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Existence and nonexistence of positive solutions to a
discrete boundary value problem

JOHNNY HENDERSON1, RODICA LUCA2 and ALEXANDRU TUDORACHE3

ABSTRACT. We study the existence and nonexistence of positive solutions for a system of nonlinear second-
order difference equations subject to coupled multi-point boundary conditions which contain some positive
constants.

1. INTRODUCTION

The mathematical modeling of many nonlinear problems from computer science, eco-
nomics, mechanical engineering, control systems, biological neural networks and others
leads to the consideration of nonlinear difference equations (see [11], [12]). In the last de-
cades, many authors have investigated such problems by using various methods, such as
fixed point theorems, the critical point theory, upper and lower solutions, the fixed point
index theory and the topological degree theory (see for example [1], [2], [3], [4], [5], [7],
[10], [13], [14], [15]).

In this paper, we consider the system of nonlinear second-order difference equations

(S)

{
∆2un−1 + snf(vn) = 0, n = 1, N − 1,
∆2vn−1 + tng(un) = 0, n = 1, N − 1,

with the coupled multi-point boundary conditions

(BC) u0 = 0, uN =

p∑
i=1

aivξi + a0, v0 = 0, vN =

q∑
i=1

biuηi + b0,

where N ∈ N, N ≥ 2, p, q ∈ N, ∆ is the forward difference operator with stepsize 1,
∆un = un+1 − un, ∆2un−1 = un+1 − 2un + un−1, n = k,m means that n = k, k+ 1, . . . ,m
for k, m ∈ N, ai ∈ R, ξi ∈ N for all i = 1, p, bi ∈ R, ηi ∈ N for all i = 1, q, 1 ≤ ξ1 < · · · <
ξp ≤ N − 1, 1 ≤ η1 < · · · < ηq ≤ N − 1, a0 and b0 are positive constants.

Under some assumptions on the functions f and g, we shall prove the existence of
positive solutions of problem (S) − (BC). By a positive solution of (S) − (BC) we mean
a pair of sequences ((un)n=0,N , (vn)n=0,N ) satisfying (S) and (BC) with un > 0, vn > 0

for all n = 1, N . We shall also give sufficient conditions for the nonexistence of positive
solutions for this problem. The system (S) with the uncoupled multi-point boundary
conditions

(BC1) u0 =

p∑
i=1

aiuξi + a0, uN =

q∑
i=1

biuηi , v0 =

r∑
i=1

civζi , vN =

l∑
i=1

divρi + b0,

(a0, b0 > 0) has been investigated in [6]. Some systems of difference equations with pa-
rameters subject to multi-point boundary conditions were studied in [7] and [8] by using
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the Guo-Krasnosel’skii fixed point theorem. We also mention the paper [9], where we
investigated the existence and multiplicity of positive solutions for the system ∆2un−1 +

f(n, vn) = 0, ∆2vn−1 + g(n, un) = 0, n = 1, N − 1, with the multi-point boundary conditi-
ons (BC1) with a0 = b0 = 0, by using some theorems from the fixed point index theory.

In Section 2, we present some auxiliary results from [8] which investigate a system of
second-order difference equations subject to the coupled boundary conditions (BC) with
a0 = b0 = 0. In Section 3, we shall prove our main results, and in Section 4, we shall
present an example which illustrates the obtained theorems.

2. AUXILIARY RESULTS

In this section, we present some auxiliary results from [8] related to the following sy-
stem of second-order difference equations

(2.1)
{

∆2un−1 + xn = 0, n = 1, N − 1,
∆2vn−1 + yn = 0, n = 1, N − 1,

with the coupled multi-point boundary conditions

(2.2) u0 = 0, uN =

p∑
i=1

aivξi , v0 = 0, vN =

q∑
i=1

biuηi ,

where N ∈ N, N ≥ 2, p, q ∈ N, ai ∈ R, ξi ∈ N for all i = 1, p, bi ∈ R, ηi ∈ N for all i = 1, q,
1 ≤ ξ1 < · · · < ξp ≤ N − 1, 1 ≤ η1 < · · · < ηq ≤ N − 1, xi, yi ∈ R for all i = 1, N − 1.

Lemma 2.1. ([8]) If ai ∈ R, ξi ∈ N for all i = 1, p, bi ∈ R, ηi ∈ N for all i = 1, q, 1 ≤ ξ1 <
. . . < ξp ≤ N − 1, 1 ≤ η1 < · · · < ηq ≤ N − 1, ∆0 = N2 − (

∑p
i=1 aiξi) (

∑q
i=1 biηi) 6= 0, and

xi, yi ∈ R for all i = 1, N − 1, then the unique solution of (2.1)-(2.2) is given by

(2.3)

un =

N−1∑
j=1

G1(n, j)xj +

N−1∑
j=1

G2(n, j)yj , n = 0, N,

vn =

N−1∑
j=1

G3(n, j)yj +

N−1∑
j=1

G4(n, j)xj , n = 0, N,

where

(2.4)

G1(n, j) = g0(n, j) +
n

∆0

(
p∑
i=1

aiξi

)(
q∑
i=1

big0(ηi, j)

)
,

G2(n, j) =
nN

∆0

p∑
i=1

aig0(ξi, j),

G3(n, j) = g0(n, j) +
n

∆0

(
q∑
i=1

biηi

)(
p∑
i=1

aig0(ξi, j)

)
,

G4(n, j) =
nN

∆0

q∑
i=1

big0(ηi, j),

and

g0(n, j) =
1

N

{
j(N − n), 1 ≤ j ≤ n ≤ N,
n(N − j), 0 ≤ n ≤ j ≤ N − 1,

for all n = 0, N and j = 1, N − 1.
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Lemma 2.2. ([8]) If ai ≥ 0, ξi ∈ N for all i = 1, p, bi ≥ 0, ηi ∈ N for all i = 1, q, 1 ≤ ξ1 < · · · <
ξp ≤ N −1, 1 ≤ η1 < · · · < ηq ≤ N −1, and ∆0 = N2− (

∑p
i=1 aiξi)(

∑q
i=1 biηi) > 0, then the

functionsGi, i = 1, 4, given by (2.4), satisfyGi(n, j) ≥ 0 for all n = 0, N , j = 1, N − 1, i = 1, 4.
Moreover, if xn ≥ 0, yn ≥ 0 for all n = 1, N − 1, then the solution ((un)n=0,N , (vn)n=0,N ) of
problem (2.1)-(2.2) (given by (2.3)) satisfies un ≥ 0, vn ≥ 0 for all n = 0, N .

Lemma 2.3. ([8]) Assume that ai ≥ 0, ξi ∈ N for all i = 1, p, bi ≥ 0, ηi ∈ N for all i = 1, q,
1 ≤ ξ1 < · · · < ξp ≤ N − 1, 1 ≤ η1 < · · · < ηq ≤ N − 1, and ∆0 > 0. Then the functions Gi,
i = 1, 4 satisfy the inequalities
a1) G1(n, j) ≤ I1(j), ∀n = 0, N, j = 1, N − 1, where

I1(j) = g0(j, j) +
N

∆0

(
p∑
i=1

aiξi

)(
q∑
i=1

big0(ηi, j)

)
;

a2) For every c ∈ {1, . . . , [[N/2]]}, we have min
n=c,N−c

G1(n, j) ≥ c

N
I1(j), ∀ j = 1, N − 1;

b1) G2(n, j) ≤ I2(j), ∀n = 0, N, j = 1, N − 1, where I2(j) =
N2

∆0

p∑
i=1

aig0(ξi, j);

b2) For every c ∈ {1, . . . , [[N/2]]}, we have min
n=c,N−c

G2(n, j) ≥ c

N
I2(j), ∀ j = 1, N − 1;

c1) G3(n, j) ≤ I3(j), ∀n = 0, N, j = 1, N − 1, where

I3(j) = g0(j, j) +
N

∆0

(
q∑
i=1

biηi

)(
p∑
i=1

aig0(ξi, j)

)
;

c2) For every c ∈ {1, . . . , [[N/2]]}, we have min
n=c,N−c

G3(n, j) ≥ c

N
I3(j), ∀ j = 1, N − 1;

d1) G4(n, j) ≤ I4(j), ∀n = 0, N, j = 1, N − 1, where I4(j) =
N2

∆0

q∑
i=1

big0(ηi, j);

d2) For every c ∈ {1, . . . , [[N/2]]}, we have min
n=c,N−c

G4(n, j) ≥ c

N
I4(j), ∀ j = 1, N − 1,

where [[N/2]] is the largest integer not greater than N/2.

Lemma 2.4. ([8]) Assume that ai ≥ 0, ξi ∈ N for all i = 1, p, bi ≥ 0, ηi ∈ N for all i = 1, q,
1 ≤ ξ1 < · · · < ξp ≤ N − 1, 1 ≤ η1 < · · · < ηq ≤ N − 1, ∆0 > 0, c ∈ {1, . . . , [[N/2]]}, and
xn, yn ≥ 0 for all n = 1, N − 1. Then the solution of problem (2.1)-(2.2) satisfies the inequalities

min
n=c,N−c

un ≥
c

N
max
m=0,N

um, min
n=c,N−c

vn ≥
c

N
max
m=0,N

vm.

Our main existence result is based on the Schauder fixed point theorem which we pre-
sent now.

Theorem 2.1. Let X be a Banach space and Y ⊂ X a nonempty, bounded, convex and closed
subset. If the operator A : Y → Y is completely continuous (continuous, and compact, that is, it
maps bounded sets into relatively compact sets), then A has at least one fixed point.

3. MAIN RESULTS

We present first the assumptions that we shall use in the sequel.
(H1) ai ≥ 0, ξi ∈ N for all i = 1, p, bi ≥ 0, ηi ∈ N for all i = 1, q, 1 ≤ ξ1 < · · · < ξp ≤ N−1,

1 ≤ η1 < · · · < ηq ≤ N − 1 and ∆0 = N2 − (
∑p
i=1 aiξi) (

∑q
i=1 biηi) > 0.

(H2) The constants sn, tn ≥ 0 for all n = 1, N − 1, and there exist i0, j0 ∈ {1, . . . , N−1}
such that si0 > 0, tj0 > 0.
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(H3) f, g : [0,∞) → [0,∞) are continuous functions and there exists c0 > 0 such
that f(u) < c0

L , g(u) < c0
L for all u ∈ [0, c0], where L = max{

∑N−1
i=1 siI1(i) +∑N−1

i=1 tiI2(i),
∑N−1
i=1 tiI3(i)+

∑N−1
i=1 siI4(i)} and Ii, i = 1, 4 are defined in Lemma

2.3.
(H4) f, g : [0,∞)→ [0,∞) are continuous functions and satisfy the conditions

lim
u→∞

f(u)

u
=∞, lim

u→∞

g(u)

u
=∞.

Our first theorem is the following existence result for problem (S)− (BC).

Theorem 3.2. Assume that the assumptions (H1) − (H3) hold. Then problem (S) − (BC) has
at least one positive solution for a0 > 0 and b0 > 0 sufficiently small.

Proof. We consider the system of second-order difference equations

(3.5) ∆2hn−1 = 0, ∆2kn−1 = 0, n = 1, N − 1,

with the coupled boundary conditions

(3.6) h0 = 0, hN =

p∑
i=1

aikξi + a0, k0 = 0, kN =

q∑
i=1

bihηi + b0,

with a0 > 0 and b0 > 0.
The above problem (3.5)-(3.6) has the solution

(3.7) hn =
n

∆0

(
a0N + b0

p∑
i=1

aiξi

)
, kn =

n

∆0

(
b0N + a0

q∑
i=1

biηi

)
, n = 0, N,

where ∆0 = N2 − (
∑p
i=1 aiξi) (

∑q
i=1 biηi). By assumption (H1), we obtain hn > 0 and

kn > 0 for all n = 1, N .
We define the sequences (xn)n=0,N and (yn)n=0,N by xn = un − hn, yn = vn − kn,

n = 0, N, where ((un)n=0,N , (vn)n=0,N ) is a solution of (S)− (BC). Then (S)− (BC) can
be equivalently written as

(3.8)
{

∆2xn−1 + snf(yn + kn) = 0, n = 1, N − 1,
∆2yn−1 + tng(xn + hn) = 0, n = 1, N − 1,

with the boundary conditions

(3.9) x0 = 0, xN =

p∑
i=1

aiyξi , y0 = 0, yN =

q∑
i=1

bixηi .

Using the Green’s functions Gi, i = 1, 4 from Section 2, a pair ((xn)n=0,N , (yn)n=0,N )

is a solution of problem (3.8)-(3.9) if and only if it is a solution for the problem

(3.10)


xn =

N−1∑
i=1

G1(n, i)sif(yi + ki) +

N−1∑
i=1

G2(n, i)tig(xi + hi), n = 0, N,

yn =

N−1∑
i=1

G3(n, i)tig(xi + hi) +

N−1∑
i=1

G4(n, i)sif(yi + ki), n = 0, N,

where (hn)n=0,N and (kn)n=0,N are given in (3.7).
We consider the Banach space X = RN+1 with the maximum norm ‖u‖ = max

n=0,N
|un|,

u = (un)n=0,N , and the space Y = X ×X with the norm ‖(x, y)‖Y = ‖x‖+ ‖y‖. We define
the set

E = {(xn)n=0,N , 0 ≤ xn ≤ c0, ∀n = 0, N} ⊂ X.



Positive solutions to a discrete boundary value problem 185

We also define the operators S1, S2 : E × E → X and S : E × E → Y by

S1(x, y) =

(
N−1∑
i=1

G1(n, i)sif(yi + ki) +

N−1∑
i=1

G2(n, i)tig(xi + hi)

)
n=0,N

,

S2(x, y) =

(
N−1∑
i=1

G3(n, i)tig(xi + hi) +

N−1∑
i=1

G4(n, i)sif(yi + ki)

)
n=0,N

,

and S(x, y) = (S1(x, y), S2(x, y)) for (x, y) = ((xn)n=0,N , (yn)n=0,N ) ∈ E × E.
For sufficiently small a0 > 0 and b0 > 0, by (H3) we deduce

(3.11) f(yn + kn) ≤ c0
L
, g(xn + hn) ≤ c0

L
, ∀n = 0, N, ∀ (xn)n, (yn)n ∈ E.

Then, by using Lemma 2.2, we obtain (S1(x, y))n ≥ 0, (S2(x, y))n ≥ 0 for all n = 0, N
and x = (xn)n=0,N , y = (yn)n=0,N ∈ E. By Lemma 2.3, for all (x, y) ∈ E × E, we have

(S1(x, y))n ≤
N−1∑
i=1

I1(i)sif(yi + ki) +

N−1∑
i=1

I2(i)tig(xi + hi)

≤ c0
L

(
N−1∑
i=1

siI1(i) +

N−1∑
i=1

tiI2(i)

)
≤ c0, ∀n = 0, N,

(S2(x, y))n ≤
N−1∑
i=1

I3(i)tig(xi + hi) +

N−1∑
i=1

I4(i)sif(yi + ki)

≤ c0
L

(
N−1∑
i=1

tiI3(i) +

N−1∑
i=1

siI4(i)

)
≤ c0, ∀n = 0, N.

Therefore S(E × E) ⊂ E × E.
Using standard arguments, we deduce that S is completely continuous. By Theorem

2.1, we conclude that S has a fixed point (x, y) = ((xn)n=0,N , (yn)n=0,N ∈ E × E, which
represents a solution for (3.8)-(3.9). This shows that our problem (S)−(BC) has a positive
solution (u, v) = ((un)n=0,N , (vn)n=0,N ) with un = xn + hn, vn = yn + kn, n = 0, N,

(un > 0 and vn > 0 for all n = 1, N ) for sufficiently small a0 > 0 and b0 > 0. �

In what follows, we present sufficient conditions for the nonexistence of positive solu-
tions of (S)− (BC).

Theorem 3.3. Assume that assumptions (H1), (H2) and (H4) hold. Then problem (S)− (BC)
has no positive solution for a0 and b0 sufficiently large.

Proof. We suppose that ((un)n=0,N , (vn)n=0,N ) is a positive solution of (S) − (BC). Then
(x, y) = ((xn)n=0,N , (yn)n=0,N ) with xn = un − hn, yn = vn − kn, n = 0, N, is a so-
lution for problem (3.8)-(3.9), where (h, k) = ((hn)n=0,N , (kn)n=0,N ) is the solution of
problem (3.5)-(3.6) (given by (3.7)). By (H2) there exists c ∈ {1, 2, . . . , [[N/2]]} such that
i0, j0 ∈ {c, . . . , N − c} and then

∑N−c
i=c siI1(i) > 0,

∑N−c
i=c tiI2(i) > 0,

∑N−c
i=c tiI3(i) > 0

and
∑N−c
i=c siI4(i) > 0. Now by using Lemma 2.2, we have xn ≥ 0, yn ≥ 0 for all n = 0, N ,

and by Lemma 2.4, we obtain minn=c,N−c xn ≥
c
N ‖x‖ and minn=c,N−c yn ≥

c
N ‖y‖.

Using now (3.7), we deduce that

min
n=c,N−c

hn = hc =
hc
hN
‖h‖ =

c

N
‖h‖, min

n=c,N−c
kn = kc =

kc
kN
‖k‖ =

c

N
‖k‖.
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Therefore, we obtain

min
n=c,N−c

(xn + hn) ≥ c

N
‖x‖+

c

N
‖h‖ =

c

N
(‖x‖+ ‖h‖) ≥ c

N
‖x+ h‖,

min
n=c,N−c

(yn + kn) ≥ c

N
‖y‖+

c

N
‖k‖ =

c

N
(‖y‖+ ‖k‖) ≥ c

N
‖y + k‖.

We now consider

(3.12) R =

(
c2

N2

N−c∑
i=c

tiI2(i)

)−1
> 0.

By using (H4), for R defined above, we conclude that there exists M0 > 0 such that
f(u) > 2Ru, g(u) > 2Ru for all u ≥ M0. We consider a0 > 0 and b0 > 0 sufficiently large
such that

(3.13) min
n=c,N−c

(xn + hn) ≥M0, min
n=c,N−c

(yn + kn) ≥M0.

By (H2), (3.8), (3.9) and the above inequalities, we deduce that ‖x‖ > 0 and ‖y‖ > 0.
Now, by using Lemma 2.3 and the above considerations, we have

xc =

N−1∑
i=1

G1(c, i)sif(yi + ki) +

N−1∑
i=1

G2(c, i)tig(xi + hi)

≥ c

N

N−1∑
i=1

I2(i)tig(xi + hi) ≥
c

N

N−c∑
i=c

I2(i)tig(xi + hi)

≥ 2Rc

N

N−c∑
i=c

I2(i)ti(xi + hi) ≥
2Rc

N

N−c∑
i=c

I2(i)ti min
j=c,N−c

(xj + hj)

≥ 2Rc2

N2

N−c∑
i=c

I2(i)ti‖x+ h‖ = 2‖x+ h‖ ≥ 2‖x‖.

Therefore, we obtain ‖x‖ ≤ 1
2xc ≤

1
2‖x‖, which is a contradiction, because ‖x‖ > 0.

Then, for a0 and b0 sufficiently large, our problem (S)−(BC) has no positive solution. �

Remark 3.1. In the proof of Theorem 3.3, instead of the constant R from (3.12), we can
also consider

(3.14) R̃ =

(
c2

N2

N−c∑
i=c

siI4(i)

)−1
,

and in a similar manner as above we prove that yc ≥ 2‖y + k‖ ≥ 2‖y‖, and then ‖y‖ ≤
1
2yc ≤

1
2‖y‖, which is a contradiction.

Similar results as Theorems 3.2 and 3.3 can be obtained if instead of boundary conditi-
ons (BC) we have

(BC1) u0 = a0, uN =

p∑
i=1

aivξi , v0 = 0, vN =

q∑
i=1

biuηi + b0, or

(BC2) u0 = 0, uN =

p∑
i=1

aivξi + a0, v0 = b0, vN =

q∑
i=1

biuηi , or

(BC3) u0 = a0, uN =

p∑
i=1

aivξi , v0 = b0, vN =

q∑
i=1

biuηi ,
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where a0 and b0 are positive constants.
For problem (S) − (BC1), instead of the pair of sequences (hn)n=0,N and (kn)n=0,N

from the proof of Theorem 3.2, the solution of system

∆2h̃n−1 = 0, ∆2k̃n−1 = 0, n = 1, N − 1,

with the coupled boundary conditions

h̃0 = a0, h̃N =

p∑
i=1

aik̃ξi , k̃0 = 0, k̃N =

q∑
i=1

bih̃ηi + b0,

is given by

h̃n =
1

∆0

{
n

[
b0

(
p∑
i=1

aiξi

)
+ a0

[(
p∑
i=1

aiξi

)(
q∑
i=1

bi

)
−N

]]

+a0

[
N2 −

(
p∑
i=1

aiξi

)(
q∑
i=1

biηi

)]}
, n = 0, N,

k̃n =
n

∆0

[
a0

q∑
i=1

bi(N − ηi) + b0N

]
, n = 0, N.

By assumption (H1) we obtain h̃n > 0 for all n = 0, N − 1, and k̃n > 0 for all n = 1, N . For
the nonexistence of the positive solutions, we take here R̃ given in (3.14), and we show
that yc ≥ 2‖y‖, which leads us to a contradiction.

For problem (S) − (BC2), instead of the pair of sequences (hn)n=0,N and (kn)n=0,N

from the proof of Theorem 3.2, the solution of system

∆2ȟn−1 = 0, ∆2ǩn−1 = 0, n = 1, N − 1,

with the coupled boundary conditions

ȟ0 = 0, ȟN =

p∑
i=1

aiǩξi + a0, ǩ0 = b0, ǩN =

q∑
i=1

biȟηi ,

is given by

ȟn =
n

∆0

[
a0N + b0

p∑
i=1

ai(N − ξi)

]
, n = 0, N,

ǩn =
1

∆0

{
n

[
a0

(
q∑
i=1

biηi

)
+ b0

[(
q∑
i=1

biηi

)(
p∑
i=1

ai

)
−N

]]

+b0

[
N2 −

(
p∑
i=1

aiξi

)(
q∑
i=1

biηi

)]}
, n = 0, N.

By assumption (H1) we obtain ȟn > 0 for all n = 1, N , and ǩn > 0 for all n = 0, N − 1. For
the nonexistence of the positive solutions, we take here R given in (3.12), and we prove
that xc ≥ 2‖x‖, which leads us to a contradiction.

For problem (S) − (BC3), instead of the pair of sequences (hn)n=0,N and (kn)n=0,N

from the proof of Theorem 3.2, the solution of problem

∆2ĥn−1 = 0, ∆2k̂n−1 = 0, n = 1, N − 1,

with the coupled boundary conditions

ĥ0 = a0, ĥN =

p∑
i=1

aik̂ξi , k̂0 = b0, k̂N =

q∑
i=1

biĥηi ,
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is given by

ĥn =
1

∆0

{
n

[
−a0N + a0

(
q∑
i=1

bi

)(
p∑
i=1

aiξi

)
+ b0

p∑
i=1

ai(N − ξi)

]

+a0

[
N2 −

(
p∑
i=1

aiξi

)(
q∑
i=1

biηi

)]}
, n = 0, N,

k̂n =
1

∆0

{
n

[
−b0N + b0

(
p∑
i=1

ai

)(
q∑
i=1

biηi

)
+ a0

q∑
i=1

bi(N − ηi)

]

+b0

[
N2 −

(
p∑
i=1

aiξi

)(
q∑
i=1

biηi

)]}
, n = 0, N.

By assumption (H1) we obtain ĥn > 0 and k̂n > 0 for all n = 0, N − 1.
Therefore we also obtain the following results.

Theorem 3.4. Assume that assumptions (H1) − (H3) hold. Then problem (S) − (BC1) has at
least one positive solution (un > 0 for all n = 0, N − 1, and vn > 0 for all n = 1, N ) for a0 > 0
and b0 > 0 sufficiently small.

Theorem 3.5. Assume that assumptions (H1), (H2) and (H4) hold. Then problem (S)− (BC1)

has no positive solution (un > 0 for all n = 0, N − 1, and vn > 0 for all n = 1, N ) for a0 and b0
sufficiently large.

Theorem 3.6. Assume that assumptions (H1) − (H3) hold. Then problem (S) − (BC2) has at
least one positive solution (un > 0 for all n = 1, N , and vn > 0 for all n = 0, N − 1) for a0 > 0
and b0 > 0 sufficiently small.

Theorem 3.7. Assume that assumptions (H1), (H2) and (H4) hold. Then problem (S)− (BC2)

has no positive solution (un > 0 for all n = 1, N , and vn > 0 for all n = 0, N − 1) for a0 and b0
sufficiently large.

Theorem 3.8. Assume that assumptions (H1) − (H3) hold. Then problem (S) − (BC3) has at
least one positive solution (un > 0 and vn > 0 for all n = 0, N − 1) for a0 > 0 and b0 > 0
sufficiently small.

4. AN EXAMPLE

We consider N = 30, p = 3, q = 2, a1 = 3, a2 = 1, a3 = 1/2, ξ1 = 5, ξ2 = 15, ξ3 = 25,
b1 = 1, b2 = 1/2, η1 = 10, η2 = 20, sn = tn = 1 for all n = 1, 29. We also consider
the functions f, g : [0,∞) → [0,∞), f(x) = ãxα1

2x+3 , g(x) = b̃xα2

3x+1 , for all x ∈ [0,∞), with
ã, b̃ > 0 and α1, α2 > 2. We have limx→∞ f(x)/x = limx→∞ g(x)/x =∞.

Therefore, we consider the system of second-order difference equations

(S0)


∆2un−1 +

ãvα1
n

(2vn + 3)
= 0, n = 1, 29,

∆2vn−1 +
b̃uα2
n

(3un + 1)
= 0, n = 1, 29,

with the multi-point boundary conditions

(BC0) u0 = 0, u30 = 3v5 + v15 + v25/2 + a0, v0 = 0, v30 = u10 + u20/2 + b0,

where a0 and b0 are positive constants.
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We have ∆0 = N2 − (
∑p
i=1 aiξi) (

∑q
i=1 biηi) = 50 > 0. The functions Ii, i = 1, 4 are

given by

I1(j)=


1
60 (1335j − 2j2), 1 ≤ j ≤ 10,
1
60 (15300− 195j − 2j2), 11 ≤ j ≤ 20,
1
30 (15300− 480j − j2), 21 ≤ j ≤ 29,

I2(j)=


111
2 j, 1 ≤ j ≤ 5,

3
2 (180 + j), 6 ≤ j ≤ 15,
3
2 (360− 11j), 16 ≤ j ≤ 25,
3
2 (510− 17j), 26 ≤ j ≤ 29,

I3(j)=


1
30 (1140j − j2), 1 ≤ j ≤ 5,
1
30 (5400 + 60j − j2), 6 ≤ j ≤ 15,
1
30 (10800− 300j − j2), 16 ≤ j ≤ 25,
1
30 (15300− 480j − j2), 26 ≤ j ≤ 29,

I4(j) =

 15j, 1 ≤ j ≤ 10,
180− 3j, 11 ≤ j ≤ 20,
360− 12j, 21 ≤ j ≤ 29.

Hence, we deduce that assumptions (H1), (H2) and (H4) are satisfied. In addition,
by using the above functions Ii, i = 1, 4, we obtain A :=

∑29
i=1 I1(i) ≈ 3974.8333333,

B :=
∑29
i=1 I2(i) = 5962.5, C :=

∑29
i=1 I3(i) ≈ 4124.83333333, D :=

∑29
i=1 I4(i) = 2700, and

then L = max{A+B,C+D} = A+B ≈ 9937.33333333. We choose c0 = 1 and if we select
ã, b̃ satisfying the conditions ã < 5

L , b̃ < 4
L , then we conclude that f(x) < 1/L, g(x) < 1/L

for all x ∈ [0, 1]. For example, if ã ≤ 5 ·10−4 and b̃ ≤ 4 ·10−4, then the above conditions for
f and g are satisfied. So, assumption (H3) is also satisfied. By Theorems 3.2 and 3.3 we
deduce that problem (S0)− (BC0) has at least one positive solution for sufficiently small
a0 > 0 and b0 > 0, and no positive solution for sufficiently large a0 and b0.

By the proofs of Theorems 3.2 and 3.3 we can find some intervals for a0 and b0 such that
problem (S0)− (BC0) has at least one positive solution, or it has no positive solution. We
consider ã = 5·10−4, b̃ = 4·10−4, c0 = 1, L = A+B (as above), α1 = 3 and α2 = 4. Then the
sequences (hn)n=0,30 and (kn)n=0,30 from (3.7) are hn = n

20 (12a0 + 17b0) and kn = n
5 (3b0 +

2a0) for all n = 0, 30. If we choose a0 ≤ min
{

1
24

[
f−1

(
1
L

)
− 1
]
, 1

36

[
g−1

(
1
L

)
− 1
]}

and
b0 ≤ min

{
1
36

[
f−1

(
1
L

)
− 1
]
, 1

51

[
g−1

(
1
L

)
− 1
]}

, then the inequalities (3.11) are satisfied.
Because f−1( 1

L ) ≈ 1.00242 and g−1( 1
L ) ≈ 1.00194, then for a0 ≤ 5.37 · 10−5 and b0 ≤

3.79 · 10−5 our problem (S0)− (BC0) has at least one positive solution.
Now we choose c = 4 (the constant from the beginning of the proof of Theorem 3.3),

and then we obtain
∑26
i=4 I2(i) = 5476.5 and R ≈ 0.01027116 (given by (3.12)). For R̃ :=

2R + 0.1, the inequalities f(x)
x ≥ R̃ and g(y)

y ≥ R̃ are satisfied for x ≥ M ′0 ≈ 483.66463109

and y ≥ M ′′0 ≈ 30.23301425, respectively. We consider M0 = max{M ′0,M ′′0 } = M ′0,
and then for a0 ≥ 5M0

16 and b0 ≥ 5M0

24 , the inequalities (3.13) are satisfied. Therefore, if
a0 ≥ 151.1452 and b0 ≥ 100.7635, our problem (S0)− (BC0) has no positive solution.
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