2
[exp(f) exp(g)− exp(−2f) exp(−2g)].

Returning to the general case we derive the following solitonic character of the Tzitzeica
graphs:

Proposition 2.1. Let z = z(x, y) be a Tzitzeica graph and α, β ∈ R. Then:

(2.24) zα(x, y) := z(x+ αy, y), zβ(x, y) = z(x, y + βx)

are also Tzitzeica graphs with the same Tzitzeica value.

Proof. From zαx = zx, zβy = αzx+zy , zαxx = zxx, zαxy = αzxx+zxy and zαyy = α(αzxx+zxy)+
αzxy + zyy it results:

(2.25) Tzitzeica(zα(x, y)) = Tzitzeica(z(x+ αy, y)).

A similar equation holds for zβ . In fact the conclusion is just the well-known result that
the Tzitzeica equation is invariant under centro-affine transformations. �

At the end of this section we remark that a large study of the Tzitzeica equation from a
solitonic point of view is the Chapter 3 of [15]. Here, the constant solution h = 1 of (1.3)
is called Jonas hexenut and its asymptotic parametric expression given at page 105:
(2.26)

r̄(u, v) =

(
cos[

√
3

2
(u− v)] exp[−1

2
(u+ v)], sin[

√
3

2
(u− v)] exp[−1

2
(u+ v)], exp(u+ v)

)
corresponds to our M2. By using the exponential expression of the complex numbers it
follows:

(2.27) M2 : r̄(u, v) =

(
exp(

√
3

2
(u− v)− i

2
(u+ v)), exp(u+ v)

)
⊂ C× R.
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3. TZITZEICA SURFACES IN THE 3D SEPARABLE COORDINATE SYSTEMS

In this section we provide the pictures of the Tzitzeica surfacesM1, M2 in the separable
coordinate systems of the Euclidean 3D space:

1) Cartesian Coordinates: (x, y, z). 2) Cylindrical polar: (ρ > 0, ϕ ∈ [0, 2π), z) with the
transformation rule:

(3.28) x = ρ cosϕ, y = ρ sinϕ, z = z.

M1
1 : zρ2 sin 2ϕ = 2 with Tzitzeica(M1

1 ) = 2ρ2 sin4 2ϕ(3+cos2 2ϕ)
(3 sin 2ϕ+2ϕ cos 2ϕ)4 .

M1
2 : zρ2 = 1 with Tzitzeica(M1

2 ) = 0. It belongs to Mgeneral
1 for a1 = a2 = c3 = 1.

FIGURE
1. M1

FIGURE
2. M2

FIGURE
3. M1

1

FIGURE
4. M1

2

3) Cylindrical elliptic: (e1 < µ1 < e2 < µ2, z ∈ R) with the transformation rule:

(3.29) x2 =
(µ1 − e1)(µ2 − e1)

e2 − e1
, y2 =

(µ1 − e2)(µ2 − e2)

e1 − e2
, z = z.

M2
1 : z

√
(µ1 − e1)(e2 − µ1)(µ2 − e1)(µ2 − e2) = e2 − e1 with a non-constant Tzitzeica

function.
M2

2 : z[µ1 + µ2 − (e1 + e2)] = 1 with Tzitzeica(M2
2 ) = 0. It is a hyperbolic cylinder.

In order to picture these surfaces, we take e1 = 0 and e2 = 1 and hence, with a re-
notation µ1 = x, µ2 = y:

(3.30) M2
1 : z

√
xy(1− x)(y − 1) = 1, M2

2 : z(x+ y − 1) = 1.

4) Cylindrical parabolic: (x ∈ R, ξ, η ≥ 0) with the transformation rule:

(3.31) x = x, y = ξη, z =
1

2
(ξ2 − η2).

M3
1 : xξη(ξ2 − η2) = 2, which is an algebraic quintic surface.

M3
2 : (ξ2 − η2)(ξ2η2 + x2) = 2, which is an algebraic surface of order 6.
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FIGURE
5. M2

1

FIGURE
6. M2

2
FIGURE
7. M3

1

0510

0

5

10

0

5

10

FIGURE
8. M3

2

5) Spherical: (r > 0, ϕ ∈ [0, 2π), θ ∈ [0, π]) with the transformation rule:

(3.32) x = r cos θ cosϕ, y = r cos θ sinϕ, z = r sin θ.
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M4
1 : r3 cos2 θ sin θ sin 2ϕ = 2.

M4
2 : r3 sin θ cos2 θ = 1, with Tzitzeica(M4

2 ) = 0.
6) Prolate Spheroidal: (e1 < u1 < e2 < u2, ϕ ∈ [0, 2π) with the transformation rule:

(3.33)

x2 =
(u1 − e2)(u2 − e2)

e1 − e2
(cosϕ)2, y2 =

(u1 − e2)(u2 − e2)

e1 − e2
(sinϕ)2, z2 =

(u1 − e1)(u2 − e2)

e2 − e1
.

M5
1 : (e2 − u1)(u2 − e2)

3
2
√
u1 − e1| sin 2ϕ| = 2(e2 − e1)

3
2 .

M5
2 : (u1 − e1)

1
2 (u2 − e2)

3
2 (e2 − u1) = (e2 − e1)

3
2 with Tzitzeica(M5

2 ) = 0.
In order to picture the above surfaces we take e1 = 0, e2 = 1 and with the re-notation

u1 = x, u2 = y, ϕ = z, we get:

(3.34) M5
1 : (1− x)(y − 1)

3
2
√
x| sin 2z| = 2, M5

2 : (1− x)(y − 1)
3
2
√
x = 1.

FIGURE
9. M4

1 FIGURE
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FIGURE
11. M5
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FIGURE
12. M5

2

7) Oblate Spheroidal: (e1 < u1 < e2 < u2, ϕ ∈ [0, 2π) with the transformation rule:
(3.35)

x2 =
(u1 − e1)(u2 − e1)

e2 − e1
(cosϕ)2, y2 =

(u1 − e1)(u2 − e1)

e2 − e1
(sinϕ)2, z2 =

(u1 − e2)(u2 − e2)

e1 − e2
.

M6
1 : (u1 − e1)(u2 − e1)

√
(e2 − u1)(u2 − e2)| sin 2ϕ| = 2(e2 − e1)

3
2 .

M6
2 : (u1 − e1)(u2 − e1)

√
(e2 − u1)(u2 − e2) = (e2 − e1)

3
2 with Tzitzeica(M2

6 ) = 0.
In the above pictures we take e1 = 0, e2 = 1 and with u1 → x, u2 → y, ϕ→ z, we get:

(3.36) M6
1 : xy

√
(1− x)(y − 1)| sin 2z| = 2, M6

2 : xy
√

(1− x)(y − 1) = 1.

8) Sphero-Conical: (r ≥ 0, e1 < ρ1 < e2 < ρ2 < e3) with the transformation rule:

(3.37) x2 = r2
(ρ1 − e1)(ρ2 − e1)

(e1 − e2)(e1 − e3)
, y2 = r2

(ρ1 − e2)(ρ2 − e2)

(e2 − e1)(e2 − e3)
, z2 = r2

(ρ1 − e3)(ρ2 − e3)

(e3 − e2)(e3 − e1)
.

M7
1 : r3

√
(ρ1 − e1)(ρ2 − e1)(e2 − ρ1)(ρ2 − e2)(e3 − ρ1)(e3 − ρ2) = (e2−e1)(e3−e1)(e3−

e2).

M7
2 : r3

√
(e3−ρ1)(e3−ρ2)
(e3−e1)(e3−e2)

[
(ρ1−e1)(ρ2−e1)

e3−e1 + (e2−ρ1)(ρ2−e2)
e3−e2

]
= e2 − e1.

In the above pictures we take e1 = 0, e2 = 1, e3 = 2, and with ρ1 → x, ρ2 → y, r → z,
we get:
(3.38)
M7

1 : z3
√
xy(1−x)(y−1)(2−x)(2−y)=2,M7

2 : z3
√

(2−x)(2−y)[xy+2(1−x)(y−1)]=2
√

2.

9) Parabolic: (ξ, η ≥ 0, ϕ ∈ [0, 2π) with the transformation rule:

(3.39) x = ξη cosϕ, y = ξη sinϕ, z =
1

2
(ξ2 − η2).
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FIGURE
13. M6
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FIGURE
14. M6
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FIGURE
15. M7

1

FIGURE
16. M7

2

M8
1 : ξ2η2(ξ2 − η2) sin 2ϕ = 4.

M8
2 : ξ2η2(ξ2 − η2) = 2, with Tzitzeica(M8

2 ) = 0.
10) Ellipsoidal: (a1 < u1 < a2 < u2 < a3 < u3) with the transformation rule:

(3.40)

x2 =
(u1−a1)(u2−a1)(u3−a1)

(a3−a1)(a2−a1)
, y2 =

(u1−a2)(u2−a2)(u3−a2)

(a1 −a2)(a3−a2)
, z2 =

(u1−a3)(u2−a3)(u3−a3)

(a1−a3)(a2−a3)
.

M9
1 :
√

(u1 − a1)(a2 − u1)(a3 − u1)(u2 − a1)(u2 − a2)(a3 − u2)(u3 − a1)(u3 − a2)(u3 − a3) =
= (a2 − a1)(a3 − a1)(a3 − a2).

M9
2 :
√

(a3−u1)(a3−u2)(u3−a3)
(a3−a1)(a3−a2)

[
(u1−a1)(u2−a1)(u3−a1)

a3−a1 + (a2−u1)(u2−a2)(u3−a2)
a3−a2

]
= a2 − a1.

FIGURE
17. M8
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FIGURE
18. M8
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FIGURE
19. M9
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FIGURE
20. M9

2

In the above pictures we take a1 = 0, a2 = 1, a3 = 2, and with u1 → x, u2 → y, u3 → z,
we get:

(3.41)
{
M9

1 :
√
x(1− x)(2− x)y(y − 1)(2− y)z(z − 1)(z − 2) = 2,

M9
2 :
√

(1− x)(2− y)(z − 2)[xyz + 2(1− x)(y − 1)(z − 1)] = 2
√

2.

11) Paraboloidal: (0 < η1 < a2 < η2 < a3 < η3), with the transformation rule:
(3.42)

x2 =
(a3 − η1)(a3 − η2)(η3 − a3)

a3 − a2
, y2 =

(a2 − η1)(η2 − a2)(η3 − a2)

a3 − a2
, z2 =

1

2
(η1+η2+η3−a2−a3).

M10
1 :
√

(η1 + η2 + η3 − a2 − a3)(a2 − η1)(a3 − η1)(η2 − a2)(a3 − η2)(η3 − a2)(η3 − a3) =

=
√

2(a3 − a2).
M10

2 :
√
η1 + η2 + η3 − a2 − a3[(a3−η1)(a3−η2)(η3−a3)+(a2−η1)(η2−a2)(η3−a2)] =√

2(a3 − a2).
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In the following pictures we take a2 = 1, a3 = 2, and with η1 → x, η2 → y, η3 → z, we
get:

(3.43)
{
M10

1 :
√

(x+ y + z − 3)(1− x)(2− x)(y − 1)(2− y)(z − 1)(z − 2) =
√

2,

M10
2 :
√
x+ y + z − 3[(2− x)(2− y)(z − 2) + (1− x)(y − 1)(z − 1)] =

√
2.
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22. M10
2

Remark 3.1. Let us point out that there are obtained several Tzitzeica cylinders: M1
2 , M2

2 , M4
2 ,

M5
2 , M6

2 , M8
2 .

4. TZITZEICA SURFACES WITH PARAMETER AND RELATIONSHIP WITH RICCI FLOW

Let (Mn(t), g(t)) be a family of n-dimensional Riemannian manifolds depending on
the parameter t ∈ I ⊆ R; with the title of [11] we can call it a moving Riemannian geo-
metry. Due to the recent proof of the Poincaré Theorem by using the Ricci flow ([7]) we
are interested in evaluating the derivative ∂g

∂t ; for details on Ricci flow on surfaces and its
several applications see [20]. This section is devoted to the study of this problem for some
Tzitzeica surfaces with parameter.

Let (M, z = z(x, y)) be a Tzitzeica graph and consider its moving family:

(4.44) M(t) : zt(x, y) := tz(x, y)

containing M at t = 1. A direct computation yields that M(t) is also a Tzitzeica graph
with Tzitzeica(M(t)) = t−2Tzitzeica(M) for any t. If g denotes the first fundamental
form of M and I is the unit matrix of order two then:

(4.45) gt = I + t2(g − I)

for a suitable range of t containing 1 and hence:

(4.46)
∂gt

∂t
= 2t(g − I).

Example 4.1. M t
1 : xyz = t has the form (4.44) and the metric of M1 is:

(4.47) g = I2 +
1

x4y4

(
y2 xy
xy x2

)
.

M t
2 : z(x2 + y2) = t has also the form (4.44) and the metric of M2 is:

(4.48) g = I2 +
4

(x2 + y2)4

(
x2 xy
xy y2

)
.

Let us remark that bothM1 andM2 are non-compact surfaces and lim(x→∞,y→∞) g(x, y) =
I which can be interpreted as an asymptotic Euclidean character of g. Hence, for the
metrics of M t

1, M t
2 we have: lim(x→∞,y→∞)

∂gt(x,y)
∂t = O the null matrix of order two.
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Example 4.2. Not all Tzitzeica surfaces are expressed as a graph. For example, in [13,
p. 320] is given the hyperbolic paraboloid Ph : z =

√
1 + axy as Tzitzeica surface with

Tzitzeica(Ph) = −a
2

4 ; in fact, all quadrics with center are Tzitzeica surfaces. It is easy to
express Ph in a form similar to (4.1); with a = 1

t we derive:

(4.49) Ph : x = t
z2 − 1

2
which is a graph.

A remarkable quadric with center is the hyperboloid of one sheet, which as (1 + 1)-
dimensional space-time is defined as the de Sitter space in [6, p. 230]. Hence, we can call it
the Tzitzeica-de Sitter surface.

Returning to the general case of moving Riemannian geometry, let us suppose that the
base manifold is fixed M(t) = M and endowed with an initial metric g. Inspired by (4.45)
we introduce:

Definition 4.1. The Riemannian flow g(t) with t ∈ [0, 1] on (Mn, g) is called convex-
Euclidean if:

(4.50) g(t) = (1− t)I + tg,

now I being the unit matrix of order n. The manifold (M, g) is called convex-Euclidean if
supports a convex-Euclidian flow.

Example 4.3. i) Every paralelizable manifold, in particular any Lie group, is a convex-
Euclidean one.
ii) Allowing the variation of the surface M we start again with a graph M1 : z = z(x, y)
and consider:

M̃ t : z̃t(x, y) =
√
tz(x, y)

for t ∈ [0, 1]. The corresponding flow g̃(t) is a convex-Euclidean one as the formula (4.45)
shows.

Let T 0
2,s(M) be the real linear space of symmetric tensor fields of (0, 2)-type on M . For

any t ∈ I let us define the tensor RicF (t) ∈ T 0
2,s(M) provided by the Ricci flow equation:

(4.51) RicF (t)ij :=
∂gij
∂t

+ 2Ric(t)ij

where Ric(t) ∈ T 0
2,s(M) is the Ricci tensor field of g(t). The tensor RicF is a ”measure of

how far away” is g(t) from being a Ricci flow.
Since in the case n = 2 we have Ric = 1

2Kg, we get the tensor field:

(4.52) RicF (t) =
∂g

∂t
+K(t)g(t)

with K(t) the Gaussian curvature of g(t). Let us compute this quantity for an isothermal
convex-Euclidean (M2, g) being known that every smooth regular surface has an isother-
mal parametrization:

Proposition 4.2. TheRicF tensor of the isothermal convex-Euclidean surface (M2, g = E(u, v)I)
is:

(4.53) RicF (t) =

[
E − 1− t(Euu + Evv) + t2[(E − 1)(Euu + Evv)− E2

u − E2
v ]

2[1 + t(E − 1)]2

]
I.

In particular, if E is a harmonic function, i.e. ∆E = 0, then:

(4.54) RicF (t) =

[
E − 1 +

t2‖∇E‖2

2[1 + t(E − 1)]2

]
I.
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Proof. The convex-Euclidean flow (4.50) becomes an isothermal one: g(t) = [1+t(E−1)]I .
The expression of the Gaussian curvature for isothermal metrics it is well-known:

(4.55) K(t) = − 1

2[1 + t(E − 1)]
∆u,v(ln[1 + t(E − 1)])

where ∆u,v is the usual 2D Laplacian: ∆u,v = ∂2uu + ∂2vv . Plugging in (4.52) we infer:

(4.56) RicF (t) =

[
E − 1− 1

2
∆u,v(ln[1 + t(E − 1)])

]
I

which yields:

(4.57) RicF (t) =

[
E − 1− t

2

((
Eu

1 + t(E − 1)

)
u

+

(
Ev

1 + t(E − 1)

)
v

)]
I.

Computing the partial derivatives we get the claimed formula. �

5. CONCLUSIONS

We finish this study with some issues concerning the present work:
0) The Romanian name of Tzitzeica was Ţiţeica but after his French studies in Paris he

signs his papers with the French variant Tzitzeica. Details concerning his activity are on
the Wiki page: http://en.wikipedia.org/wiki/Gheorghe Ţiţeica.

1) The Tzitzeica equation and the possible associated surfaces remain largely a mys-
tery after more a century of intense efforts to understand their structures. The Romanian
mathematicians and physicists have a large contribution towards this aim.

2) We try here to develop some of its beauty by treating it in several separable coordi-
nate systems on the plane and space respectively. So, we draw the corresponding surfa-
ces in these new 3D coordinates making them suitable to centro-affine shape analysis and
geometric design.

3) In order to connect the Tzitzeica equation with modern studies in mathematical phy-
sics we obtain in section 2 the orthogonal companions of this equation and the associated
solitonic ODEs. Let us remark that the interplay between Tzitzieca geometries and solito-
nic theory is a continuous subject of research as it is expressed in [18].

4) Enlarging a given surface (particularly a graph) into a class depending smoothly
by a parameter we point out a relationship with the Ricci flow theory. We add a new
concept in this last fruitful domain by introducing a ”measure of how far away” is a ”time-
depending” metric g(t) from being a Ricci flow. This notion opens the door for similar
studies concerning other remarkable classes of surfaces and Riemannian geometries.

Acknowledgements. The authors are extremely indebted to three anonymous referees
for their extremely useful remarks and improvements.

REFERENCES

[1] Agnew, A. F., Bobe, A., Boskoff, W. G. and Suceava, B. D., Gheorghe Ţiţeica and the origins of affine differential
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