New classes of certain analytic functions concerned with subordinations

Nicoleta Breaz and Shigeyoshi Owa

Abstract

Let \mathcal{A} be the class of analytic functions $f(z)$ in the open unit disk \mathbb{U} which satisfy $f(0)=0$ and $f^{\prime}(0)=1$. Applying the extremal function for the subclass $\mathcal{S}^{*}(\alpha)$ of \mathcal{A}, new classes $\mathcal{P}^{*}(\alpha)$ and $\mathcal{Q}^{*}(\alpha)$ are considered using certain subordinations. The object of the present paper is to discuss some interesting properties for $f(z)$ belonging to the classes $\mathcal{P}^{*}(\alpha)$ and $\mathcal{Q}^{*}(\alpha)$.

1. Introduction

Let \mathcal{A} be the class of functions $f(z)$ which are analytic in the open unit disk $\mathbb{U}=$ $\{z \in \mathbb{C}:|z|<1\}$ with $f(0)=0$ and $f^{\prime}(0)=1$. If $f(z) \in \mathcal{A}$ satisfies $f\left(z_{1}\right) \neq f\left(z_{2}\right)$ for any $z_{1} \in \mathbb{U}$ and $z_{2} \in \mathbb{U}$ with $z_{1} \neq z_{2}$, then $f(z)$ is said to be univalent in \mathbb{U} and denoted by $f(z) \in \mathcal{S}$. If a function $f(z) \in \mathcal{S}$ maps \mathbb{U} onto a starlike domain with respect to the origin, then $f(z)$ is said to be starlike in \mathbb{U} and denoted by $f(z) \in \mathcal{S}^{*}$. We say that $f(z)$ is starlike of order α in \mathbb{U} if $f(z) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U}) \tag{1.1}
\end{equation*}
$$

for some real $\alpha(0 \leqq \alpha<1)$. We also denote by $\mathcal{S}^{*}(\alpha)$ the class of starlike functions $f(z)$ of order α in \mathbb{U}. Furthermore, we call that $f(z)$ is convex of order α in \mathbb{U} if $f(z) \in \mathcal{A}$ satisfies $z f^{\prime}(z) \in \mathcal{S}^{*}(\alpha)$ for some real $\alpha(0 \leqq \alpha<1)$ and denote by $\mathcal{K}(\alpha)$. From the definitions of these classes, we know that $\mathcal{K}(\alpha) \subset \mathcal{S}^{*}(\alpha) \subset \mathcal{S}^{*} \subset \mathcal{S} \subset \mathcal{A}$ and that $f(z) \in \mathcal{S}^{*}(\alpha)$ if and only if $\int_{0}^{z} \frac{f(t)}{t} d t \in \mathcal{K}(\alpha)$. The function $f(z)$ given by

$$
\begin{equation*}
f(z)=\frac{z}{(1-z)^{2(1-\alpha)}}=z+\sum_{n=2}^{\infty} \frac{\prod_{j=2}^{n}(j-2 \alpha)}{(n-1)!} z^{n} \tag{1.2}
\end{equation*}
$$

is the extremal function for the class $\mathcal{S}^{*}(\alpha)$, and the function $f(z)$ given by

$$
f(z)=\left\{\begin{array}{l}
\frac{1-(1-z)^{2 \alpha-1}}{2 \alpha-1}=z+\sum_{n=2}^{\infty} \frac{\prod_{j=2}^{n}(j-2 \alpha)}{n!} z^{n} \quad\left(\alpha \neq \frac{1}{2}\right) \tag{1.3}\\
-\log (1-z)=z+\sum_{n=2}^{\infty} \frac{1}{n} z^{n} \quad\left(\alpha=\frac{1}{2}\right)
\end{array}\right.
$$

is the extremal function for the class $\mathcal{K}(\alpha)$ (see [2] or [6]).
Considering the principal value for \sqrt{z}, we consider a function $f(z)$ given by

[^0]\[

$$
\begin{equation*}
f(z)=\frac{z}{(1-\sqrt{z})^{2(1-\alpha)}}=z+\sum_{n=2}^{\infty} \frac{\prod_{j=2}^{n}(j-2 \alpha)}{(n-1)!} z^{\frac{n+1}{2}} \tag{1.4}
\end{equation*}
$$

\]

Then, $f(z)$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)=\operatorname{Re}\left(\alpha+\frac{1-\alpha}{1-\sqrt{z}}\right)>\frac{1+\alpha}{2} \quad(z \in \mathbb{U}) . \tag{1.5}
\end{equation*}
$$

Therefore, $f(z)$ given by (1.4) is said to be starlike of order $\frac{1+\alpha}{2}$ in \mathbb{U}.
Let $f(z)$ and $g(z)$ be analytic in \mathbb{U}. Then $f(z)$ is said to be subordinate to $g(z)$ if there exists an analytic function $w(z)$ in \mathbb{U} satisfying $w(0)=0,|w(z)|<1(z \in \mathbb{U})$ and $f(z)=$ $g(w(z))$. We denote this subordination by

$$
\begin{equation*}
f(z) \prec g(z) \quad(z \in \mathbb{U}) \tag{1.6}
\end{equation*}
$$

This subordination is used for many papers of univalent function theory [1], [4], [8], [9] and [10].

Now, with the function $f(z)$ given by (1.4), we introduce a new class of $f(z)$ as follows. Let \mathcal{A}^{*} be the class of functions $f(z)$ given by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{\frac{n+1}{2}} z^{\frac{n+1}{2}} \quad(z \in \mathbb{U}) \tag{1.7}
\end{equation*}
$$

which are analytic in \mathbb{U}, where we consider the principal value for \sqrt{z}. If $f(z) \in \mathcal{A}^{*}$ satisfies the following subordination

$$
\begin{equation*}
f(z) \prec g(z)=\frac{z}{(1-\sqrt{z})^{2(1-\alpha)}} \quad(z \in \mathbb{U}) \tag{1.8}
\end{equation*}
$$

for some real $\alpha(0 \leqq \alpha<1)$, then we say that $f(z) \in \mathcal{P}^{*}(\alpha)$. Also, if $f(z) \in \mathcal{A}^{*}$ satisfies $z f^{\prime}(z) \in \mathcal{P}^{*}(\alpha)$, then we say that $f(z) \in \mathcal{Q}^{*}(\alpha)$.

2. SOME PROPERTIES

We would like to study some properties of functions $f(z) \in \mathcal{A}^{*}$ concerned with the classes $\mathcal{P}^{*}(\alpha)$ and $\mathcal{Q}^{*}(\alpha)$.

Theorem 2.1. If $f(z) \in \mathcal{A}^{*}$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n-\alpha)\left|a_{\frac{n+1}{2}}\right| \leqq 1-\alpha \tag{2.9}
\end{equation*}
$$

for some real $\alpha(0 \leqq \alpha<1)$, then $f(z) \in \mathcal{P}^{*}(\alpha)$. The result is sharp for $f(z)$ defined by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} \frac{(1-\alpha) \varepsilon}{n(n-1)(n-\alpha)} z^{\frac{n+1}{2}} \tag{2.10}
\end{equation*}
$$

with $|\varepsilon|=1$.

Proof. It is easy to know that if $f(z) \in \mathcal{A}^{*}$ satisfies

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\frac{1-\alpha}{2} \quad(z \in \mathbb{U}) \tag{2.11}
\end{equation*}
$$

for some real $\alpha(0 \leqq \alpha<1)$, then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\frac{1+\alpha}{2} \quad(z \in \mathbb{U}) \tag{2.12}
\end{equation*}
$$

that is, that $f(z) \in \mathcal{P}^{*}(\alpha)$. In order to get (2.11), we notice that we have

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)-f(z)}{f(z)}\right|=\left|\frac{\sum_{n=2}^{\infty} \frac{n-1}{2} a_{\frac{n+1}{2}} z^{\frac{n+1}{2}}}{1+\sum_{n=2}^{\infty} a_{\frac{n+1}{2}} z^{\frac{n+1}{2}}}\right|<\frac{1-\alpha}{2} \quad(z \in \mathbb{U}) \tag{2.13}
\end{equation*}
$$

if $f(z)$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{n-1}{2}\left|a_{\frac{n+1}{2}}\right| \leqq \frac{1-\alpha}{2}\left(1-\sum_{n=2}^{\infty}\left|a_{\frac{n+1}{2}}\right|\right) \tag{2.14}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n-\alpha)\left|a_{\frac{n+1}{2}}\right| \leqq 1-\alpha \tag{2.15}
\end{equation*}
$$

for some real $\alpha(0 \leqq \alpha<1)$, then $f(z) \in \mathcal{P}^{*}((\alpha)$.
Further, if we consider a function $f(z)$ given by (2.10), then

$$
\begin{equation*}
a_{\frac{n+1}{2}}=\frac{(1-\alpha) \varepsilon}{n(n-1)(n-\alpha)} \quad(|\varepsilon|=1) . \tag{2.16}
\end{equation*}
$$

This shows us that

$$
\begin{align*}
& \sum_{n=2}^{\infty}(n-\alpha)\left|a_{\frac{n+1}{2}}\right|=\sum_{n=2}^{\infty} \frac{1-\alpha}{n(n-1)} \tag{2.17}\\
= & (1-\alpha) \sum_{n=2}^{\infty}\left(\frac{1}{n-1}-\frac{1}{n}\right)=1-\alpha .
\end{align*}
$$

Taking $\alpha=0$ in Theorem 2.1, we have
Corollary 2.1. If $f(z) \in \mathcal{A}^{*}$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{\frac{n+1}{2}}\right| \leqq 1 \tag{2.18}
\end{equation*}
$$

then $f(z) \in \mathcal{P}^{*}(0)$. The result is sharp for

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} \frac{\varepsilon}{n^{2}(n-1)} z^{\frac{n+1}{2}} \quad(|\varepsilon|=1) \tag{2.19}
\end{equation*}
$$

Noting that $f(z) \in \mathcal{Q}^{*}(\alpha)$ if and only if $z f^{\prime}(z) \in \mathcal{P}^{*}(\alpha)$, we have

Theorem 2.2. If $f(z) \in \mathcal{A}^{*}$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n+1)(n-\alpha)\left|a_{\frac{n+1}{2}}\right| \leqq 2(1-\alpha) \tag{2.20}
\end{equation*}
$$

for some real $\alpha(0 \leqq \alpha<1)$, then $f(z) \in \mathcal{Q}^{*}(\alpha)$. The result is sharp for $f(z)$ given by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} \frac{2(1-\alpha) \varepsilon}{n\left(n^{2}-1\right)(n-\alpha)} z^{\frac{n+1}{2}} \tag{2.21}
\end{equation*}
$$

with $|\varepsilon|=1$.
Letting $\alpha=0$ in Theorem 2.2, we have
Corollary 2.2. If $f(z) \in \mathcal{A}^{*}$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n+1)\left|a_{\frac{n+1}{2}}\right| \leqq 2 \tag{2.22}
\end{equation*}
$$

then $f(z) \in \mathcal{Q}^{*}(0)$. The result is sharp for $f(z)$ given by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} \frac{2 \varepsilon}{n^{2}\left(n^{2}-1\right)} z^{\frac{n+1}{2}} \quad(|\varepsilon|=1) . \tag{2.23}
\end{equation*}
$$

To discuss next properties for $f(z) \in \mathcal{Q}^{*}(\alpha)$, we have to recall here the following lemma which is called as Carathéodory theorem (see [3], [5], [7]).

Lemma 2.1. Let a function $p(z)$ given by

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} \tag{2.24}
\end{equation*}
$$

be analytic in \mathbb{U} and $\operatorname{Re} p(z)>0(z \in \mathbb{U})$. Then

$$
\begin{equation*}
\left|c_{n}\right| \leqq 2 \quad(n=1,2,3, \cdots) \tag{2.25}
\end{equation*}
$$

The equality holds true for

$$
\begin{equation*}
p(z)=\frac{1+z}{1-z}=1+2 \sum_{n=1}^{\infty} z^{n} . \tag{2.26}
\end{equation*}
$$

Applying Lemma 2.1, we derive

Theorem 2.3. If $f(z) \in \mathcal{P}^{*}(\alpha)$, then

$$
\begin{equation*}
\left|a_{\frac{n+1}{2}}\right| \leqq \frac{1}{(n-1)!} \prod_{j=2}^{n}(j-2 \alpha) \tag{2.27}
\end{equation*}
$$

for $n=2,3,4, \cdots$. The equality holds true for

$$
\begin{equation*}
f(z)=\frac{z}{(1-\sqrt{z})^{2(1-\alpha)}} \tag{2.28}
\end{equation*}
$$

Proof. For $f(z) \in \mathcal{P}^{*}(\alpha)$, we define a function $p(z)$ by

$$
\begin{equation*}
p(z)=\frac{1}{1-\alpha}\left(2 \frac{z f^{\prime}(z)}{f(z)}-(1+\alpha)\right) \quad(z \in \mathbb{U}) \tag{2.29}
\end{equation*}
$$

with

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} p_{\frac{n}{2}} z^{\frac{n}{2}} \quad(z \in \mathbb{U}) \tag{2.30}
\end{equation*}
$$

where we consider the principal value for \sqrt{z}.
It follows that

$$
\begin{equation*}
2 z f^{\prime}(z)=\{(1-\alpha) p(z)+(1+\alpha)\} f(z) . \tag{2.31}
\end{equation*}
$$

This gives us that
(2.32)

$$
\begin{gathered}
\sum_{n=2}^{\infty}(n+1) a_{\frac{n+1}{2}} z^{\frac{n+1}{2}}=\left(2 a_{\frac{3}{2}}+(1-\alpha) p_{\frac{1}{2}}\right) z^{\frac{3}{2}}+\left(2 a_{2}+(1-\alpha) p_{\frac{1}{2}} a_{\frac{3}{2}}+(1-\alpha) p_{1}\right) z^{2} \\
+\left(2 a_{\frac{5}{2}}+(1-\alpha) p_{\frac{1}{2}} a_{2}+(1-\alpha) p_{1} a_{\frac{3}{2}}+(1-\alpha) p_{\frac{3}{2}}\right) z^{\frac{5}{2}}+\cdots \\
+\left(2 a_{\frac{n+1}{2}}+(1-\alpha) p_{\frac{1}{2}} a_{\frac{n}{2}}+(1-\alpha) p_{1} a_{\frac{n-1}{2}}+\cdots+(1-\alpha) p_{\frac{n-2}{2}} a_{\frac{3}{2}}+(1-\alpha) p_{\frac{n-1}{2}}\right) z^{\frac{n+1}{2}}+\cdots .
\end{gathered}
$$

Therefore, we obtain that
(2.33) $(n-1) a_{\frac{n+1}{2}}=(1-\alpha)\left(p_{\frac{n-1}{2}}+p_{\frac{n-2}{2}} a_{\frac{3}{2}}+p_{\frac{n-3}{2}} a_{2}+\cdots+p_{1} a_{\frac{n-1}{2}}+p_{\frac{1}{2}} a_{\frac{n}{2}}\right), n \geq 2$,
where $a_{1}=1$. From the definition for $p(z)$, we see that $p(z)$ is analytic in \mathbb{U} and $p(0)=1$.
Furthermore, noting that $\operatorname{Re} p(z)>0(z \in \mathbb{U})$, Lemma 2.1 gives us that

$$
\begin{equation*}
\left|p_{\frac{n}{2}}\right| \leqq 2 \quad(n=1,2,3, \cdots) \tag{2.34}
\end{equation*}
$$

Taking $n=2$ in (2.33), we see that

$$
\begin{equation*}
\left|a_{\frac{3}{2}}\right| \leqq(1-\alpha)\left|p_{\frac{1}{2}}\right| \leqq 2-2 \alpha . \tag{2.35}
\end{equation*}
$$

If we take $n=3$ in (2.33), then we have that

$$
\begin{equation*}
\left|a_{2}\right| \leqq \frac{1-\alpha}{2}\left(\left|p_{\frac{1}{2}}\right|\left|a_{\frac{3}{2}}\right|+\left|p_{1}\right|\right) \leqq(1-\alpha)(3-2 \alpha)=\frac{1}{2}(2-2 \alpha)(3-2 \alpha) . \tag{2.36}
\end{equation*}
$$

Further, letting $n=4$ in (2.33), we obtain that

$$
\begin{gather*}
\left|a_{\frac{5}{2}}\right| \leqq \frac{1-\alpha}{3}\left(\left|p_{\frac{1}{2}}\right|\left|a_{2}\right|+\left|p_{1}\right|\left|a_{\frac{3}{2}}\right|+\left|p_{\frac{3}{2}}\right|\right) \tag{2.37}\\
\leqq \frac{2}{3}(1-\alpha)(2-\alpha)(3-2 \alpha)=\frac{1}{6}(2-2 \alpha)(3-2 \alpha)(4-2 \alpha) .
\end{gather*}
$$

In view of the above, we assume that

$$
\begin{equation*}
\left|a_{\frac{n+1}{2}}\right| \leqq \frac{1}{(n-1)!} \prod_{j=2}^{n}(j-2 \alpha) \tag{2.38}
\end{equation*}
$$

for $j=2,3,4, \cdots, n$. Then, we see that

$$
\begin{align*}
&\left|a_{\frac{n+2}{2}}\right| \leq \frac{2(1-\alpha)}{n}\left(1+\left|a_{\frac{3}{2}}\right|+\left|a_{2}\right|+\left|a_{\frac{5}{2}}\right|+\cdots+\left|a_{\frac{n}{2}}\right|+\left|a_{\frac{n+1}{2}}\right|\right) \tag{2.39}\\
& \leqq \frac{1}{n!} \prod_{j=2}^{n+1}(j-2 \alpha) .
\end{align*}
$$

Thus, applying the mathematical induction, we complete the proof of the theorem.

Theorem 2.4. If $f(z) \in \mathcal{Q}^{*}(\alpha)$, then

$$
\begin{equation*}
\left|a_{\frac{n+1}{2}}\right| \leqq \frac{1}{n!} \prod_{j=2}^{n}(j-2 \alpha) \tag{2.40}
\end{equation*}
$$

for $n=2,3,4, \cdots$. The equality holds true for $f(z)$ satisfying

$$
\begin{equation*}
f^{\prime}(z)=\frac{1}{(1-\sqrt{z})^{2(1-\alpha)}} \tag{2.41}
\end{equation*}
$$

3. Distortion inequalities

In this section, we consider some distortion inequalities for $f(z)$ in $\mathcal{P}^{*}(\alpha)$ and $\mathcal{Q}^{*}(\alpha)$.

Theorem 3.5. If $f(z) \in \mathcal{P}^{*}(\alpha)$, then

$$
\begin{equation*}
\frac{|z|}{(1+\sqrt{|z|})^{2(1-\alpha)}} \leqq|f(z)| \leqq \frac{|z|}{(1-\sqrt{|z|})^{2(1-\alpha)}} \quad(z \in \mathbb{U}) \tag{3.42}
\end{equation*}
$$

The equalities in (3.42) are attended for

$$
\begin{equation*}
f(z)=\frac{z}{(1-\sqrt{z})^{2(1-\alpha)}} . \tag{3.43}
\end{equation*}
$$

Proof. We note that there exists a function $w(z)$ which is analytic in \mathbb{U} with $w(0)=0$ and $|w(z)|<1(z \in \mathbb{U})$. This function $w(z)$ also satisfies

$$
\begin{equation*}
f(z)=\frac{w(z)}{(1-\sqrt{w(z)})^{2(1-\alpha)}} \quad(z \in \mathbb{U}) . \tag{3.44}
\end{equation*}
$$

If we write that $w(z)=|w(z)| e^{i \theta}$, then $f(z)$ gives us that

$$
\begin{gather*}
|f(z)|=\frac{|w(z)|}{\left(1-\sqrt{|w(z)|} e^{i \frac{\theta}{2}}\right)^{2(1-\alpha)}} \tag{3.45}\\
=\frac{|w(z)|}{\left\{\left(1-\sqrt{\left.\left.|w(z)| \cos \frac{\theta}{2}\right)^{2}+|w(z)| \sin ^{2} \frac{\theta}{2}\right\}^{1-\alpha}}\right.\right.} \\
=\frac{|w(z)|}{\left(1+|w(z)|-2 \sqrt{|w(z)|} \cos \frac{\theta}{2}\right)^{1-\alpha}}
\end{gather*}
$$

Applying the Schwarz lemma for $w(z)$, we say that $|w(z)| \leqq|z|(z \in \mathbb{U})$. Therefore, we obtain that

$$
\begin{equation*}
\frac{|z|}{(1+\sqrt{|z|})^{2(1-\alpha)}} \leqq|f(z)| \leqq \frac{|z|}{(1-\sqrt{|z|})^{2(1-\alpha)}} \tag{3.46}
\end{equation*}
$$

for $z \in \mathbb{U}$. This completes the proof of the theorem.

Letting $\alpha=0$ in Theorem 3.5, we have

Corollary 3.3. If $f(z) \in \mathcal{P}^{*}(0)$, then

$$
\begin{equation*}
\frac{|z|}{(1+\sqrt{|z|})^{2}} \leqq|f(z)| \leqq \frac{|z|}{(1-\sqrt{|z|})^{2}} \quad(z \in \mathbb{U}) \tag{3.47}
\end{equation*}
$$

The equalities in (3.47) are attended for

$$
\begin{equation*}
f(z)=\frac{z}{(1-\sqrt{z})^{2}} . \tag{3.48}
\end{equation*}
$$

Further, letting $|z| \rightarrow 1$ in Theorem 3.5, we see
Corollary 3.4. If $f(z) \in \mathcal{P}^{*}(\alpha)$, then

$$
\begin{equation*}
|f(z)| \geqq\left(\frac{1}{4}\right)^{1-\alpha} \tag{3.49}
\end{equation*}
$$

The equality in (3.49) is attended for $f(z)$ given by (3.43) with $z=e^{i 2 \pi}$.

Noting that $f(z) \in \mathcal{Q}^{*}(\alpha)$ if and only if $z f^{\prime}(z) \in \mathcal{P}^{*}(\alpha)$, we also have

Theorem 3.6. If $f(z) \in \mathcal{Q}^{*}(\alpha)$, then

$$
\begin{equation*}
\frac{1}{(1+\sqrt{|z|})^{2(1-\alpha)}} \leqq\left|f^{\prime}(z)\right| \leqq \frac{1}{(1-\sqrt{|z|})^{2(1-\alpha)}} \quad(z \in \mathbb{U}) \tag{3.50}
\end{equation*}
$$

The equalities in (3.50) are attended for

$$
\begin{equation*}
f(z)=\int_{0}^{z} \frac{1}{(1-\sqrt{t})^{2(1-\alpha)}} d t . \tag{3.51}
\end{equation*}
$$

Corollary 3.5. If $f(z) \in \mathcal{Q}^{*}(0)$, then

$$
\begin{equation*}
\frac{1}{(1+\sqrt{|z|})^{2}} \leqq\left|f^{\prime}(z)\right| \leqq \frac{1}{(1-\sqrt{|z|})^{2}} \quad(z \in \mathbb{U}) \tag{3.52}
\end{equation*}
$$

The equalities in (3.52) are attended for

$$
\begin{equation*}
f(z)=\int_{0}^{z} \frac{1}{(1-\sqrt{t})^{2}} d t \tag{3.53}
\end{equation*}
$$

Corollary 3.6. If $f(z) \in \mathcal{Q}^{*}(\alpha)$, then

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geqq\left(\frac{1}{4}\right)^{1-\alpha} \tag{3.54}
\end{equation*}
$$

The equality in (3.54) is attended for $f(z)$ given by (3.51) with $z=e^{i 2 \pi}$.

References

[1] Breaz, D., Owa, S. and Breaz, N., Some properties of general integral operators, Adv. Math. Sci. J., 3 (2014), 9-14
[2] Duren, P. L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983
[3] Goodman, A. W., Univalent Functions, Vol. 1, Mariner Publ. Comp., Tampa Florida, 1983
[4] Littlewood, J. E., On inequalities in the theory of functions, Proc. London Math. Soc., 23 (1925), 481 - 519
[5] Miller, S. S. and Mocanu, P. T., Differential inequalities and Carathéodory functions, Bull. Amer. Math. Soc., 81 (1975), 79 - 81
[6] Miller, S. S. and Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-171
[7] Owa, S., A new class of functions concerning with Carathéodory functions, PanAmerican Math. J., 26 (2016), 96-100
[8] Rogosinski, W., On subordinate functions, Proc. Cambridge Philos. Soc., 35 (1939), 1 - 26
[9] Rogosinski, W., On the coefficients of subordinate functions, Proc. London Math. Soc., 48 (1943), 48-82
[10] Singh, S. and Gupta, S., A differential subordination and starlikeness of analytic functions, Appl. Math. Lett., 19 (2006), 618-627

"1 December 1918" University of Alba IUlia
Department of exact Science and Engineering
Faculty of Exact Science and Engineering
Gabriel Bethlen 5, 510009 Alba IUlia, Romania
E-mail address: nicoletabreaz@yahoo.com
Department of Mathematics
Faculty of Education
Yamato University
Katayama 2-5-1, SUITA, OsaKa 564-0082, Japan
E-mail address: owa.shigeyoshi@yamato-u.ac.jp

[^0]: Received: 08.07.2016. In revised form: 30.09.2016. Accepted: 04.10.2016
 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. Analytic function, starlike function of order α, subordination.
 Corresponding author: Nicoleta Breaz; nicoletabreaz@yahoo.com

