Köthe-Bochner spaces that are Hilbert spaces

ION CHIŢESCU, RĂZVAN-CORNEL SFETCU and OANA COJOCARU

ABSTRACT. We are concerned with Köthe-Bochner spaces that are Hilbert spaces (resp. hilbertable spaces). It is shown that this is equivalent to the fact that, separately, L_{ρ} and X are Hilbert spaces (resp. hilbertable spaces). It complete characterization of the L_{ρ} spaces that are Hilbert spaces, given by the first-author, is used.

1. INTRODUCTION

The Köthe spaces (in a particular form) were primarily introduced by G. Köthe and O. Toeplitz under the name of "Stufenräume" in the seminal paper [14]. Subsequently, G. Köthe continued the study of these spaces in [13]. The study of the Köthe spaces L_{ρ} within the natural framework of general measurable functions is mainly due to A. C. Zaanen, W. A. J. Luxemburg and their school (see the doctoral thesis [20] of W. A. J. Luxemburg under the supervision of A. C. Zaanen and the series of papers [21] by A. C. Zaanen and W. A. J. Luxemburg). The spaces L_{ρ} are natural generalizations of Lebesgue spaces, Orlicz spaces, Lorentz spaces and other function spaces. It is worth noticing that the name "Köthe spaces" was given by J. Dieudonné (see [5]).

The Köthe-Bochner spaces $L_{\rho}(X)$ (where X is a Banach space) are the natural (vector valued) generalization of the (scalar valued) Köthe spaces L_{ρ} . Their theory is developing very fast, being of great actuality (see e.g. the important monograph [17]). Here are some examples of recent papers concerned with the theory of Köthe-Bochner spaces $L_{\rho}(X)$: Geometric properties of spaces $L_{\rho}(X)$ are studied, e.g. in [10] and [11]. Operators on spaces $L_{\rho}(X)$ are studied in [8] and [12]. In [15] interpolation and extrapolation is studied in connection with vector integration. The spaces $L_{\rho}(X)$ and vector integration, involving linear operators are studied in [16]. We lay stress upon the paper [1], where the representation of the spaces $L_{\rho}(X)$ as tensor products of L_{ρ} and X is studied (practically only for $L_{\rho} = L^{1}$).

After a preliminary part, presenting notions, notations and results which are used, the first part of the paper is dedicated to those spaces $L_{\rho}(X)$ that are Hilbert spaces (i.e. they are complete and their norm is generated by a scalar product). We prove that this happens if and only if, separately, L_{ρ} and X are Hilbert spaces. The proof relies heavily on the result in [2], where we proved that L_{ρ} is Hilbert if and only if L_{ρ} is a weighted L^2 space (for some uniquely determined weight function). Some examples are introduced.

In the second part, we study those spaces $L_{\rho}(X)$ which are hilbertable (i.e. they are equivalent to some Hilbert space). It is proved that (like in the case of Hilbert spaces) this happens if and only if, separately, L_{ρ} and X are hilbertable (under some conditions).

Both results are of the same type: $L_{\rho}(X)$ has property (P) if and only if, separately, L_{ρ} and X have property (P). This happens many times in the theory of $L_{\rho}(X)$ spaces. A nice example in this respect is Theorem 3.6.17 in [17] which asserts that $L_{\rho}(X)$ has the

Received: 07.06.2016. In revised form: 08.09.2016. Accepted: 17.09.2016

²⁰¹⁰ Mathematics Subject Classification. 46C05, 46C07, 46C15, 46E30, 54C35.

Key words and phrases. Köthe space, Köthe-Bochner space, Hilbert space, hilbertable space.

Corresponding author: Răzvan-Cornel Sfetcu; razvancornelsfetcu@gmail.com

Radon-Nikodym property if and only if separately, L_{ρ} and X have the Radon-Nikodym property.

The basic theoretical notions used throughout the paper can be found in: [3] and [22] (for L_{ρ} spaces), [17] (for $L_{\rho}(X)$ spaces; our definition is a bit more general). For measure and integration theory, see [4], [6] and [9]. For functional analysis, see [7]. Related results can be found in [18].

2. PRELIMINARY FACTS

Throughout the paper: $\mathbb{N} = \{1, 2, 3, ...\}$, $\mathbb{R}_+ = [0, \infty)$, $\overline{\mathbb{R}}_+ = [0, \infty] = [0, \infty) \cup \{\infty\}$, $K = \mathbb{R}$ or \mathbb{C} . All sequences $(x_n)_n$ are indexed with \mathbb{N} . When writing $(x_n)_n \subset A$, this means that $x_n \in A$ for any $n \in \mathbb{N}$.

If *X* is a vector space (over *K*), we say that two norms $\| \|_1$ and $\| \|_2$ on *X* are *equivalent* if there exist two numbers $0 < a \le b$ such that $a \| \|_1 \le \| \|_2 \le b \| \|_1$. This is equivalent to the fact that $\| \|_1$ and $\| \|_2$ generate the same topology on *X*.

A measure space is a triple (T, \mathcal{T}, μ) , where T is a non empty set, $\mathcal{T} \subset \mathcal{P}(T) = \{A \mid A \subset T\}$ is a σ -algebra and $\mu : \mathcal{T} \to \mathbb{R}_+$ is a non null σ -additive measure. We shall always assume that (T, \mathcal{T}, μ) is a σ -finite measure space (or μ is σ -finite). We shall also assume that μ is complete.

The set of all μ -measurable functions $u: T \to \overline{\mathbb{R}}_+$ will be denoted by $M_+(\mu)$.

For any $A \in \mathcal{T}$, we have $\varphi_A \in M_+(\mu)$, where φ_A is the characteristic (indicator) function of A.

A μ -function norm (or, simply, a function norm) is a function $\rho : M_+(\mu) \to \overline{\mathbb{R}}_+$ with the properties (for any $u, v \in M_+(\mu)$ and any $\alpha \in \mathbb{R}_+$):

(i) $\rho(u) = 0$ if and only if $u(t) = 0 \ \mu - a.e.$;

(*ii*) $\rho(u) \leq \rho(v)$, whenever $u \leq v$;

(*iii*) $\rho(u+v) \le \rho(u) + \rho(v);$

(*iv*) $\rho(\alpha u) = \alpha \rho(u)$ (with the convention $0 \cdot \infty = 0$).

The function norm ρ is called *saturated* if there exists a sequence $(T_n)_n \subset \mathcal{T}$ such that $T = \bigcup_{n=1}^{\infty} T_n$ and $\mu(T_n) < \infty$, $\rho(\varphi_{T_n}) < \infty$, for any $n \in \mathbb{N}$ (this definition is equivalent to the classical one, see [3] and [22]). We say that the function norm ρ has *the Riesz-Fischer* property (and write $\rho R - F$) if $\rho\left(\sum_{n=1}^{\infty} u_n\right) \le \sum_{n=1}^{\infty} \rho(u_n)$ for any sequence $(u_n)_n \subset M_+(\mu)$.

A weight function is a function $w \in M_+(\mu)$ such that $\mu(\{t \in T \mid w(t) = 0\}) = \mu(\{t \in T \mid w(t) = \infty\}) = 0$. Hence, it is possible to consider that a weight function w takes its values in $(0, \infty)$, identifying $\mu - a.e.$ equal functions. Any weight function w defines the Hilbert

function norm $\rho_2(\mu, w) : M_+(\mu) \to \overline{\mathbb{R}}_+$, defined via $\rho_2(\mu, w)(u) = \left(\int u^2 w d\mu\right)^{\frac{1}{2}}$, which is saturated.

Let *X* be a non null Banach space. A function $f : T \to X$ is called μ -measurable if there exists a sequence $(f_n)_n$ of μ -simple functions such that $f_n \to f \mu - a.e.$ Let $M_X(\mu) = \{f : T \to X \mid f \text{ is } \mu\text{-measurable}\}$. The vector space $M_X(\mu)$ has the property that, for any $f \in M_X(\mu)$, one has $|f| \in M_+(\mu)$, where $|f| : T \to \mathbb{R}_+$ is defined via |f|(t) = ||f(t)||.

For any μ -function norm ρ we define the vector space

$$\mathcal{L}_{\rho}(X) = \{ f \in M_X(\mu) \mid \rho | f | < \infty \}$$

(we wrote $\rho|f| \stackrel{def}{=} \rho(|f|)$). Then $\mathcal{L}_{\rho}(X)$ is seminormed with the seminorm $f \to \rho|f|$. The null space of this seminorm is

Köthe-Bochner Spaces that Are Hilbert Spaces

$$N_X(\mu) = \{ f \in \mathcal{L}_{\rho}(X) \mid \rho | f | = 0 \} = \{ f \in M_X(\mu) \mid f(t) = 0 \ \mu - a.e. \}.$$

We define

$$L_{\rho}(X) \stackrel{def}{=} \mathcal{L}_{\rho}(X)/N_X(\mu)$$

and we see that $L_{\rho}(X)$ is a normed space (called *Köthe-Bochner space*) with norm $\tilde{f} \to \rho |f|$ for any representative $f \in \tilde{f}$. We can prove that $L_{\rho}(X)$ is Banach if and only if $\rho R - F$ (this is valid for any Banach space X, in particular for X = K).

In the particular case when X = K, we write L_{ρ} instead of $L_{\rho}(K)$ (we call L_{ρ} Köthe space). The Köthe spaces L_{ρ} generalize the Lebesgue spaces $L^{p}(\mu)$ (for $\rho = || ||_{p}, 1 \le p \le \infty$).

3. KÖTHE-BOCHNER SPACES THAT ARE HILBERT SPACES

The Köthe spaces L_{ρ} that are Hilbert spaces (i.e. L_{ρ} is complete and there exists a scalar product (.,.) on L_{ρ} such that $\left\|\tilde{f}\right\| = \sqrt{(\tilde{f},\tilde{f})}$ for any $\tilde{f} \in L_{\rho}$) were characterized in [2]. Namely, one can prove that L_{ρ} is Hilbert if and only if there exists a weight function $w: T \to (0,\infty)$ such that $L_{\rho} = L^2(\mu,w)$, i.e. $\rho = \rho_2(\mu,w)$, which means that $\left\|\tilde{f}\right\| = \rho|f| = \left(\int |f|^2 w d\mu\right)^{\frac{1}{2}}$ for any $f \in \tilde{f} \in L_{\rho}$. The scalar product is given via $(\tilde{f},\tilde{g}) = \int f \overline{g} w d\mu$. The weight function w is uniquely $\mu - a.e.$ determined by the Köthe Hilbert space L_{ρ} .

Theorem 3.1. Assume (T, \mathcal{T}, μ) is a σ -finite measure space, ρ is a μ -function norm which is saturated and X is a non null Banach space. The following assertions are equivalent:

- 1. The space $L_{\rho}(X)$ is a Hilbert space.
- 2. The spaces L_{ρ} and X are Hilbert spaces.

Proof. A. We prove $1. \Rightarrow 2$. Namely, we shall generate a scalar product on L_{ρ} (resp. X) which generates the norm of L_{ρ} (resp. X). The scalar product of \tilde{f}, \tilde{g} in $L_{\rho}(X)$ will be denoted by $(\tilde{f}|\tilde{g})$.

a) Construction for L_{ρ} .

Fix arbitrarily $x \in X$ with ||x|| = 1. For any \tilde{f}, \tilde{g} in L_{ρ} , define $(\tilde{f}, \tilde{g}) \stackrel{def}{=} (\widetilde{fx}|\widetilde{gx})$, where $fx \in \mathcal{L}_{\rho}(X)$ is defined via (fx)(t) = f(t)x *a.s.o.* In this way, we defined a scalar product on L_{ρ} . We have $\rho|f| = \sqrt{(\tilde{f}, \tilde{f})}$, consequently this scalar product (., .) generates the norm of L_{ρ} .

We do not forget that L_{ρ} is Banach, because $L_{\rho}(X)$ is Banach. So, L_{ρ} is a Hilbert space. b) Construction for X.

Fix arbitrarily $\tilde{f} \in L_{\rho}$ such that $\left\|\tilde{f}\right\| = \rho|f| = 1$. For any x, y in X, define $[x, y] \stackrel{def}{=} (\tilde{fx}|\tilde{fy})$. In this way, we defined a scalar product on X. Notice that, for any $x \in X$, one has $[x, x] = \|x\|^2$. This shows that the scalar product [., .] generates the norm of X.

B. We prove 2. \Rightarrow 1. Namely, we see first that $L_{\rho}(X)$ is Banach, because L_{ρ} is Banach. The end of the proof will consist in showing that the norm of $L_{\rho}(X)$ satisfies the parallelogram identity.

Using the results in [2], we find a $\mu - a.e.$ unique weight function $w : T \to \mathbb{R}_+$ such that $\rho(u) = \left(\int u^2 w d\mu\right)^{\frac{1}{2}}$ for any $u \in M_+(\mu)$, because L_ρ is Hilbert. It follows that the norm $\left|\left\|\tilde{f}\right\|\right|$ of $\tilde{f} \in L_\rho(X)$ has the expression

163

Ion Chițescu, Răzvan-Cornel Sfetcu and Oana Cojocaru

$$\left|\left\|\tilde{f}\right|\right\| = \rho|f| = \left(\int |f|^2 w d\mu\right)^{\frac{1}{2}}$$

if $f \in \tilde{f}$. We show that ||| ||| satisfies the parallelogram identity.

Let \tilde{f}, \tilde{g} in $L_{\rho}(X)$. Because X is a Hilbert space, one has, for any $t \in T$,

$$(|f+g|(t))^2 + (|f-g|(t))^2 = 2((|f|(t))^2 + (|g|(t))^2),$$

 $f \in \tilde{f}, g \in \tilde{g}$. Consequently:

$$\begin{aligned} \left| \left\| \tilde{f} + \tilde{g} \right| \right\|^{2} + \left| \left\| \tilde{f} - \tilde{g} \right| \right\|^{2} &= \int |f + g|^{2} w d\mu + \int |f - g|^{2} w d\mu = \int (|f + g|^{2} + |f - g|^{2}) w d\mu = \\ &2 \int (|f|^{2} + |g|^{2}) w d\mu = 2 \int |f|^{2} w d\mu + 2 \int |g|^{2} w d\mu = 2 \left(\left| \left\| \tilde{f} \right\| \right\|^{2} + \left| \left\| \tilde{g} \right\| \right\|^{2} \right). \end{aligned}$$

Remark 3.1. Maybe, it is instructive to insist upon the connection of the Hilbert structures of $L_{\rho}(X)$ and L_{ρ} . So, assume $L_{\rho}(X)$ is a Hilbert space. During the proof of Theorem 3.1 (part *A.a*)) we used the scalar product (.|.) of $L_{\rho}(X)$ to construct a scalar product (.,.) on L_{ρ} which generates the norm of L_{ρ} . This last scalar product is unique, being generated by an unique weight function.

In the sequel, we shall consider some special notations. Namely, if ρ is a μ -function norm, $x \in X$ and $f \in \mathcal{L}_{\rho}$, we shall define $fx \in \mathcal{L}_{\rho}(X)$ and $\tilde{fx} \in L_{\rho}(X)$ as follows: $fx: T \to X$ is defined via (fx)(t) = f(t)x and $\tilde{fx} = \tilde{fx}$. For the examples, we shall be concerned with the particular case of the discrete measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), card)$, where $card : \mathcal{P}(\mathbb{N}) \to \mathbb{R}_+$ is the counting measure. The only negligible set is ϕ . A function f : $\mathbb{N} \to H$ is identified with a sequence: $f \equiv (x_n)_n \subset H$, where $x_n = f(n)$ for any n. If X is a Banach space, any function $f : \mathbb{N} \to X$ is *card*-measurable. For any *card*-function norm ρ and any Banach space X one has $L_{\rho}(X) \equiv \mathcal{L}_{\rho}(X)$ (equivalence classes in L_{ρ} contain only one element). Assuming X itself is a Köthe space, $X = L_r$, for some *card*-function norm r, we have for any $f \in L_{\rho}(L_r) : f \equiv (f(m))_m$, where $f(m) \in L_r \equiv \mathcal{L}_r$, hence we can identify $f(m) \equiv (x_{mn})_n \subset K$. Consequently, any $f \in L_{\rho}(L_r)$ can be identified with an infinite scalar valued matrix: $f \equiv (x_{mn})_{m,n}$.

Example 3.1 (Form of $L_{\rho}(L_r)$ spaces of sequences which are Hilbert spaces). Let us consider two *card*-function norms ρ and r (see Preliminary Part) such that $L_{\rho}(L_r)$ is a Hilbert space. According to Theorem 3.1, this is equivalent to the fact that L_{ρ} and L_r are Hilbert spaces. This means that $L_{\rho} = L^2(card, u)$ and $L_r = L^2(card, v)$ for some weight functions $u, v : \mathbb{N} \to \mathbb{R}_+$. Hence, $u \equiv (a_n)_n$ and $v \equiv (b_n)_n$, where $0 < a_n < \infty, 0 < b_n < \infty$ for any n. It follows that $L^2(card, u) = \{(x_n)_n \subset K \mid \sum_{i=1}^{\infty} |x_n|^2 a_n < \infty\}$ equipped with the norm

$$x \to ||x|| = \left(\sum_{n=1}^{\infty} |x_n|^2 a_n\right)^{\frac{1}{2}} \text{ and the scalar product } (x, y) = \sum_{n=1}^{\infty} x_n \overline{y}_n a_n, \text{ where } x \equiv (x_n)_n \text{ and } y \equiv (y_n)_n. \text{ For } L^2(card, v), \text{ replace } (a_n)_n \text{ with } (b_n)_n.$$

An element
$$f \equiv (x_{mn})_{m,n} \in L_{\rho}(L_r)$$
 has the form $f(m) \equiv (x_{mn})_n$ for any m , hence $|f|(m) = \left(\sum_{n=1}^{\infty} |x_{mn}|^2 b_n\right)^{\frac{1}{2}}$. Then $\rho|f| = \left(\sum_{m=1}^{\infty} (|f|(m))^2 a_m\right)^{\frac{1}{2}} = \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}|^2 a_m b_n\right)^{\frac{1}{2}}$. Consequently:

164

Köthe-Bochner Spaces that Are Hilbert Spaces

$$L_{\rho}(L_r) \equiv \{(x_{mn})_{m,n} \subset K \mid \sum_{m,n} a_m b_n |x_{mn}|^2 < \infty\}$$

equipped with the norm

$$||(x_{mn})_{m,n}|| = \left(\sum_{m,n} a_m b_n |x_{mn}|^2\right)^{\frac{1}{2}}$$

and the scalar product

$$((x_{mn})_{m,n}, (y_{mn})_{m,n}) = \sum_{m,n} a_m b_n x_{mn} \overline{y}_{mn}.$$

Example 3.2. We exhibit two examples of spaces $L_{\rho}(L_r)$, where ρ and r are *card*-function norms such that either L_{ρ} or L_r is not Hilbert and the parallelogram identity is violated.

A. Take
$$\rho(u) = \sup_{n} u(n)$$
 and $r(u) = \left(\sum_{n=1}^{\infty} u(n)^2\right)^{\frac{1}{2}}$ for any $u \in M_+(card)$. Hence $L_{\rho} = l^{\infty}, L_r = l^2$ and l^{∞} is "not good" (is not Hilbert). Also take $f : \mathbb{N} \to l^2$, $f(m) = (\frac{1}{1}, \frac{1}{2}, ..., \frac{1}{m}, 0, 0, ...)$
($f \equiv (x_{mn})_{m,n}$, where $x_{mn} = \frac{1}{n}$, if $n \le m$ and $x_{mn} = 0$, if $n > m$). Let also $g : \mathbb{N} \to l^2$, $g(m) = (0, 0, ..., 0, \frac{1}{m+1}, \frac{1}{m+2}, ...)$
($g \equiv (y_{mn})_{m,n}$, where $y_{mn} = 0$, if $n \le m$ and $y_{mn} = \frac{1}{n}$, if $n > m$).
We have: $||f + g||^2 + ||f - g||^2 = \frac{\pi^2}{3}$, whereas $2(||f||^2 + ||g||^2) = 2\frac{\pi^2}{3} - 2 \ne \frac{\pi^2}{3}$.
B. Take $\rho(u) = \left(\sum_{n=1}^{\infty} u(n)^2\right)^{\frac{1}{2}}$ and $r(u) = \sup_{n} u(n)$, for any $u \in M_+(card)$. Hence $L_{\rho} = l^2$ and $L_r = l^{\infty}$ and, again, l^{∞} is "not good". Also take $f : \mathbb{N} \to l^{\infty}$, $f(m) = (\frac{1}{m+1}, \frac{1}{m+2}, ..., \frac{1}{2m}, 0, 0, ...)$
($f \equiv (x_{mn})_{m,n}$, where $x_{mn} = \frac{1}{m+n}$, if $n \le m$ and $x_{mn} = 0$, if $n > m$).
Let also $g : \mathbb{N} \to l^{\infty}$, $g(m) = (0, 0, ..., 0, \frac{1}{2m+1}, \frac{1}{2m+2}, ...)$
($g \equiv (y_{mn})_{m,n}$ where $y_{mn} = 0$, if $n \le m$ and $y_{mn} = \frac{1}{m+n}$, if $n > m$).
We have: $||f + g||^2 + ||f - g||^2 = \frac{\pi^2}{3} - 2$, whereas $2(||f||^2 + ||g||^2) = \frac{7\pi^2}{12} - 4 \ne \frac{\pi^2}{3} - 2$.

4. HILBERTABLE KÖTHE-BOCHNER SPACES

In this paragraph, we shall pass from the isometric level, described in the preceding paragraph, to the isomorphic level.

Recall that, if *X* is a Banach space and $Y \subset X$ is a closed subspace, we say that *Y* is *complemented* if there exists another closed subspace $Z \subset X$ such that $X = Y \oplus Z$ (i.e. any $x \in X$ admits an unique decomposition x = y + z, with $y \in Y$ and $z \in Z$).

We shall say that a Banach space *X* is *complementable* if any closed subspace $Y \subset X$ is complemented and we shall say that *X* is *hereditarily complementable* if any closed subspace $Y \subset X$ is complementable. The two notions are equivalent.

165

Recall that a Banach space (X, || ||) is called *hilbertable* if there exists a norm ||| ||| on X which is equivalent to || || and such that (X, ||| |||) is a Hilbert space. Because any Hilbert space is complementable, it follows that any hilbertable space is complementable. A remarkable result of J. Lindenstrauss and L. Tzafriri (see [19]) says that, conversely, any complementable space is hilbertable.

Theorem 4.2. Assume (T, \mathcal{T}, μ) is a σ -finite measure space, ρ is a μ -function norm which is saturated and X is a non null Banach space. Consider the following assertions:

1. The space $L_{\rho}(X)$ is hilbertable.

2. The spaces L_{ρ} and X are hilbertable.

Then $1. \Rightarrow 2$. The implication $2. \Rightarrow 1$. is valid in case L_{ρ} is strongly hilbertable, i.e. there exists a μ -function norm ρ_1 such that the norms of L_{ρ} and L_{ρ_1} are equivalent and L_{ρ_1} is a Köthe Hilbert space.

Proof. A. We prove $1. \Rightarrow 2$. The proof is based upon the equivalence complementable \Leftrightarrow hereditarily complementable and the equivalence hilbertable \Leftrightarrow complementable (Theorem of J. Lindenstrauss and L. Tzafriri). Let us accept that $L_{\rho}(X)$ is hilbertable. This implies that L_{ρ} is Banach, because $L_{\rho}(X)$ is Banach.

a) We prove that L_{ρ} is hilbertable.

To this end, we consider an element $x \in X$ with ||x|| = 1 and define

$$L_{\rho}x = \{ \tilde{u}x \mid \tilde{u} \in L_{\rho} \}.$$

Then $L_{\rho}x$ is a closed subspace of $L_{\rho}(X)$.

Passing to the very proof, let $H \subset L_{\rho}$ be a closed subspace. It generates the closed subspace $Hx \subset L_{\rho}x$, $Hx = \{\tilde{u}x \mid \tilde{u} \in H\}$ (similar proof). Using the equivalence complementable \Leftrightarrow hereditarily complementable and the fact that $L_{\rho}(X)$ is complementable, we find a closed subspace $Y \subset L_{\rho}x$ such that $L_{\rho}x = Hx \oplus Y$. Clearly Y has the form Y = Gx, where $G \subset L_{\rho}$ is a (vector) subspace. Because Y is closed and the vector subspaces Y and G are linearly isometric (for $y = \tilde{g}x \in Y$, $||y|| = ||\tilde{g}||$, first norm in $L_{\rho}(X)$, second norm in L_{ρ}), it follows that G is closed in L_{ρ} . The equality $L_{\rho}x = Hx \oplus Gx$ means $L_{\rho} = H \oplus G$.

b) We prove that *X* is hilbertable.

Same idea. Let $\tilde{u} \in L_{\rho}$ with $\|\tilde{u}\| = 1$. We define

$$\tilde{u}X = \{\tilde{u}x \mid x \in X\}.$$

Then $\tilde{u}X$ is a closed subspace of $L_{\rho}(X)$.

Now, let $Y \subset X$ be a closed subspace. It follows that $\tilde{u}Y$ is a closed subspace of $\tilde{u}X$ (similar proof). Again, we find a closed subspace $V \subset \tilde{u}X$ such that $\tilde{u}X = \tilde{u}Y \oplus V$. Hence V has the form $\tilde{u}Z$, with $Z \subset Y$, Z(vector) subspace. Being linearly isometric with V, Z is closed. Clearly, the equality $\tilde{u}X = \tilde{u}Y \oplus \tilde{u}Z$ means $X = Y \oplus Z$.

B. We prove 2. \Rightarrow 1. The proof will be computational. In any case, $L_{\rho}(X)$ is Banach, because L_{ρ} is Banach, being hilbertable.

Because X is hilbertable, there exists a Hilbert norm $\| \|_1$ on X and $0 < a \le b < \infty$ such that, for any $x \in X$

$$a \|x\|_{1} \leq \|x\| \leq b \|x\|_{1}$$

where $\| \|$ is the norm of *X*. Hence, for any $f : T \to X$, one has

(4.1)
$$a|f|_1 \le |f| \le b|f|_1$$

where, as usual, $|f| : T \to \mathbb{R}_+$ acts via |f|(t) = ||f(t)|| and $|f|_1 : T \to \mathbb{R}_+$ acts via $|f|_1(t) = ||f(t)||_1$.

Because L_{ρ} is strongly hilbertable, there exists a Hilbert function norm ρ_1 on (T, \mathcal{T}, μ) and $0 < \alpha \leq \beta < \infty$ such that, for any $u \in M_+(\mu)$

$$\alpha \rho_1(u) \le \rho(u) \le \beta \rho_1(u).$$

Namely, ρ_1 is generated by a weight function $w: T \to \mathbb{R}_+$, via

$$\rho_1(u) = \left(\int u^2 w d\mu\right)^2$$

and this implies, for any $u \in M_+(\mu)$:

(4.2)
$$\alpha \left(\int u^2 w d\mu\right)^{\frac{1}{2}} \le \rho(u) \le \beta \left(\int u^2 w d\mu\right)^{\frac{1}{2}}$$

On $L_{\rho}(X)$, we have the norm given via $\tilde{f} \to \|\tilde{f}\| = \rho |f|, f \in \tilde{f}$. The idea is to consider the Hilbert norm $\tilde{f} \to \|\tilde{f}\|_1 = \rho_1 |f|_1$ (see the construction in the proof of Theorem 3.1) and to show that $\| \|$ and $\| \|_1$ are equivalent. Indeed: $\rho_1 |f|_1 = \left(\int |f|_1^2 w d\mu\right)^{\frac{1}{2}}$ and, using (4.1) and (4.2), we get:

$$\alpha \left(\int a^2 |f|_1^2 w d\mu\right)^{\frac{1}{2}} \le \alpha \left(\int |f|^2 w d\mu\right)^{\frac{1}{2}} \le \rho |f| \le \beta \left(\int |f|^2 w d\mu\right)^{\frac{1}{2}} \le \beta \left(\int b^2 |f|_1^2 w d\mu\right)^{\frac{1}{2}}$$
 which means

which means

$$\alpha a \rho_1 |f|_1 \le \rho |f| \le \beta b \rho_1 |f|_1.$$

In other words, we have for any $\tilde{f} \in L_{\rho}$

$$\alpha a \left\| \tilde{f} \right\|_1 \le \left\| \tilde{f} \right\| \le \beta b \left\| \tilde{f} \right\|_1$$

Acknowledgement. The authors are indebted to the anonymous referees to whom they express the whole gratitude for the useful and competent suggestions.

REFERENCES

- Calabuig, J. M., Jiménez Férnandez, E., Juan, M. A. and Sánchez Pérez, E. A., Tensor product representation of Köthe-Bochner spaces and their dual spaces, Positivity, 20 (2016), No. 1, 155–169
- [2] Chitescu, I., Köthe spaces that are Hilbert spaces, Bull. Math. Soc. Sci. Math. R.S.R., 18 (66) (1976), 25-29
- [3] Chițescu, I., Function Spaces (in Romanian), Ed. Șt. Encicl. Bucharest, 1983
- [4] Diestel, J. and Uhl, J. Jerry, Jr., Vector Measures, Mathematical Surveys, No. 15, Amer. Math. Soc. Providence, Rhode Island, 1977
- [5] Dieudonné, J., Sur les espaces de Köthe, J. d'Analyse Math., 1 (1951), 81-115
- [6] Dinculeanu, N., Vector Measures, Veb Deutscher Verlag der Wissenschaften, Berlin, 1966
- [7] Dunford, N. and Schwartz, J., *Linear Operators. Part I, General Theory*, Interscience Publishers, Inc. New York, 1957
- [8] Duru, H., Kitover, A. and Orhon, M., Multiplication operators on vector-valued function spaces, Proc. Amer. Math. Soc, 141 (2013), No. 10, 3501–3513
- [9] Halmos, P. R., Measure Theory (eleventh printing), D. Van Nostrand Company, Inc. 1966
- [10] Hardtke, J.-D., Köthe-Bochner spaces and some geometric properties related to rotundity and smoothness, Journal of Function Spaces and Applications, (2013), Article ID 187536, 19 pages, http://dx.doi.org/10.1155/2013/187536
- [11] Hou, Z. and Pan, J., On the extreme points and strongly extreme points in Köthe-Bochner spaces, Publications de l'Institut Mathématique, Nouvelle série, 92 (106), (2012), 130–143

- [12] Khandaqii, M. and Al-Rawashdeh, A., The (p, q)-absolutely summing operators in the Köthe-Bochmer function spaces, J. Comput. Anal. Appl., 19 (2015), No. 3, 455–461
- [13] Köthe, G., Neubergründung der Theorie der vollkommenen Räume, Math. Nachr., 4 (1951), 70-80
- [14] Köthe, G. and Toeplitz, O., Lineare Räume mit unendlichvielen Koordinaten und Ringe unendlicher Matrizen, J. de Crelle, 171 (1934), 193–226
- [15] Kryczka, A., Mean separations in Banach spaces under abstract interpolation and extrapolation, J. Math. Anal. Appl., 407 (2013), No. 2, 281–289
- [16] Li, F., Li, P. and Han, D., Continuous framings for Banach spaces, J. Funct. Anal., 271 (2016), No. 4, 992-1021
- [17] Lin, P.-K., Köthe-Bochner Function Spaces, Springer-Science+Business Media, LLC, 2004
- [18] Lin, P.-K., Stability of some properties in Köthe-Bochner function spaces, in: Function Spaces, the fifth conference, Pure and Applied Math. vol. 213, Marcel Dekker, Inc., (2000), 347–357
- [19] Lindenstrauss, J. and Tzafriri, L., On the complemented subspaces problem, Israel J. Math., 9 (1971), 213–269
- [20] Luxemburg, W. A. J., Banach Function Spaces. Thesis, Delft Institute of Technology, Assen, Netherlands, 1955
- [21] Luxemburg, W. A. J. and Zaanen, A. C., Notes on Banach function spaces, Indag. Math., Note I (1963)-Note XVI (1965)
- [22] Zaanen, A. C., Integration, North Holland, Amsterdam, 1967

DEPARTMENT OF MATHEMATICS UNIVERSITY OF BUCHAREST STR. ACADEMIEI 14,010014 BUCHAREST, ROMANIA *E-mail address*: ionchitescu@yahoo.com *E-mail address*: razvancornelsfetcu@gmail.com *E-mail address*: prof.oana@gmail.com