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Two open problems in the fixed point theory of contractive
type mappings on quasimetric spaces

MITROFAN M. CHOBAN1 and VASILE BERINDE2

ABSTRACT. Two open problems in the fixed point theory of quasi metric spaces posed in [Berinde, V. and
Choban, M. M., Generalized distances and their associate metrics. Impact on fixed point theory, Creat. Math. Inform.,
22 (2013), No. 1, 23–32] are considered. We give a complete answer to the first problem, a partial answer to the
second one, and also illustrate the complexity and relevance of these problems by means of four very interesting
and comprehensive examples.

1. INTRODUCTION AND PRELIMINARIES

There exist many generalizations of contraction principle in literature, which are esta-
blished in various settings: cone metric spaces, quasimetric spaces (or b-metric spaces),
partial metric spaces, G-metric spaces, w-metric spaces, τ -metric spaces etc. It is really
difficult to delineate the true generalizations of the trivial ones. In some recent papers
[23], [24], [31], the authors tried to differentiate, amongst this rich literature, which results
are true generalizations and which are trivial. They pointed out some such trivial genera-
lizations in the case of cone metric spaces and partial metric spaces, see [23], [24]), while
in [31], the authors studied the same problem but for G-metric spaces.

This problem arose as a natural reaction to the flood of fixed point research papers
published in the last decade.

In a recent paper [12], the present authors inspected whether fixed point results seta-
blished in the case of b-metric spaces (also called quasimetric spaces) are true generalizati-
ons or are trivial, like the ones reported in [23], [24] and [31] and concluded that working
in b-metric spaces makes sense since, if ρ : X ×X → R is a quasimetric, then the associate
functional ρ̄ : X ×X → R generated by ρ and given by

ρ̄(x, y) = inf{ρ(x, z1) + ...+ ρ(zi, zi+1) + . . .

+ ρ(zn, y) : n ∈ N, z1, . . . , zn ∈ X}, (1.1)
is in general not a metric. The paper [12] naturally closes with the following two open
problems.

Problem 1. Let g : X −→ X be a contraction on a complete quasimetric space (X, d). Is it
true that g has fixed points?

Problem 2. Let g : X −→ X be a contraction of a complete F -symmetric space (X, d). Is it
true that g has fixed points?

As, to our best knowledge, Problems 1 and 2 remained open so far, it is our aim in this
paper to give positive answers to them and also to provide some examples illuminating
to some extent the complexity of the problems.
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Throughout the paper, by a space we understand a topological T0-space, and we use
the terminology from [21, 22, 30].

Let X be a non-empty set and d : X ×X → R be a mapping such that:
(im) d(x, y) ≥ 0, for all x, y ∈ X ;
(iim) d(x, y) + d(y, x) = 0 if and only if x = y.
Then (X, d) is called a distance space and d is called a distance on X .
Let d be a distance on X and

B(x, d, r) = {y ∈ X : d(x, y) < r}

be the ball with the center x and radius r > 0. The set U ⊂ X is called d-open if for any
x ∈ U there exists r > 0 such that B(x, d, r) ⊂ U . The family T (d) of all d-open subsets is
the topology on X generated by d. The space (X, T (d)) is a T0-space.

A distance space is a sequential space, i.e., a set B ⊆ X is closed if and only if, together
with any sequence, B contains all its limits (see [21]).

Let (X, d) be a distance space, {xn : n ∈ N = {1, 2, ...}} be a sequence in X and a point
x ∈ X . We say that the sequence {xn : n ∈ N} is:

1) convergent to x if and only if limn→∞ d(x, xn) = 0. We denote this by xn → x or
x = limn→∞ xn.

2) Cauchy or fundamental if limn,m→∞ d(xn, xm) = 0.
We say that a distance space (X, d) is complete if every Cauchy sequence inX converges

to some point in X . If d is a distance on X such that:
(iiim) d(x, y) = d(y, x), for all x, y ∈ X ,

then (X, d) is called a symmetric space and d is called a symmetric on X . If d is a distance on
X such that:

(ivm) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X ,
then (X, d) is called a quasimetric space and d is called a quasimetric on X .

A distance d on a set X is called a metric if it is simultaneously a symmetric and a
quasimetric.

Let X be a non-empty set and d(x, y) be a distance on X with the following property:
(N) for each point x ∈ X and any ε > 0 there exists δ = δ(x, ε) > 0 such that from

d(x, y) ≤ δ and d(y, z) ≤ δ it follows d(x, z) ≤ ε.
Then (X, d) is called an N-distance space and d is called an N-distance on X . If d is a

symmetric, then we say that d is an N -symmetric.
If d satisfies the condition
(F) for any ε > 0 there exists δ = δ(ε) > 0 such that from d(x, y) ≤ δ and d(y, z) ≤ δ it

follows d(x, z) ≤ ε,
then d is called an F-distance or a Fréchet distance and (X, d) is called an F-distance space.
Obviously, any F -distance d is an N -distance, too, but the reverse is not true, in general,
see Examples 1.1 and 1.2 in [18].

A distance space (X, d) is called an H-distance space if for any two distinct points x, y ∈
X there exists δ = δ(x, y) > 0 such that

d(x, z) + d(y, z) ≥ δ

for each point z ∈ X , i.e.,

B(x, d, δ) ∩B(y, d, δ) = ∅.

Any N -symmetric d is an H-distance, too. A space (X, d) is a H-distance space if and
only if any convergent sequence has a unique limit point (see [25], Theorem 3).
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2. CONDITIONS ENSURING THE EXISTENCE OF FIXED POINTS

Consider the mapping ϕ : X −→ X and let ϕ1 = ϕ and ϕn+1 = ϕ ◦ ϕn for each n ∈ N =
{1, 2, ...}. Denote by Fix (ϕ) the set of fixed points of ϕ. If x ∈ X , then we put x0 = x and
xn = ϕn(x), for every n ∈ N. The set O(x, ϕ) = {xn : n ∈ N} is commonly called the Picard
orbit of ϕ at the point x.

A mapping ϕ : X → X is called:
(i) Lipschitzian or λ-Lipschitzian if there exists λ > 0 such that

d(ϕ(x), ϕ(y)) ≤ λ · d(x, y), for all x, y ∈ X; (2.2)

(ii) contraction or λ-contraction if it is λ-Lipschitzian with 0 ≤ λ < 1;
(iii) nonexpansive if it is λ-Lipschitzian with λ = 1.

Proposition 2.1. Let (X, d) be a H-distance space, ϕ : X −→ X be a λ-Lipschitzian or a
continuous mapping. Suppose that, for some point x0 ∈ X , the Picard sequence O(x0, ϕ) is
convergent.

Then the mapping ϕ is continuous and Fix (ϕ) 6= ∅.

Proof. Assume that the mappingϕ is λ-Lipschitzian. Sinceϕ(B(x, d, (1+λ)−1r)⊆B(ϕ(x), d, r)
for any point x ∈ X and any number r > 0, the mapping ϕ is continuous.

Let {xn = ϕn(x) ∈ X : n ∈ N} be the Picard sequence of ϕ at the given point x0 ∈
X , which, by hypothesis, converges to a point a ∈ X . Then, since the mapping ϕ is
continuous and limn→∞ d(a, xn) = 0, we have

lim
n→∞

d(ϕ(a), ϕ(xn)) = lim
n→∞

d(ϕ(a), xn) = 0

and
lim
n→∞

xn = ϕ(a).

Hence ϕ(a) = a. �

Theorem 2.2. Let d be simultaneously an N -distance and an H-distance on a space X and let
ϕ : X −→ X be a mapping with the following properties:

(i) ϕ is continuous or λ-Lipschitzian;
(ii) for some point e ∈ X , O(e, ϕ) = {en = ϕn(e) : n ∈ N} has an accumulation point and

limn→∞ d(en, en+1) = 0.
Then:
1. Fix (ϕ) 6= ∅ and any accumulation point of the orbit O(e, ϕ) is a fixed pout of ϕ.
2. The orbit O(e, ϕ) has not periodic points.
3. If limn→∞ d(gn(y), gn+1(y)) = 0, for each point y ∈ X , then any periodic point of the

mapping ϕ is a fixed point of ϕ.
4. The space (X, T (d)) is first-countable and Hausdorff.

Proof. From Proposition 2.1, it follows that ϕ is continuous. Fix r > 0 and a ∈ X . There
exists δ > 0 such that from d(a, x) ≤ δ and d(x, y) ≤ δ it follows that d(a, y) < r. Hence
d(x, y) > r provided d(a, x) ≤ δ and y 6∈ B(x, d, r). From Theorem 4 in [25] it follows that
(X, T (d)) is a first-countable space. So, a ∈ clXB if and only if

d(a,B) = inf{d(a, x) : x ∈ B} = 0.

A first-countable space with an H-distance is Hausdorff and hence d(x, y) = 0 if and only
if x = y.

Fix x ∈ X . Let O(x, ϕ) = {xn = ϕn(x) : n ∈ N} be the Picard orbit of ϕ at the point x.
Suppose that limn→∞ d(xn, xn+1) = 0. Assume that xk = xk+m for some k,m ∈ N and
m ≥ 1. We have

xk = xk+nm 6= xk+nm+1 = xk+1,
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which contradicts the condition

lim
n→∞

d(xn, xn+1) = 0.

Hence the mapping ϕ has no periodic non-fixed points in the condition that

lim
n→∞

d(gn(y), gn+1(y)) = 0, for each pointy ∈ X.

In particular, the Picard orbit of ϕ at the point e has no periodic non-fixed points.
If b ∈ X and b = en = en+1 for some n ∈ N, then b is a fixed point of the mapping ϕ and

O(x, ϕ) is a Cauchy sequence with the accumulation point b. In this case the assertions of
theorem are proved.

Assume now that en 6= en+m, for any n,m ∈ N. In this case the set O(e, ϕ) is infinite
and non-closed in the sequential space (X, T (d)). Then there exist a point b ∈ X and
a sequence {nk ∈ N : k ∈ N} such that b = limk→∞ enk

, nk < nk+1 and d(b, enk+1
) <

d(b, enk
) < 2−k for each k ∈ N.

For each ε > 0 there exists δ = δ(b, ε) > 0 such that from d(b, y) ≤ δ and d(y, z) ≤ δ it
follows d(b, z) ≤ ε. We assume that 2δ < ε. We put c = ϕ(b), yk = enk

and zk = ϕ(yk).
Then b = limk→∞ yk and, since the mapping ϕ is continuous, c = limk→∞ zk.

We claim that b = limk→∞ zk. Fix ε > 0. There exists δ > 0 such that:
a) d(b, y) < δ and d(y, z) < δ implies d(b, z) < ε;
b) d(c, y) < δ and d(y, z) < δ implies d(c, z) < ε.
Fix n1 ∈ N such that 2−n1 < δ. Since limn→∞ d(xn, xn+1) = 0, there exists m ∈ N such

that m ≥ n1 and d(en, en+1) < δ for each n ≥ m. Then from k ≥ m we have d(b, yk) < δ,
d(yk, zk) < δ and hence d(b, zk) < ε. Therefore, b = limk→∞ zk.

So, b = c and ϕ(b) = b. �

Theorem 2.3. Let d be simultaneously an N -distance and an H-distance on a space X and ϕ :
X −→ X be a contraction with the property that there exists a point a ∈ X such that O(a, ϕ) =
{an = ϕn(x) : n ∈ N} has an accumulation point.

Then:
1. The mapping ϕ is continuous and has a unique fixed point.
2. Any periodic point of the mapping ϕ is a fixed point of ϕ.
3. Any Picard orbit is convergent to the fixed point.

Proof. Fix r > 0 and a ∈ X . There exists δ > 0 such that from d(a, x) ≤ δ and d(x, y) ≤ δ it
follows that d(a, y) < r. Hence d(x, y) > r provided d(a, x) ≤ δ and y 6∈ B(x, d, r). From
Theorem 4 in [25] it follows that (X, T (d)) is a first-countable space. Hence a ∈ clXB
if and only if d(a,B) = inf{d(a, x) : x ∈ B} = 0. But a first-countable space with an
H-distance is Hausdorff. This means that d(x, y) = 0 if and only if x = y.

From Theorem 2.2 it follows that: a) the mapping ϕ is continuous; b) ϕ has not two
distinct fixed points; c) any periodic point of ϕ is a fixed point.

Fix x, y ∈ X . Let O(x, ϕ) = {xn = ϕn(x) : n ∈ N} and O(y, ϕ) = {yn = ϕn(y) : n ∈ N}
be the Picard orbits of ϕ at the points x and y. Fix a number µ > 0 such that

d(x1, x2) + d(x2, x1) + d(y1, y2) + d(y2, 11) + d(x1, y1) + d(y1, x1) < µ.

Then
d(xn, xn+1) < λn · µ

and
lim
n→∞

d(xn, xn+1) = 0.

From the inequality d(xn, yn) + d(yn, xn) < λn ·µ it follows that the sequencesO(x, ϕ) and
O(y, ϕ) are the same accumulation points. Hence, any Picard orbit of ϕ has accumulation
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points. On the other hand, by Theorem 2.2, any accumulation point of a Picard orbit of ϕ
is a fixed point of ϕ. Thus the Picard orbits have a unique accumulation point b = ϕ(b).
Let η > d(b, x1) + d(x1, b).

Then d(b, xn) + d(xn, b) < λn · η and hence limn→∞ xn = b. �

Corollary 2.4. Let d be simultaneously a quasimetric and an H-distance on a space X and ϕ :
X −→ X be a mapping with properties:
(i) ϕ is continuous or λ-Lipschitzian;
(ii) for some point e ∈ X , the Picard orbit O(e, ϕ) = {en = ϕn(e) : n ∈ N} has an accumulation
point and limn→∞ d(en, en+1) = 0.

Then:
1. Fix (ϕ) 6= ∅ and any accumulation point of the orbit O(e, ϕ) is a fixed point of ϕ.
2. The orbit O(e, ϕ) has no periodic points.
3. If limn→∞d(ϕn(y), ϕn+1(y)) = 0, for each point y ∈ X , then any periodic point of the

mapping ϕ is a fixed point of ϕ.
4. The space (X, T (d)) is first-countable and Hausdorff.

Corollary 2.5. Let d be simultaneously a complete quasimetric and an H-distance on a space X
and ϕ : X −→ X be a mapping with the properties:
(i) ϕ is continuous or λ-Lipschitzian;
(ii) for each point x ∈ X and the Picard orbit O(x, ϕ) = {xn = ϕn(x) : n ∈ N} there exists a
non-negative number µ(x) < 1 such that d(ϕ(xn), ϕ(xm)) ≤ µ(x) · d(xn, xm) for all n,m ∈ N.

Then:
1. Fix (ϕ) 6= ∅.
2. Any periodic point of the mapping ϕ is a fixed point of ϕ.
3. Any Picard orbit is a Cauchy convergent sequence to some fixed point of ϕ.
4. The space (X, T (d)) is first-countable and Hausdorff.

Theorem 2.6. Let d be simultaneously a complete distance and an H-distance on a space X and
ϕ : X −→ X be a contraction with the property that there exist two numbers δ > 0 and a ≥ 1
such that from d(x, y) ≤ δ and d(y, z) ≤ δ it follows that d(x, z) ≤ a[d(x, y) + d(y, z)].

Then:
1. The mapping ϕ is continuous and has a unique fixed point.
2. Any periodic point of the mapping ϕ is a fixed point of ϕ.
3. Any Picard orbit is a Cauchy sequence convergent to the fixed point of ϕ.

Proof. As in the proof of Theorem 4.2 from [18], we first prove that any Picard orbit is a
Cauchy sequence. Hence any Picard orbit is a Cauchy sequence convergent to some point.
Now, Theorem 2.3 completes the proof. �

3. EXAMPLES

The first two examples in this section show that the requirement that d is anH-distance
on X in Theorem 2.2, Theorem 2.3, Theorem 2.6 and in Corollaries 2.4 and 2.4 is essential.

Example 3.1. Let X = {a, b} ∪ N be a countable set with distinct elements. Consider the
distance d : X ×X → R+, defined by:
(i) d(x, x) = 0, for any x ∈ X ;
(ii) d(m,n) = d(n,m) = |2−n − 2−m|, for all n,m ∈ N ⊆ X ;
(iii) d(a, n) = d(b, n) = 2−n, for each n ∈ N;
(iv) d(n, a) = d(n, b) = d(a, b) = 1, for each n ∈ N.

Then (X, d) is a quasimetric space but d is not an H-distance, because for x = a, y = b
there is no δ = δ(x, y) > 0 such that d(x, n)+ d(y, n) = 2−n+1 ≥ δ, for all n ∈ N.
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Moreover, if we consider the mapping ϕ : X −→ X defined by: ϕ(a) = b 6= ϕ(b) = a
and ϕ(n) = n + 1, for each n ∈ N, then any Picard orbit O(n, ϕ) is a Cauchy convergent
sequence, for each n ∈ N, but ϕ is fixed point free.

Example 3.2. Let X = ω := {0, 1, 2, ...}. On X consider the distance d : X × X → R+,
defined by:
(i) d(x, x) = 0, for every x ∈ X ;
(i) if n,m ∈ X and n 6= m), then d(n,m) = 2−m.

Consider the mapping g : X −→ X , where g(n) = n + 1, for every n ∈ X . Obviously,
Fix (g) = {x ∈ X : g(x) = x} = ∅.

Let O(x, g) = {xn : n ∈ N} be the Picard orbit of g at the point x, i.e., x0 = x and xn =
gn(x), for every n ∈ N.

Property 1. If n ∈ X , then O(n, g) = {m ∈ X : m ≥ n} is a Cauchy sequence and
limk→∞ gk(n) =m for each m ∈ X .

Proof. By construction, limk→∞ d(m, gk(n)) = limk→∞ 2−k−n = 0. �

Property 2. (X, d) is a quasimetric space.

Proof. If n,m, k ∈ X , then d(n,m) + d(m, k) = 2−m + 2−k > 2−k = d(n, k). Hence d is a
quasimetric. �

Property 3. (X, d) is a complete quasimetric space.

Proof. Let {xn : n ∈ ω} be a sequence.
Case 1. There exists m ∈ ω such that xn = xm for each n ≥ m.
In this case limn→∞ xn = xm and {xn : n ∈ ω} is a Cauchy convergent sequence.
Case 2. There exist two distinct numbers m, k ∈ ω such that for each n ∈ ω there exist

m(n), k(n) ≥ n for which xm 6= xk, xm(n) = xm and xk(n) = xk.
In this case {xn : n ∈ ω} is not a Cauchy sequence and is not a convergent sequence.
Case 3. There exists a number m ∈ ω such that:
- for each n ∈ ω there exists m(n) ≥ n for which xm(n) = xm;
- if k ∈ ω and k 6= m, then the set {n ∈ ω : xn = xk} is finite.
In this case limn→∞ xn = xm and {xn : n ∈ ω} is a Cauchy convergent sequence.
Case 4. For each m ∈ ω the set {n ∈ ω : xn = xm} is finite.
In this case limn→∞ xn = xm for each m ∈ ω and {xn : n ∈ ω} is a Cauchy convergent

sequence.
�

Property 4. d(g(x), g(y)) = 2−1 · d(x, y), for all x, y ∈ X .
Property 5. (X, T (d)) is a compact T1-space and T (d) = {∅} ∪ {X \ F : F is a finite set}.

Example 3.3. Let X = N ∪ {µ, ν} and µ, ν 6∈ N. In N consider a sequence {in : n ∈ N} and
a sequence {kn : n ∈ N} such that

a) 1 = i1 and in < kn < in+1, for each n ∈ N;
b) Σ{m−1 : m ∈ N, in ≤ m < kn − 1} < 1, Σ{m−1 : m ∈ N, kn + 1 < m ≤ in+1} < 1,

Σ{m−1 : m ∈ N, in ≤ m < kn} ≥ 1, Σ{m−1 : m ∈ N, kn < m ≤ in+1} ≥ 1 for each n ∈ N.
Consider on N the function f(n) = Σ{m−1 : m ∈ N,m ≤ n}. The set In = {m ∈ N : in ≤

m ≤ in+1} is called an interval of integers. If m ∈ In, then:
i) m is in the first part of the interval In if m < kn;
ii) m is in the second part of the interval In if m > kn;
iii) kn is in the middle part of the interval In.
Now we construct on X the distance d with the conditions:
(C1) d(x, x) = 0, for each x ∈ X ;
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(C2) d(µ, ν) = d(ν, µ) = d(n, µ) = d(n, ν) = 1 and d(n,m) = min{1, |f(n)− f(m)|}, for all
n,m ∈ N;

(C3) d(µ,m) = min{1,Σ{i−1 : i ∈ In, in ≤ i ≤ m}} and d(ν,m) = min{1,Σ{i−1 : i ∈
In,m < i ≤ kn} if m is in the first part of In;

(C4) d(µ,m) = {1,Σ{i−1 : i ∈ In,m < i ≤ in+1}} and d(ν,m) = min{1,Σ{i−1 : i ∈
In, kn ≤ i ≤ m} if m is in the second part of In

(C5) d(µ, kn) = 1 and d(ν, kn) = k−1n .
By construction, 0 ≤ d(x, y) ≤ 1, for all x, y ∈ X .
We put ϕ(µ) = µ, ϕ(ν) = ν and ϕ(n) = n + 1 for each n ∈ N. By construction, Fix(ϕ) =

{µ, ν}.
Property 1. (X, d) is a complete distance space.

Proof. The space (X, d) has not non-trivial Cauchy sequences, i.e., if {xn ∈ X : n ∈ N}
is a Cauchy sequence, then there exists m ∈ N such that xm = xn, for all n ≥ m and
limn→∞ xn = xm. �

Property 2. (X, d) is a quasimetric space.

Proof. Fix three distinct points x, y, z ∈ X . We discuss the following cases.
Case 1. x, y, z ∈ N.
On N the distance d is a metric. Hence d(x, z) ≤ d(x, y) + d(y, z).
Case 2. {x, y} = {µ, ν} and z ∈ N.
In this case d(x, z) ≤ 1 = d(x, y) < d(x, y) + d(y, z).
Case 3. {x, z} = {µ, ν} and y ∈ N.
In this case d(x, z) ≤ 1 = d(y, z) < d(x, y) + d(y, z).
Case 4. {y, z} = {µ, ν} and x ∈ N.
In this case d(x, z) = 1 = d(x, y) < d(x, y) + d(y, z).
Case 5. z ∈ {µ, ν}, x, y ∈ N.
In this case d(x, z) = d(y, z) = 1 and d(x, z) < d(x, y) + d(y, z).
Case 6. y ∈ {µ, ν} and x, z ∈ N.
In this case d(x, z) ≤ 1, d(x, y) = 1 and d(x, z) < d(x, y) + d(y, z).
Case 7. x ∈ {µ, ν}, n ∈ N and in ≤ z < y ≤ kn.
If x = µ, then d(x, z) ≤ d(x, y) and d(x, y) + d(y, z) ≥ d(x, z).
If x = ν and y < kn, then d(x, z) = min{1,Σ{i−1 : i ∈ In, z < i ≤ kn}} and d(x, y) +

d(y, z) = min{1,Σ{i−1 : i ∈ In, y < i ≤ kn}} + min{1,Σ{i−1 : i ∈ In, z < i ≤ y}} ≥ d(x, z).
If x = ν and y = kn, then d(x, z) = min{1,Σ{i−1 : i ∈ In, z < i ≤ kn}} and d(x, y) +

d(y, z) = k−1n + min{1,Σ{i−1 : i ∈ In, z < i ≤ y}} = k−1n + d(x, z) > d(x, z).
Case 8. x ∈ {µ, ν}, n ∈ N and in ≤ y < z ≤ kn.
If x = µ, then d(x, z) = min{1,Σ{i−1 : i ∈ In, in ≤ i ≤ z}} and d(x, y) + d(y, z) =

min{1,Σ{i−1 : i ∈ In, in ≤ i ≤ y}} + min{1,Σ{i−1 : i ∈ In, y < i ≤ z}} ≥ d(x, z).
If x = ν, then d(x, z) ≤ d(x, y) and d(x, y) + d(y, z) ≥ d(x, z).
Case 9. x ∈ {µ, ν}, n ∈ N and kn ≤ y < z ≤ in+1.
If x = µ, then d(x, z) ≤ d(x, y) and d(x, y) + d(y, z) ≥ d(x, z).
If x = ν, then d(x, z) = min{1,Σ{i−1 : i ∈ In, kn ≤ i ≥ z}}} and d(x, y) + d(y, z) =

min{1,Σ{i−1 : i ∈ In, kn ≤ i ≥ y}} + min{1,Σ{i−1 : i ∈ In, y < i ≤ z}} = d(x, z).
Case 10. x ∈ {µ, ν}, n ∈ N and kn ≤ z < y ≤ in+1.
If x = µ and y < in+1, then d(x, z) = min{1,Σ{i−1 : i ∈ In, z < i ≤ kn+1}} and d(x, y)

+ d(y, z) = min{1,Σ{i−1 : i ∈ In, y < i ≤ kn+1}} + min{1,Σ{i−1 : i ∈ In, z < i ≤ y}} ≥
d(x, z).
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If x = µ and z = in+1, then d(x, z) = min{1,Σ{i−1 : i ∈ In, z < i ≤ kn+1}} and d(x, y)
+ d(y, z) = min{1,Σ{i−1 : i ∈ In, y < i ≤ kn+1}} + min{1,Σ{i−1 : i ∈ In, z < i ≤ y}} ≥
d(x, z).

If x = ν, then d(x, z) ≤ d(x, y) and d(x, y) + d(y, z) ≥ d(x, z).
Case 11. x ∈ {µ, ν}, n ∈ N and in ≤ y < kn < z ≥ in+1.
If x = µ, then d(x, y) = min{1,Σ{i−1 : i ∈ In, in ≤ i ≤ y}}, d(y, z) = min{1,Σ{i−1 : i ∈

In, y < i ≤ z}} and d(x, y) + d(y, z) ≥ 1. Hence d(x, y) + d(y, z) ≥ d(x, z).
If x = ν, then d(x, z) ≤ d(y, z) and d(x, y) + d(y, z) ≥ d(x, z).
Case 12. x ∈ {µ, ν}, n ∈ N and in ≤ z < kny ≥ in+1.
If x = µ, then d(x, y) = min{1,Σ{i−1 : i ∈ In, y ≤ i ≤ in+1}}, d(y, z) = min{1,Σ{i−1 :

i ∈ In, z < i ≤ y}} and d(x, y) + d(y, z) ≥ 1. Hence d(x, y) + d(y, z) ≥ d(x, z).
If x = ν, then d(x, z) ≤ d(y, z) and d(x, y) + d(y, z) ≥ d(x, z).
Case 13. x ∈ {µ, ν}, n ∈ N and kn < y < in+1 < z ≥ kn+1.
If x = µ, then d(x, z) = min{1,Σ{i−1 : i ∈ In+1, in+1 ≤ i ≤ z}} ≤ min{1,Σ{i−1 : i ∈

N, y ≤ i ≤ z}}} = d(y, z). Hence d(x, y) + d(y, z) ≥ d(x, z).
If x = ν, then d(x, y) = min{1,Σ{i−1 : i ∈ In+1, z < i ≤ kn+1}}, d(y, z) = min{1,Σ{i−1 :

i ∈ N, y < i ≤ z}}}. Hence d(x, y) + d(y, z) ≥ 1 and d(x, y) + d(y, z) ≥ d(x, z).
Case 14. x ∈ {µ, ν}, n ∈ N and kn < z < in+1 < y ≥ kn+1.
If x = µ, then d(x, z) = min{1,Σ{i−1 : i ∈ In, z < i ≤ in+1}} ≤ min{1,Σ{i−1 : i ∈ N, z ≤

i ≤ y}}} = d(y, z). Hence d(x, y) + d(y, z) ≥ d(x, z).
If x = ν, then d(x, y) = min{1,Σ{i−1 : i ∈ In+1, y < i ≤ kn+1}}, d(y, z) = min{1,Σ{i−1 :

i ∈ N, z < i ≤ y}}}. Hence d(x, y) + d(y, z) ≥ 1 and d(x, y) + d(y, z) ≥ d(x, z).
Case 15. x ∈ {µ, ν}, n ∈ N and in ≤ y ≤ kn < in+1 < z ≥ kn+1 or in ≤ z ≤ kn < in+1 <

y ≥ kn+1.
In this case d(y, z) = 1 and d(x, y) + d(y, z) ≥ d(x, z).
There are no other possible cases. �

Property 3. The mapping ϕ is continuous, d(ϕ(x), ϕ(y)) ≤ 2 · d(x, y) for all x, y ∈ X and
d(ϕ(x), ϕ(y)) < d(x, y) for all distinct points x, y ∈ N.

Proof. If x ∈ {µ, ν} and n ∈ N, then |d(ϕ(x), ϕ(n)) − d(x, n)| = |d(x, n + 1) − d(x, n)| ≤
n−1. �

Property 4. If x ∈ X , then limn→∞ d(ϕn(x), ϕn+1(x)) = 0.
Property 5. The space (X, T (d)) is complete metrizable.

Proof. If x ∈ N, then Nnx = {x} for each n ∈ N. If x ∈ {µ, ν} and n ∈ N, then

Onx = {y ∈ X : d(x, y) < 2−n−2}.

Therefore B = {Onx : x ∈ X,n ∈ N} is a base of open-and-closed subsets of the space
(X, T (d)). The proof is complete. �

Property 6. There exists a closed discrete sequence {xn ∈ N : n ∈ N} of the space (X, T (d))
such that xn < xn+1 for each n ∈ N.

Proof. For each n ∈ N fix xn ∈ In+2 such that Σ{i−1 : 1/4 ≤ in+2 ≤ i ≤ x < 3/4}.
�

Property 7. For each n ∈ N the points µ, ν are points of accumulation of the Picard orbit
O(x, ϕ).

Property 8. The orbit O(1, ϕ) = n ∈ N is not convergent in (X, d).
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Example 3.4. Let ω = {0, 1, 2, ...} and ω be the first infinite ordinal number, Ω be be the
first uncountable ordinal number. For any ordinal number α there exist a unique limit
ordinal number l(α) and a unique integer i(α) ∈ ω such that l(α) ≤ α and α = l(α) + i(α).
If l(α) = α, then α is a limit ordinal. Let

l′(α) = min{β ∈ X : α < β, β = l(β)}.
Denote by X = {α : α < Ω} the set of all countable ordinal numbers.
Consider the mapping g : X −→ X , where g(α) = α+ 1, for every α ∈ X .
By construction, Fix(g) = {α ∈ X : g(α) = α} = ∅ and l(g(α)) = l(α), i(g(α)) = i(α) + 1

for every α ∈ X . Let g1 = g and gn+1 = g ◦ gn for each n ∈ N = {1, 2, ...}. If x ∈ X , then x0
= x and xn = gn(x) for every n ∈ N. The set O(x, g) = {xn : n ∈ N} is the Picard orbit of
the point x. If α, β ∈ X , α < β and l(β) = l(α), then β ∈ O(α, g).

On X consider the distance d with the conditions:
- d(α, α) = 0 for every α ∈ X ;
- if α, β ∈ X and l(β) = l(α), then d(α, β) = |2−i(α) − 2−i(β)|;
- if α, β ∈ X and l(β) < l(α), then d(α, β) = 2−i(β) and d(β, α) = 1 + 2−i(α).
Property 1. If α ∈ X , then:
- d is a metric on the orbit O(α, g) and d(g(x), g(y)) = 2−1d(x, y) for all x, y ∈ O(α, g);
- the orbit O(α, g) = {αn = gn(α) : n ∈ N} is a fundamental sequence in (X, d);
- if β > α and l(β) ≥ l′(α) > α ≥ l(α), then β is a limit point of the sequence {αn : n ∈ N};
- if l(β) = l(α) , then β is not a limit point of the sequence {αn : n ∈ N}.
Property 2. Assume that {αn ∈ X : n ∈ N} is a convergent sequence in (X, d) and α =

min{β : β = limn→∞αn}, α̌ = sup{l(αn) : n ∈ N}, ~α = sup{l′(αn) : n ∈ N}.
1. In X(ω) = ω ∪ {ω} there exists the limit b = limn→∞ i(αn).
2. If α̌ < ~α, then {αn : n ∈ N} \O(α̌, g) is a finite set α ∈ O(α̌, g) and b < ω.
3. If α̌ = ~α, then α = ~α and b = ω.
Property 3. (X, d) is a complete quasimetric space.
Proof. Completeness follows from the above properties.
Fix α, β, γ ∈ X .
Case 1. l(α) = l(β) = l(γ).
In this case α, β, γ ∈ O(l(α), g) and d(γ, α) = d(α, γ) ≤ d(α, β) + d(β, γ).
Case 2. l(α) = l(β) < l(γ).
In this case d(α, γ) = 1 + 2−i(γ) < d(α, β) + 1 + 2−i(γ) = d(α, β) + d(β, γ).
Case 3. l(γ) < l(α) = l(β).
In this case d(α, γ) = d(β, γ) = 2−i(γ) and d(α, γ) ≤ d(α, β) + d(β, γ).
Case 4. l(α) = l(γ) < l(β).
In this case d(α, γ) ≤ 1 < 1 + 2−i(β) = d(α, β) ≤ d(α, β) + d(β, γ).
Case 5. l(β) < l(α) = l(γ).
In this case d(α, γ) = |2−i(α) − 2−i(γ)| < 1 < d(β, γ) < d(α, β) + d(β, γ).
Case 6. l(α) < l(β) = l(γ).
In this case d(α, γ) = 1 + 2−i(γ) ≤ 1 + 2−i(β) + |2−i(β) − 2−i(γ)| = d(α, β) + d(β, γ).
Case 7. l(β) = l(γ) < l(α).
In this case d(α, β) = 2−i(β), d(α, γ) = 2−l(γ) and d(α, β) + d(β, γ) = 2−l(β) +
|2−l(β) − 2−l(γ)| ≥ 2−l(γ) = d(α, γ).
Case 8. l(α) < l(β) < l(γ).
In this case d(α, γ) = 1 + 2−i(γ) < d(α, β) + 1 + 2−i(γ) = d(α, β) + d(β, γ).
Case 9. l(α) < l(γ) < l(β).
In this case d(α, γ) = 1 + 2−i(γ) < 1 + 2−i(β) + 2−i(γ) = d(α, β) + d(β, γ).
Case 10. l(β) < l(α) < l(γ).
In this case d(α, γ) = 1 + 2−i(γ) < d(α, β) + 1 + 2−i(γ) = d(α, β) + d(β, γ).
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Case 11. l(β) < l(γ) < l(α).
In this case d(α, γ) ≤ 1 < d(α, β) + 1 + 2−i(γ) = d(α, β) + d(β, γ).
Case 12. l(γ) < l(α) < l(β).
In this case d(α, γ) = d(β, γ) = 2−i(γ) and d(α, γ) ≤ d(α, β) + d(β, γ).
Case 13. l(γ) < l(α) < l(β).
In this case d(α, γ) = d(β, γ) < d(α, β) + d(β, γ).
The proof is complete.
Property 4. d(g(x), g(y)) < d(x, y), for all x, y ∈ X , x 6= y.
Property 5. If n ∈ ω, then Xn = {α ∈ X : i(α) ≤ n} is a closed discrete metrizable subspace

of the space X . Moreover, d(x, y) ≥ 2−n for all distinct points x, y ∈ Xn and the set X \Xn is
open and dense in X .

4. FIXED POINTS AND DISLOCATED COMPLETENESS OF DISTANCE SPACES

Let (X, d) be a distance space. We denote by ds(x, y) = d(x, y) + d(y, x), the symme-
tric associated to the distance d. The spaces (X, d) and (X, ds) share the same Cauchy
sequences. If d is a quasimetric, then ds is a metric.

Some authors, instead of the conditions of uniqueness of the limit of the Cauchy se-
quence introduced the concept of a stronger limit, i.e., the concept of a dislocated conver-
gence of the sequence (see [1, 20, 32, 35]). It is easy to see that dislocated convergence is
implicitly a variant of the symmetry of the distance.

A sequence {xn ∈ X : n ∈ N} is said to be dislocated convergent to x ∈ X if

lim
n→∞

(d(xn, x) + d(x, xn)) = 0

and we denote this by s-limn→∞ xn = x.
The distance space (X, d) is dislocated complete if any Cauchy sequence of X is dislo-

cated convergent in (X, d).
The distance spaces from Examples 3.1 and 3.2 are complete non-dislocated complete.
The space (X, d) is dislocated complete if and only if the space (X, ds) is complete. A

symmetric space is dislocated complete if and only if it is complete.

Lemma 4.1. Let d be an N -distance on a space X . If {xn ∈ X : n ∈ N} is dislocated convergent
sequence, then it is dislocated convergent to a unique point.

Proof. Assume that s-limn→∞ xn = x and s-limn→∞ xn = y. Suppose that d(x, y) = 4ε > 0.
There exists a number δ such that:

- if d(x, u) ≤ δ and d(u, v) ≤ δ, then d(x, v) ≤ ε;
- if d(y, u) ≤ δ and d(u, v) ≤ δ, then d(y, v) ≤ ε.
Since limn→∞(d(xn, x) + d(x, xn)) = 0 and limn→∞(d(xn, y) + d(y, xn)) = 0, there exists

m ∈ N such that d(xn, x) + d(x, xn)) < δ and d(xn, y) + d(y, xn)) < δ, for each n ≥ m.
Hence d(x, xm) ≤ δ, d(xm, y) < δ and d(x, y) > ε, a contradiction. Therefore d(x, y) =
d(y, x) = 0 and x = y. �

In view of Lemma 4.1, most of the problems on fixed points in dislocated complete
quasimetric spaces could be reduced to the case of complete metric spaces.

For example, if g : X −→ X is a contraction on a dislocated complete quasimetric space
(X, d), i.e., there exists 0 ≤ λ < 1, such that

d(g(x), g(y)) ≤ λ · d(x, y), for all x, y ∈ X,

then (X, ds) is a complete metric space and

ds(g(x), g(y)) ≤ λ · ds(x, y), for all x, y ∈ X.
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Hence, see also our results in Section 2, by classical contraction principle, g has a unique
fixed point and every Picard orbit is a Cauchy sequence which is dislocated convergent to
the fixed point of g.
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