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Köthe-Bochner spaces that are Hilbert spaces

ION CHIŢESCU, RĂZVAN-CORNEL SFETCU and OANA COJOCARU

ABSTRACT. We are concerned with Köthe-Bochner spaces that are Hilbert spaces (resp. hilbertable spaces). It
is shown that this is equivalent to the fact that, separately, Lρ and X are Hilbert spaces (resp. hilbertable spaces).
The complete characterization of the Lρ spaces that are Hilbert spaces, given by the first-author, is used.

1. INTRODUCTION

The Köthe spaces (in a particular form) were primarily introduced by G. Köthe and
O. Toeplitz under the name of ”Stufenräume” in the seminal paper [14]. Subsequently, G.
Köthe continued the study of these spaces in [13]. The study of the Köthe spacesLρ within
the natural framework of general measurable functions is mainly due to A. C. Zaanen,
W. A. J. Luxemburg and their school (see the doctoral thesis [20] of W. A. J. Luxemburg
under the supervision of A. C. Zaanen and the series of papers [21] by A. C. Zaanen
and W. A. J. Luxemburg). The spaces Lρ are natural generalizations of Lebesgue spaces,
Orlicz spaces, Lorentz spaces and other function spaces. It is worth noticing that the name
”Köthe spaces” was given by J. Dieudonné (see [5]).

The Köthe-Bochner spaces Lρ(X) (where X is a Banach space) are the natural (vector
valued) generalization of the (scalar valued) Köthe spaces Lρ. Their theory is developing
very fast, being of great actuality (see e.g. the important monograph [17]). Here are some
examples of recent papers concerned with the theory of Köthe-Bochner spaces Lρ(X):
Geometric properties of spaces Lρ(X) are studied, e.g. in [10] and [11]. Operators on spa-
ces Lρ(X) are studied in [8] and [12]. In [15] interpolation and extrapolation is studied in
connection with vector integration. The spaces Lρ(X) and vector integration, involving
linear operators are studied in [16]. We lay stress upon the paper [1], where the represen-
tation of the spaces Lρ(X) as tensor products of Lρ and X is studied (practically only for
Lρ = L1).

After a preliminary part, presenting notions, notations and results which are used, the
first part of the paper is dedicated to those spaces Lρ(X) that are Hilbert spaces (i.e. they
are complete and their norm is generated by a scalar product). We prove that this happens
if and only if, separately, Lρ and X are Hilbert spaces. The proof relies heavily on the
result in [2], where we proved that Lρ is Hilbert if and only if Lρ is a weighted L2 space
(for some uniquely determined weight function). Some examples are introduced.

In the second part, we study those spaces Lρ(X) which are hilbertable (i.e. they are
equivalent to some Hilbert space). It is proved that (like in the case of Hilbert spaces) this
happens if and only if, separately, Lρ and X are hilbertable (under some conditions).

Both results are of the same type: Lρ(X) has property (P ) if and only if, separately,
Lρ and X have property (P ). This happens many times in the theory of Lρ(X) spaces.
A nice example in this respect is Theorem 3.6.17 in [17] which asserts that Lρ(X) has the
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162 Ion Chiţescu, Răzvan-Cornel Sfetcu and Oana Cojocaru

Radon-Nikodym property if and only if separately, Lρ and X have the Radon-Nikodym
property.

The basic theoretical notions used throughout the paper can be found in: [3] and [22]
(for Lρ spaces), [17] (for Lρ(X) spaces; our definition is a bit more general). For measure
and integration theory, see [4], [6] and [9]. For functional analysis, see [7]. Related results
can be found in [18].

2. PRELIMINARY FACTS

Throughout the paper: N = {1, 2, 3, ...}, R+ = [0,∞), R+ = [0,∞] = [0,∞) ∪ {∞},
K = R or C. All sequences (xn)n are indexed with N. When writing (xn)n ⊂ A, this
means that xn ∈ A for any n ∈ N.

If X is a vector space (over K), we say that two norms ‖ ‖1 and ‖ ‖2 on X are equivalent
if there exist two numbers 0 < a ≤ b such that a ‖ ‖1 ≤ ‖ ‖2 ≤ b ‖ ‖1. This is equivalent to
the fact that ‖ ‖1 and ‖ ‖2 generate the same topology on X .

A measure space is a triple (T, T , µ), where T is a non empty set, T ⊂ P(T ) = {A |
A ⊂ T} is a σ-algebra and µ : T → R+ is a non null σ-additive measure. We shall always
assume that (T, T , µ) is a σ-finite measure space (or µ is σ-finite). We shall also assume that
µ is complete.

The set of all µ-measurable functions u : T → R+ will be denoted by M+(µ).
For anyA ∈ T , we haveϕA ∈M+(µ), whereϕA is the characteristic (indicator) function

of A.
A µ-function norm (or, simply, a function norm) is a function ρ : M+(µ) → R+ with the

properties (for any u, v ∈M+(µ) and any α ∈ R+):
(i) ρ(u) = 0 if and only if u(t) = 0 µ− a.e.;
(ii) ρ(u) ≤ ρ(v), whenever u ≤ v;
(iii) ρ(u+ v) ≤ ρ(u) + ρ(v);
(iv) ρ(αu) = αρ(u) (with the convention 0 · ∞ = 0).
The function norm ρ is called saturated if there exists a sequence (Tn)n ⊂ T such that

T =
∞⋃
n=1

Tn and µ(Tn) < ∞, ρ(ϕTn
) < ∞, for any n ∈ N (this definition is equivalent to

the classical one, see [3] and [22]). We say that the function norm ρ has the Riesz-Fischer

property (and write ρ R− F ) if ρ

( ∞∑
n=1

un

)
≤

∞∑
n=1

ρ(un) for any sequence (un)n ⊂M+(µ).

A weight function is a function w ∈ M+(µ) such that µ({t ∈ T | w(t) = 0}) = µ({t ∈ T |
w(t) =∞}) = 0. Hence, it is possible to consider that a weight function w takes its values
in (0,∞), identifying µ − a.e. equal functions. Any weight function w defines the Hilbert

function norm ρ2(µ,w) : M+(µ) → R+, defined via ρ2(µ,w)(u) =
(∫

u2wdµ

) 1
2

, which is

saturated.
Let X be a non null Banach space. A function f : T → X is called µ-measurable if there

exists a sequence (fn)n of µ-simple functions such that fn −→
n

f µ − a.e. Let MX(µ) =

{f : T → X | f is µ-measurable}. The vector space MX(µ) has the property that, for any
f ∈MX(µ), one has |f | ∈M+(µ), where |f | : T → R+ is defined via |f |(t) = ‖f(t)‖.

For any µ-function norm ρ we define the vector space

Lρ(X) = {f ∈MX(µ) | ρ|f | <∞}

(we wrote ρ|f | def= ρ(|f |)). Then Lρ(X) is seminormed with the seminorm f → ρ|f |. The
null space of this seminorm is
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NX(µ) = {f ∈ Lρ(X) | ρ|f | = 0} = {f ∈MX(µ) | f(t) = 0 µ− a.e.}.
We define

Lρ(X)
def
= Lρ(X)/NX(µ)

and we see that Lρ(X) is a normed space (called Köthe-Bochner space) with norm f̃ → ρ|f |
for any representative f ∈ f̃ . We can prove that Lρ(X) is Banach if and only if ρ R − F
(this is valid for any Banach space X , in particular for X = K).

In the particular case when X = K, we write Lρ instead of Lρ(K) (we call Lρ Köthe
space). The Köthe spaces Lρ generalize the Lebesgue spaces Lp(µ) (for ρ = ‖ ‖p , 1 ≤ p ≤
∞).

3. KÖTHE-BOCHNER SPACES THAT ARE HILBERT SPACES

The Köthe spaces Lρ that are Hilbert spaces (i.e. Lρ is complete and there exists a

scalar product (., .) on Lρ such that
∥∥∥f̃∥∥∥ =

√
(f̃ , f̃) for any f̃ ∈ Lρ) were characterized in

[2]. Namely, one can prove that Lρ is Hilbert if and only if there exists a weight function

w : T → (0,∞) such that Lρ = L2(µ,w), i.e. ρ = ρ2(µ,w), which means that
∥∥∥f̃∥∥∥ = ρ|f | =(∫

|f |2wdµ
) 1

2

for any f ∈ f̃ ∈ Lρ. The scalar product is given via (f̃ , g̃) =

∫
fgwdµ.

The weight function w is uniquely µ− a.e. determined by the Köthe Hilbert space Lρ.

Theorem 3.1. Assume (T, T , µ) is a σ-finite measure space, ρ is a µ-function norm which is
saturated and X is a non null Banach space. The following assertions are equivalent:

1. The space Lρ(X) is a Hilbert space.
2. The spaces Lρ and X are Hilbert spaces.

Proof. A. We prove 1. ⇒ 2. Namely, we shall generate a scalar product on Lρ (resp. X)
which generates the norm of Lρ (resp. X). The scalar product of f̃ , g̃ in Lρ(X) will be
denoted by (f̃ |g̃).
a) Construction for Lρ.

Fix arbitrarily x ∈ X with ‖x‖ = 1. For any f̃ , g̃ in Lρ, define (f̃ , g̃)
def
= (f̃x|g̃x), where

fx ∈ Lρ(X) is defined via (fx)(t) = f(t)x a.s.o. In this way, we defined a scalar product

on Lρ. We have ρ|f | =
√

(f̃ , f̃), consequently this scalar product (., .) generates the norm
of Lρ.

We do not forget that Lρ is Banach, because Lρ(X) is Banach. So, Lρ is a Hilbert space.
b) Construction for X .

Fix arbitrarily f̃ ∈ Lρ such that
∥∥∥f̃∥∥∥ = ρ|f | = 1. For any x, y in X , define [x, y]

def
=

(f̃x|f̃y). In this way, we defined a scalar product on X . Notice that, for any x ∈ X , one
has [x, x] = ‖x‖2. This shows that the scalar product [., .] generates the norm of X .
B. We prove 2. ⇒ 1. Namely, we see first that Lρ(X) is Banach, because Lρ is Banach.

The end of the proof will consist in showing that the norm of Lρ(X) satisfies the paralle-
logram identity.

Using the results in [2], we find a µ−a.e. unique weight function w : T → R+ such that

ρ(u) =

(∫
u2wdµ

) 1
2

for any u ∈ M+(µ), because Lρ is Hilbert. It follows that the norm∣∣∣∥∥∥f̃ ∣∣∣∥∥∥ of f̃ ∈ Lρ(X) has the expression
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(∫
|f |2wdµ

) 1
2

if f ∈ f̃ . We show that |‖ |‖ satisfies the parallelogram identity.
Let f̃ , g̃ in Lρ(X). Because X is a Hilbert space, one has, for any t ∈ T ,

(|f + g|(t))2 + (|f − g|(t))2 = 2((|f |(t))2 + (|g|(t))2),

f ∈ f̃ , g ∈ g̃. Consequently:∣∣∣∥∥∥f̃ + g̃
∣∣∣∥∥∥2+ ∣∣∣∥∥∥f̃ − g̃∣∣∣∥∥∥2 =

∫
|f + g|2wdµ+

∫
|f − g|2wdµ =

∫
(|f + g|2 + |f − g|2)wdµ =

2

∫
(|f |2 + |g|2)wdµ = 2

∫
|f |2wdµ+ 2

∫
|g|2wdµ = 2

(∣∣∣∥∥∥f̃ ∣∣∣∥∥∥2 + |‖g̃|‖2).

�

Remark 3.1. Maybe, it is instructive to insist upon the connection of the Hilbert structures
of Lρ(X) and Lρ. So, assume Lρ(X) is a Hilbert space. During the proof of Theorem 3.1
(part A.a)) we used the scalar product (.|.) of Lρ(X) to construct a scalar product (., .) on
Lρ which generates the norm of Lρ. This last scalar product is unique, being generated by
an unique weight function.

In the sequel, we shall consider some special notations. Namely, if ρ is a µ-function
norm, x ∈ X and f ∈ Lρ, we shall define fx ∈ Lρ(X) and f̃x ∈ Lρ(X) as follows:
fx : T → X is defined via (fx)(t) = f(t)x and f̃x = f̃x. For the examples, we shall be
concerned with the particular case of the discrete measure space (N,P(N), card), where
card : P(N) → R+ is the counting measure. The only negligible set is φ. A function f :
N→ H is identified with a sequence: f ≡ (xn)n ⊂ H , where xn = f(n) for any n. If X is a
Banach space, any function f : N→ X is card-measurable. For any card-function norm ρ
and any Banach space X one has Lρ(X) ≡ Lρ(X) (equivalence classes in Lρ contain only
one element). Assuming X itself is a Köthe space, X = Lr, for some card-function norm
r, we have for any f ∈ Lρ(Lr) : f ≡ (f(m))m, where f(m) ∈ Lr ≡ Lr, hence we can
identify f(m) ≡ (xmn)n ⊂ K. Consequently, any f ∈ Lρ(Lr) can be identified with an
infinite scalar valued matrix: f ≡ (xmn)m,n.

Example 3.1 (Form of Lρ(Lr) spaces of sequences which are Hilbert spaces). Let us con-
sider two card-function norms ρ and r (see Preliminary Part) such that Lρ(Lr) is a Hilbert
space. According to Theorem 3.1, this is equivalent to the fact that Lρ and Lr are Hilbert
spaces. This means that Lρ = L2(card, u) and Lr = L2(card, v) for some weight functions
u, v : N → R+. Hence, u ≡ (an)n and v ≡ (bn)n, where 0 < an < ∞, 0 < bn < ∞ for any

n. It follows that L2(card, u) = {(xn)n ⊂ K |
∞∑
n=1

|xn|2an < ∞} equipped with the norm

x → ‖x‖ =

( ∞∑
n=1

|xn|2an

) 1
2

and the scalar product (x, y) =
∞∑
n=1

xnynan, where x ≡ (xn)n

and y ≡ (yn)n. For L2(card, v), replace (an)n with (bn)n.
An element f ≡ (xmn)m,n ∈ Lρ(Lr) has the form f(m) ≡ (xmn)n for any m, hence

|f |(m) =

( ∞∑
n=1

|xmn|2bn

) 1
2

. Then ρ|f | =

( ∞∑
m=1

(|f |(m))2am

) 1
2

=

( ∞∑
m=1

∞∑
n=1

|xmn|2ambn

) 1
2

.

Consequently:
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Lρ(Lr) ≡ {(xmn)m,n ⊂ K |
∑
m,n

ambn|xmn|2 <∞}

equipped with the norm

‖(xmn)m,n‖ =

(∑
m,n

ambn|xmn|2
) 1

2

and the scalar product

((xmn)m,n, (ymn)m,n) =
∑
m,n

ambnxmnymn.

Example 3.2. We exhibit two examples of spaces Lρ(Lr), where ρ and r are card-function
norms such that either Lρ or Lr is not Hilbert and the parallelogram identity is violated.

A. Take ρ(u) = sup
n
u(n) and r(u) =

( ∞∑
n=1

u(n)2

) 1
2

for any u ∈ M+(card). Hence

Lρ = l∞, Lr = l2 and l∞ is ”not good” (is not Hilbert). Also take f : N→ l2,

f(m) = ( 11 ,
1
2 , ...,

1
m , 0, 0, ...)

(f ≡ (xmn)m,n, where xmn =
1

n
, if n ≤ m and xmn = 0, if n > m).

Let also g : N→ l2,
g(m) = (0, 0, ..., 0, 1

m+1 ,
1

m+2 , ...)

(g ≡ (ymn)m,n, where ymn = 0, if n ≤ m and ymn =
1

n
, if n > m).

We have: ‖f + g‖2 + ‖f − g‖2 =
π2

3
, whereas 2(‖f‖2 + ‖g‖2) = 2

π2

3
− 2 6= π2

3
.

B. Take ρ(u) =

( ∞∑
n=1

u(n)2

) 1
2

and r(u) = sup
n
u(n), for any u ∈ M+(card). Hence

Lρ = l2 and Lr = l∞ and, again, l∞ is ”not good”. Also take f : N→ l∞,

f(m) = ( 1
m+1 ,

1
m+2 , ...,

1
2m , 0, 0, ...)

(f ≡ (xmn)m,n, where xmn =
1

m+ n
, if n ≤ m and xmn = 0, if n > m).

Let also g : N→ l∞,
g(m) = (0, 0, ..., 0, 1

2m+1 ,
1

2m+2 , ...)

(g ≡ (ymn)m,n where ymn = 0, if n ≤ m and ymn =
1

m+ n
, if n > m).

We have: ‖f + g‖2 + ‖f − g‖2 =
π2

3
− 2, whereas 2(‖f‖2 + ‖g‖2) = 7π2

12
− 4 6= π2

3
− 2.

4. HILBERTABLE KÖTHE-BOCHNER SPACES

In this paragraph, we shall pass from the isometric level, described in the preceding
paragraph, to the isomorphic level.

Recall that, if X is a Banach space and Y ⊂ X is a closed subspace, we say that Y is
complemented if there exists another closed subspace Z ⊂ X such that X = Y ⊕Z (i.e. any
x ∈ X admits an unique decomposition x = y + z, with y ∈ Y and z ∈ Z).

We shall say that a Banach space X is complementable if any closed subspace Y ⊂ X is
complemented and we shall say thatX is hereditarily complementable if any closed subspace
Y ⊂ X is complementable. The two notions are equivalent.
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Recall that a Banach space (X, ‖ ‖) is called hilbertable if there exists a norm |‖ |‖ on X
which is equivalent to ‖ ‖ and such that (X, |‖ |‖) is a Hilbert space. Because any Hil-
bert space is complementable, it follows that any hilbertable space is complementable. A
remarkable result of J. Lindenstrauss and L. Tzafriri (see [19]) says that, conversely, any
complementable space is hilbertable.

Theorem 4.2. Assume (T, T , µ) is a σ-finite measure space, ρ is a µ-function norm which is
saturated and X is a non null Banach space. Consider the following assertions:

1. The space Lρ(X) is hilbertable.
2. The spaces Lρ and X are hilbertable.
Then 1. ⇒ 2. The implication 2. ⇒ 1. is valid in case Lρ is strongly hilbertable, i.e. there

exists a µ−function norm ρ1 such that the norms of Lρ and Lρ1 are equivalent and Lρ1 is a Köthe
Hilbert space.

Proof. A. We prove 1. ⇒ 2. The proof is based upon the equivalence complementable⇔
hereditarily complementable and the equivalence hilbertable ⇔ complementable (The-
orem of J. Lindenstrauss and L. Tzafriri). Let us accept that Lρ(X) is hilbertable. This
implies that Lρ is Banach, because Lρ(X) is Banach.
a) We prove that Lρ is hilbertable.
To this end, we consider an element x ∈ X with ‖x‖ = 1 and define

Lρx = {ũx | ũ ∈ Lρ}.

Then Lρx is a closed subspace of Lρ(X).
Passing to the very proof, let H ⊂ Lρ be a closed subspace. It generates the closed

subspace Hx ⊂ Lρx, Hx = {ũx | ũ ∈ H} (similar proof). Using the equivalence comple-
mentable⇔ hereditarily complementable and the fact that Lρ(X) is complementable, we
find a closed subspace Y ⊂ Lρx such that Lρx = Hx⊕Y . Clearly Y has the form Y = Gx,
where G ⊂ Lρ is a (vector) subspace. Because Y is closed and the vector subspaces Y and
G are linearly isometric (for y = g̃x ∈ Y, ‖y‖ = ‖g̃‖, first norm in Lρ(X), second norm in
Lρ), it follows that G is closed in Lρ. The equality Lρx = Hx⊕Gx means Lρ = H ⊕G.
b) We prove that X is hilbertable.
Same idea. Let ũ ∈ Lρ with ‖ũ‖ = 1. We define

ũX = {ũx | x ∈ X}.

Then ũX is a closed subspace of Lρ(X).
Now, let Y ⊂ X be a closed subspace. It follows that ũY is a closed subspace of ũX

(similar proof). Again, we find a closed subspace V ⊂ ũX such that ũX = ũY ⊕V . Hence
V has the form ũZ, with Z ⊂ Y , Z(vector) subspace. Being linearly isometric with V , Z is
closed. Clearly, the equality ũX = ũY ⊕ ũZ means X = Y ⊕ Z.
B. We prove 2. ⇒ 1. The proof will be computational. In any case, Lρ(X) is Banach,

because Lρ is Banach, being hilbertable.
Because X is hilbertable, there exists a Hilbert norm ‖ ‖1 on X and 0 < a ≤ b <∞ such

that, for any x ∈ X

a ‖x‖1 ≤ ‖x‖ ≤ b ‖x‖1
where ‖ ‖ is the norm of X . Hence, for any f : T → X , one has

(4.1) a|f |1 ≤ |f | ≤ b|f |1
where, as usual, |f | : T → R+ acts via |f |(t) = ‖f(t)‖ and |f |1 : T → R+ acts via
|f |1(t) = ‖f(t)‖1.
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Because Lρ is strongly hilbertable, there exists a Hilbert function norm ρ1 on (T, T , µ)
and 0 < α ≤ β <∞ such that, for any u ∈M+(µ)

αρ1(u) ≤ ρ(u) ≤ βρ1(u).

Namely, ρ1 is generated by a weight function w : T → R+, via

ρ1(u) =

(∫
u2wdµ

) 1
2

and this implies, for any u ∈M+(µ):

(4.2) α

(∫
u2wdµ

) 1
2

≤ ρ(u) ≤ β
(∫

u2wdµ

) 1
2

On Lρ(X), we have the norm given via f̃ →
∥∥∥f̃∥∥∥ = ρ|f |, f ∈ f̃ . The idea is to consider

the Hilbert norm f̃ →
∥∥∥f̃∥∥∥

1
= ρ1|f |1 (see the construction in the proof of Theorem 3.1)

and to show that ‖ ‖ and ‖ ‖1 are equivalent. Indeed: ρ1|f |1 =

(∫
|f |21wdµ

) 1
2

and, using

(4.1) and (4.2), we get:

α

(∫
a2|f |21wdµ

) 1
2

≤ α
(∫
|f |2wdµ

) 1
2

≤ ρ|f | ≤ β
(∫
|f |2wdµ

) 1
2

≤ β
(∫

b2|f |21wdµ
) 1

2

which means

αaρ1|f |1 ≤ ρ|f | ≤ βbρ1|f |1.

In other words, we have for any f̃ ∈ Lρ

αa
∥∥∥f̃∥∥∥

1
≤
∥∥∥f̃∥∥∥ ≤ βb∥∥∥f̃∥∥∥

1
.

�
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[17] Lin, P.-K., Köthe-Bochner Function Spaces, Springer-Science+Business Media, LLC, 2004
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