On a theorem of Brian Fisher in the framework of w-distance

Darko Kocev ${ }^{1}$ and Vladimir RaKočević ${ }^{2}$

Abstract

In 1980. Fisher in [Fisher, B., Results on common fixed points on complete metric spaces, Glasgow Math. J., 21 (1980), 165-167] proved very interesting fixed point result for the pair of maps. In 1996. Kada, Suzuki and Takahashi introduced and studied the concept of w-distance in fixed point theory. In this paper, we generalize Fisher's result for pair of mappings on metric space to complete metric space with w -distance. The obtained results do not require the continuity of maps, but more relaxing condition $(C ; k)$. As a corollary we obtain a result of Chatterjea.

1. Introduction

In 1980, Fisher [10] proved the following very interesting result.
Theorem 1.1. [10] Let $f, g: X \mapsto X$ be two continuous mappings on a complete metric space (X, d) satisfying the inequality

$$
\begin{equation*}
d\left(f^{p} x, g^{q} y\right) \leq \lambda \max \left\{d\left(f^{r} x, g^{s} y\right) \mid 0 \leq r \leq p, 0 \leq s \leq q\right\}, x, y \in X \tag{1.1}
\end{equation*}
$$

for some fixed $p, q \in n$ and $\lambda \in(0,1)$. Then f and g have a unique common fixed point in X.
Let us point out that the maps in the above theorem are not commutative; (for very recent results related to Fisher theorem see eg., [4]).

In 1996. Kada, Suzuki and Takahashi [13] introduced and studied the concept of wdistance in fixed point theory, they gave examples of the w-distance and, among other things, generalized Caristi's fixed point theorem [2], Ekeland's variational principle [7] and the nonconvex minimization theorem by Takahashi [17]. See also ([15], [16]). For more recent, related results on w-distance see eg., ([6], [11], [12]).
Definition 1.1. Let X be a metric space with metric d. Then a function $p: X \times X \rightarrow[0, \infty)$ is called a w -distance on X if the following are satisfied:
(1) $p(x, z) \leq p(x, y)+p(y, z)$, for any $x, y, z \in X$,
(2) for any $x \in X, p(x, \cdot): X \rightarrow[0, \infty)$ is lower semicontinuous,
(3) for any $\epsilon>0$, there exists $\delta>0$ such that $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ imply $d(x, y) \leq \epsilon$.
Let us recall that a real-valued function f defined on a metric space X is said to be lower semicontinuous at a point x_{0} in X if either $\liminf _{x_{n} \rightarrow x_{0}} f\left(x_{n}\right)=\infty$ or $f\left(x_{0}\right) \leq$ $\liminf _{x_{n} \rightarrow x_{0}} f\left(x_{n}\right)$, whenever $x_{n} \in X$ and $x_{n} \rightarrow x_{0}$.

The following, very useful lemma has been proved in [13].
Lemma 1.1. Let X be a metric space with metric d and let p be a w-distance on X. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in X, let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be sequences in $[0,+\infty)$ converging to 0 , and let x, y, $z \in X$. Then the following hold:

[^0](i) if $p\left(x_{n}, y\right) \leq \alpha_{n}$ and $p\left(x_{n}, z\right) \leq \beta_{n}$ for any $n \in \mathbb{N}$, then $y=z$. In particular, if $p(x, y)=0$ and $p(x, z)=0$, then $y=z$;
(ii) if $p\left(x_{n}, y_{n}\right) \leq \alpha_{n}$ and $p\left(x_{n}, z\right) \leq \beta_{n}$ for any $n \in \mathbb{N}$, then y_{n} converges to z;
(iii) if $p\left(x_{n}, x_{m}\right) \leq \alpha_{n}$ for any $n, m \in \mathbb{N}$ with $m>n$, then $\left\{x_{n}\right\}$ is a Cauchy sequence;
(iv) if $p\left(y, x_{n}\right) \leq \alpha_{n}$ for any $n \in \mathbb{N}$, then $\left\{x_{n}\right\}$ is a Cauchy sequence.

In this paper, we generalize Fisher's result for pair of mappings on metric space to w-distance on complete metric space. In contrast to Fisher's result, our results do not require the continuity of maps, but more relaxing new condition $(C ; k)$. Further more, our methods of proofs are new, and even simpler than the corresponding methods in metric spaces.

We say that a map $T: X \rightarrow X$ on a metric space (X, d) obeys the condition $(C ; k)$ if there is a constant $k \geq 0$ such that for every sequence $x_{n} \in X$,

$$
x_{n} \rightarrow x_{0} \in X \quad \Rightarrow \quad D\left(x_{0}\right) \leq k \cdot \lim \sup D\left(x_{n}\right),
$$

where $D(x)=d(x, T x), x \in X$. We point out that the the condition $(C ; 1)$ was introduced and studied by Ćirić [5].

For the convenient of a reader we recall the following result of Chatterjea [3].
Theorem 1.2. Let T be a mapping of a complete metric space (X, d) into itself. If for some $\alpha \in[0,1 / 2)$,

$$
\begin{equation*}
d(T x, T y) \leq \alpha \cdot d(x, T y)+\alpha \cdot d(T x, y) \text { for every } x, y \in X \tag{1.2}
\end{equation*}
$$

then T has a unique fixed point $u \in X$.
Mapping T in Theorem 1.2 is called Chattereja operator; (for more details see eg., [1], [10], [14]).

2. MAIN RESULTS

Now we state and prove our main results.
Theorem 2.3. Let S and T be mappings of a complete metric space (X, d) into itself and let p be a w-distance. If S and T obey the condition $(C ; k)$, and if for some fixed positive integers l and q and some $\lambda \in[0,1)$

$$
\begin{gather*}
\max \left\{p\left(S^{l} x, T^{q} y\right), p\left(T^{q} y, S^{l} x\right)\right) \leq \lambda \cdot \max \left\{p\left(S^{r} x, T^{s} y\right), p\left(T^{s} y, S^{r} x\right):\right. \tag{2.3}\\
0 \leq r \leq l, 0 \leq s \leq q\}
\end{gather*}
$$

then S and T have a unique common fixed point $u \in X$. Moreover, $p(u, u)=0$.
Proof. Fix $x \in X$. Let

$$
\begin{aligned}
\omega \equiv \omega(x)= & \sum_{0 \leq i \leq l, 0 \leq j \leq q} p\left(S^{i} x, T^{j} x\right)+\sum_{0 \leq i \leq l, 0 \leq j \leq q} p\left(T^{j} x, S^{i} x\right)+ \\
& \sum_{0 \leq i, j \leq l} p\left(S^{i} x, S^{j} x\right)+\sum_{0 \leq i, j \leq q} p\left(T^{i} x, T^{j} x\right) .
\end{aligned}
$$

We will prove that

$$
\max \left\{p\left(S^{i} x, T^{j} x\right), p\left(T^{j} x, S^{i} x\right)\right\} \leq \frac{1}{1-\lambda} \cdot \omega
$$

for every $i, j \in \mathbb{N}$. Suppose that n_{0} is a natural number such that $n_{0}>\max \{l, q\}$, that our hypothesis holds for every $i, j<n_{o}$ and let us prove that it holds for $i=n_{0}$ or $j=n_{0}$. Put

$$
p\left(S^{k} x, T^{n_{0}} x\right)=\max \left\{p\left(S^{i} x, T^{n_{0}} x\right), p\left(T^{n_{0}} x, S^{i} x\right), p\left(S^{n_{0}} x, T^{j} x\right), p\left(T^{j} x, S^{n_{0}} x\right):\right.
$$

$$
\left.0 \leq i, j \leq n_{0}\right\}
$$

(On a similar way we can discuss the other cases)
We have to consider two cases:
(i) $k<l$. It follows from (2.3) that

$$
p\left(S^{k} x, T^{n_{0}} x\right) \leq p\left(S^{k} x, S^{l} x\right)+p\left(S^{l} x, T^{n_{0}} x\right) \leq \omega(x)+\lambda \cdot v
$$

where

$$
v=\max \left\{p\left(S^{r} x, T^{s} x\right), p\left(T^{s} x, S^{r} x\right): 0 \leq r \leq l, n_{0}-q \leq s \leq n_{0}\right\}
$$

(i.1) Suppose that $v=p\left(S^{i} x, T^{j} x\right)$ or $v=p\left(T^{j} x, S^{i} x\right), j<n_{0}$. By assumption,

$$
v \leq \frac{1}{1-\lambda} \cdot \omega
$$

so

$$
p\left(S^{k} x, T^{n_{0}} x\right) \leq \omega+\frac{\lambda}{1-\lambda} \cdot \omega=\frac{1}{1-\lambda} \cdot \omega
$$

(i.2) Suppose that $v=p\left(S^{i} x, T^{n_{0}} x\right)$ or $v=p\left(T^{n_{0}} x, S^{i} x\right), 0 \leq i \leq l$. Now we have that

$$
p\left(S^{k} x, T^{n_{0}} x\right) \leq \omega+\lambda \cdot p\left(S^{k} x, T^{n_{0}} x\right)
$$

That implies

$$
(1-\lambda) \cdot p\left(S^{k} x, T^{n_{0}} x\right) \leq \omega
$$

so

$$
p\left(S^{k} x, T^{n_{0}} x\right) \leq \frac{1}{1-\lambda} \cdot \omega
$$

(ii) $k \geq l$. It follows from inequality (2.3) that

$$
p\left(S^{k} x, T^{n_{o}} x\right) \leq \lambda \cdot m
$$

where

$$
m=\max \left\{p\left(S^{r} x, T^{s} x\right), p\left(T^{s} x, S^{r} x\right): k-l \leq r \leq k, n_{0}-q \leq s \leq n_{0}\right\}
$$

so $p\left(T^{k} x, T^{n_{0}} x\right)=0$.
Suppose that $\epsilon>0$. Choose $\delta>0$ as in (3) of Definition 1.1. Let N be a natural number such that

$$
\lambda^{N} \cdot \frac{1}{1-\lambda} \cdot \omega \leq \delta
$$

Assume that m, n are natural numbers such that $m, n>N \cdot \max \{l, q\}$. Thus, for every $i \geq \max \{m, n\}, i \in \mathbb{N}$, we have

$$
\begin{gathered}
p\left(S^{i} x, T^{m} x\right) \leq \max \left\{p\left(S^{i} x, T^{m} x\right), p\left(T^{m} x, S^{i} x\right)\right\} \leq \lambda \cdot \max \left\{p\left(S^{r} x, T^{s} x\right), p\left(T^{s} x, S^{r} x\right):\right. \\
i-l \leq r \leq i, m-q \leq s \leq m\} \\
\leq \lambda^{2} \cdot \max \left\{p\left(S^{r} x, T^{s} x\right), p\left(T^{s} x, S^{r} x\right):\right. \\
i-2 l \leq r \leq i, m-2 q \leq s \leq m\} \leq \ldots \\
\leq \lambda^{N} \cdot \max \left\{p\left(S^{r} x, T^{s} x\right), p\left(T^{s} x, S^{r} x\right): i-N l \leq r \leq i, m-N q \leq s \leq m\right\} \\
\leq \lambda^{N} \cdot \frac{1}{1-\lambda} \cdot \omega \leq \delta
\end{gathered}
$$

and analogously holds

$$
p\left(S^{i} x, T^{n} x\right) \leq \lambda^{N} \cdot \frac{1}{1-\lambda} \cdot \omega \leq \delta
$$

Hence, $d\left(T^{n} x, T^{m} x\right) \leq \epsilon$, and $T^{n} x$ is a Cauchy sequence. Since (X, d) is a complete metric space, $T^{n} x$ is convergent, say $\lim _{n \rightarrow \infty} T^{n} x=u \in X$. Since T obeys the condition $(C ; k)$, we have

$$
d(u, T u) \leq k \cdot \lim \sup d\left(T^{n} x, T T^{n} x\right)=0
$$

so u is a fixed point of T.
From the fact that p is lower semi-continuous, for $n>N \cdot \max \{l, q\}$ we have

$$
\begin{equation*}
p\left(S^{n} x, u\right) \leq \liminf _{m} p\left(S^{n} x, T^{m} x\right) \leq \lambda^{N} \cdot \frac{1}{1-\lambda} \cdot \omega \tag{2.4}
\end{equation*}
$$

On the other hand, for $n, m, r>N \cdot \max \{l, q\}$ using (2.3), (2.4) and the definition of w-distance, we have

$$
\begin{align*}
& p\left(S^{n} x, S^{m} x\right) \leq p\left(S^{n} x, T^{r} x\right)+p\left(T^{r} x, S^{m} x\right) \\
\leq & \lambda^{N} \cdot \frac{1}{1-\lambda} \cdot \omega+\lambda^{N} \cdot \frac{1}{1-\lambda} \cdot \omega=2 \lambda^{N} \cdot \frac{1}{1-\lambda} \cdot \omega \tag{2.5}
\end{align*}
$$

From (2.4), (2.9) and Lemma 1.1 we conclude that sequence $S^{n} x$ converges to u. Because S obeys the condition $(C ; k)$ we obtain that u is a fixed point of S too.

Moreover,

$$
\begin{gathered}
p(u, u)=p\left(S^{l} u, T^{q} u\right) \\
\leq \lambda \cdot \max \left\{p\left(S^{r} u, T^{s} u\right), p\left(T^{s} u, S^{r} u\right): 0 \leq r \leq l, 0 \leq s \leq q\right\} \\
\leq \lambda \cdot p(u, u)
\end{gathered}
$$

and therefore, $p(u, u)=0$.
Let us prove the uniqueness of u. If $T v=v$, then

$$
\begin{gathered}
p(u, v)=p\left(S^{l} u, T^{q} v\right) \\
\leq \lambda \cdot \max \left\{p\left(S^{r} u, T^{s} v\right), p\left(T^{s} v, S^{r} u\right): 0 \leq r \leq l, 0 \leq s \leq q\right\} \\
\leq \lambda \max \{p(u, v), p(v, u)\}
\end{gathered}
$$

On the other hand,

$$
\begin{gathered}
p(v, u)=p\left(T^{q} v, S^{l} u\right) \\
\leq \lambda \cdot \max \left\{p\left(S^{r} v, T^{s} u\right), p\left(T^{s} u, S^{r} v\right): 0 \leq r \leq l, 0 \leq s \leq q\right\} \\
\leq \lambda \max \{p(u, v), p(v, u)\}
\end{gathered}
$$

Thus, $p(u, v)=p(v, u)=0$ and $p(u, u)=0$, and it follows from Lemma 1.1 that $u=v$.

From the above theorem, in the special case $S=T$, and $l=q=1$ we have
Corollary 2.1. Let T be a mapping of a complete metric space (X, d) into itself and let p be a w-distance. If T obeys the condition $(C ; k)$, and if for some $\lambda \in[0,1)$

$$
\begin{equation*}
p(T x, T y) \leq \lambda \cdot \max \left\{p\left(T^{s} y, T^{r} x\right): 0 \leq r, s \leq 1\right\} \tag{2.6}
\end{equation*}
$$

for every $x, y \in X$, then T has a unique fixed point $u \in X$. Moreover, $p(u, u)=0$.
Now, from the above corollary we obtain the following result connected with the Chatterjea operator.

Corollary 2.2. Let T be a mapping of a complete metric space (X, d) into itself, let T obeys the condition ($C ; k$), and let p be a w-distance. If for some $\alpha \in[0,1 / 2)$

$$
\begin{gathered}
p(T x, T y) \leq \max \{\alpha \cdot p(x, T y)+\alpha \cdot p(T x, y), \alpha \cdot p(x, T x)+\alpha \cdot p(y, T x) \\
\alpha \cdot p(T x, x)+\alpha \cdot p(T x, y), \alpha \cdot p(T x, x)+\alpha \cdot p(y, T x)\}
\end{gathered}
$$

for every $x, y \in X$, then T has a unique fixed point $u \in X$. Moreover, $p(u, u)=0$.
Let us prove that Chatterjea operator obeys the condition $(C ; k)$.
Lemma 2.2. Let T be a Catterjea operator as in Theorem 1.2. Then T obeys the condition $(C ; k)$ for $k=(1+\alpha) /(1-\alpha)$.
Proof. Assume that $x_{n}, x_{0} \in X$ and $x_{n} \rightarrow x_{0}$ as $n \rightarrow \infty$. Now,

$$
\begin{gathered}
d\left(T x_{0}, x_{0}\right) \leq d\left(T x_{0}, T x_{n}\right)+d\left(T x_{n}, x_{n}\right)+d\left(x_{n}, x_{0}\right) \\
\leq \alpha \cdot\left[d\left(x_{0}, T x_{n}\right)+d\left(T x_{0}, x_{n}\right)\right]+d\left(T x_{n}, x_{n}\right)+d\left(x_{n}, x_{0}\right) \\
\leq \alpha \cdot\left[d\left(x_{0}, x_{n}\right)+d\left(x_{n}, T x_{n}\right)+d\left(T x_{0}, x_{n}\right)\right]+d\left(T x_{n}, x_{n}\right)+d\left(x_{n}, x_{0}\right) .
\end{gathered}
$$

Hence,

$$
d\left(T x_{0}, x_{0}\right) \leq \alpha \cdot\left[\lim \sup d\left(x_{n}, T x_{n}\right)+d\left(T x_{0}, x_{0}\right)\right]+\lim \sup d\left(T x_{n}, x_{n}\right)
$$

and

$$
d\left(T x_{0}, x_{0}\right) \leq \frac{1+\alpha}{1-\alpha} \cdot \lim \sup d\left(x_{n}, T x_{n}\right) .
$$

Remark 2.1. From Corollary 2.2 and Lemma 2.2 we obtain Theorem 1.2.
The following example shows that we can not apply Theorem 2.3 if the condition $(C ; k)$ is not satisfied.

Example 2.1. Let (X, d) be a metric space where $X=[0,1]$ and $d(x, y)=|x-y|, x, y \in X$ and let $T: X \rightarrow X$ be a function defined as follows: $T x=1$ if $x=0$ and $T x=\frac{x}{2}$ for $x \neq 0$ (see [9]). Then for $p, q \geq 2$ we have $d\left(T^{p} x, T^{q} y\right) \leq \frac{1}{2} d\left(T^{p-1} x, T^{q-1} y\right)$ for every $x, y \in X$. Nevertheless, T does not obey the condition $(C ; k)$ at 0 , so T does not have a fixed point.

We now give an example, to show that it is possible to apply our result with the condition $(C ; k)$, but Fisher result does not apply because the functions are not continuous.
Example 2.2. Let (X, d) be a metric space where $X=[0,3] \cup[4,5]$ and $d(x, y)=|x-y|, x, y \in X$. Let us define $T: X \rightarrow X$, by $T x=0, x \in[0,3], T x=3, x \in[4,5)$ and $T(5)=4 \frac{1}{4}$ and $S: X \rightarrow X$ by $S x=0, x \in[0,3], S x=3, x \in[4,5)$ and $S(5)=4 \frac{1}{8}$. Let us prove that there is $\lambda \in[0,1)$ such that

$$
\begin{equation*}
d\left(T x, S^{2} y\right) \leq \lambda \cdot \max \left\{d\left(T^{s} x, S^{r} y\right): 0 \leq r \leq 1,0 \leq s \leq 2\right\} \tag{2.7}
\end{equation*}
$$

holds. It is obvious that $S^{2} x=0$ for $x \in[0,5)$ and $S^{2}(5)=3$.
If $x \in[0,3]$ and $y=5$, then $d\left(T x, S^{2} y\right)=3$. Furthermore, $d(T x, S y)=4 \frac{1}{8}$. Hence $d\left(T x, S^{2} y\right) \leq \frac{8}{11} \cdot d(T x, S y)$.

If $x \in[4,5)$ and $y \in[0,5)$, then $d\left(T x, S^{2} y\right)=3$. Since, $d\left(x, S^{2} y\right) \geq 4$, we have $d\left(T x, S^{2} y\right) \leq \frac{3}{4} \cdot d\left(x, S^{2} y\right)$.

If $x=5$ and $y \in[0,5)$, then $d\left(T 5, S^{2} y\right)=4 \frac{1}{4}$. From $d\left(5, S^{2} y\right)=5$ we have $d\left(T x, S^{2} y\right) \leq \frac{17}{20} \cdot d\left(5, S^{2} y\right)$.

If $x=5$ and $y=5$, then $d\left(T 5, S^{2} 5\right)=1 \frac{1}{4}$. Since $d\left(5, S^{2} 5\right)=3$ and $\frac{5}{4} \leq \frac{17}{20} \cdot 3$, $d\left(T 5, S^{2} 5\right) \leq \frac{17}{20} \cdot d\left(5, S^{2} 5\right)$. So, T and S satisfy the Fisher quasi-contraction, where $p=1$, $q=2$, and $\lambda=\frac{17}{20}$. It is easy to prove that operators T and S obey the condition $(C ; 1)$.

For example, $\frac{3}{4}=d(5, T 5) \leq \lim \sup d\left(x_{n}, T x_{n}\right) \leq \lim x_{n}-3=2$, where $x_{n} \in X$ is any sequence such that $x_{n} \rightarrow 5$, as $n \rightarrow \infty$. By Theorem 2.3, T and S have a unique fixed point in X, and this fixed point is $x=0$. On the other hand, T and S are not continuous, so they do not satisfy the conditions of Fisher theorem.

In the next result we suppose that $l=1$, and S is an arbitrary function.
Theorem 2.4. Let S and T be mappings of a complete metric space (X, d) into itself, assume that T obeys the condition $(C: k)$ and let p be a w-distance. If for some fixed positive integer q and some $\lambda \in[0,1)$

$$
\begin{gather*}
\max \left\{p\left(S x, T^{q} y\right), p\left(T^{q} y, S x\right)\right) \leq \lambda \cdot \max \left\{p\left(S^{r} x, T^{s} y\right), p\left(T^{s} y, S^{r} x\right):\right. \tag{2.8}\\
0 \leq r \leq 1,0 \leq s \leq q\}
\end{gather*}
$$

then S and T have a unique common fixed point $u \in X$. Moreover, $p(u, u)=0$.
Proof. Let x be an arbitrary point in X. As in the proof of Theorem 2.3, we show that the sequences $S^{n} x$ and $T^{n} x$ converge to some $u \in X$. Since T obeys the condition $(C: k)$ we know that u is a fixed point of T. It is clear that $T^{n} u=u$ for every $n \in \mathbb{N}$ and that sequences $T^{n} u$ and $S^{n} u$ converge to u. Using the same notation as in the proof of Theorem 2.3, when we put u instead of x, for $n>N \cdot \max \{l, q\}$ we have

$$
\begin{equation*}
p(u, u)=p\left(T^{n} u, u\right) \leq \liminf _{m} p\left(T^{n} u, S^{m} u\right) \leq \lambda^{N} \cdot \frac{1}{1-\lambda} \cdot \omega \tag{2.9}
\end{equation*}
$$

so $p(u, u)=0$. On the other hand, using (2.8) we obtain

$$
\begin{gathered}
p(S u, u)=p\left(S u, T^{q} u\right) \leq \lambda \cdot \max \left\{p\left(S^{r} u, T^{s} u\right), p\left(T^{s} u, S^{r} u\right):\right. \\
0 \leq r \leq 1,0 \leq s \leq q\} \leq \lambda \cdot \max \{p(S u, u), p(u, S u)\}
\end{gathered}
$$

and

$$
\begin{gathered}
p(u, S u)=p\left(T^{q} u, S u\right) \leq \lambda \cdot \max \left\{p\left(S^{r} u, T^{s} u\right), p\left(T^{s} u, S^{r} u\right):\right. \\
0 \leq r \leq 1,0 \leq s \leq q\} \leq \lambda \cdot \max \{p(S u, u), p(u, S u)\} .
\end{gathered}
$$

Hence, $p(u, S u)=p(S u, u)=0$. From $p(u, u)=p(u, S u)=0$ and Lemma 1.1 we conclude that $S u=u$.

Remark 2.2. We are very grateful to a referee that we can generalize our result on the way that instead of condition $(C ; k)$ we can use the condition $(C ; k)$ with respect to p denoted by $(C ; k)_{p}$ as follows:

If $\lim \sup _{n}\left\{m>n: p\left(x_{n}, x_{m}\right)\right\}=0$ and x_{n} converges to x_{0}, then

$$
\begin{equation*}
p\left(x_{0}, T x_{0}\right) \leq k \cdot \limsup _{n} p\left(x_{n}, T x_{n}\right) \tag{2.10}
\end{equation*}
$$

Theorem 2.3. is still valid under the assumption of $(C ; k)$ wrt p instead of $(C ; k)$ wrt d. Because (2) of Definition 1.1 implies $\lim _{n \rightarrow \infty} p\left(T^{n} x, u\right)=0$. (C;k) wrt p implies $p(u, T u)=0$, by (1) and (3) of Definition 1.1 we obtain $T u=u$.
Acknowledgement. The authors are supported By Grant No. 174025 of the Ministry of Science, Technology and Development, Republic of Serbia. The authors thank the referees for useful comments and suggestions.

References

[1] Berinde, V., Iterative Approximation of Fixed Points, Springer Verlag, Lecture Notes in Math., 1912, 2007
[2] Caristi, J., Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241-251
[3] Chatterjea, S. K., Fixed-point theorems, C. R. Acad. Bulgare Sci., 25 (1972), 727-730
[4] Cvetković, M., Karapinar, E. and Rakočević, V., Extension of Fisher theorem, Mathematical Proceedings of the Royal Irish Academy, 116 A:1, (2016), 71-82
[5] Ćirić, Lj. B., On mappings with contractive iteration, Publ. Inst. Math. (N.S), 26 No. 40, (1979), 79-82
[6] Ćirić, Lj. B., Lakzian, H. and Rakočević, V., Fixed point theorems for w-cone distance contraction mappings in TVS- cone metric spaces, Fixed Point Theory Appl., (2012), (2012:3)
[7] Ekelend, I., Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443-474
[8] Fisher, B., A Fixed Point Theorem, Mathematics Magazine, 48 (1975), 223-225
[9] Fisher, B., Quasi-Contractions on Metric Spaces, Proc. Amer. Math. Soc., 75 (1979), 321-325
[10] Fisher, B., Results on common fixed points on complete metric spaces, Glasgow Math. J., 21 (1980), 165-167
[11] Graily, E. and Mansour Vaezpour, S., Generalized Distance and Fixed Point Theorems for Weakly Contractive Mappings, J. Basic. Appl. Sci. Res., 3 (2013), No. 4, 161-164
[12] Ilić, D. and Rakočević, V., Common fixed points for maps on metric space with w-distance, Appl. Math. Comput., 199 (2008), 599-610
[13] Kada, O., Suzuki, T. and Takahashi, W., Nonconvex minimization theorems and fixed point theorems in complete metrix spaces, Math. Japonica, 44 (1996), 381-391
[14] Rhoades, B. E., A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 26 (1977), 257-290
[15] Suzuki, T., Several fixed point theorems in complete metric spaces, Yokohama Math., 44 (1997), 61-72
[16] Suzuki, T., Takahashi, W., Fixed point theorems and characterizations of metric completeness, Topol. Methods Nonlinear Anal., 8 (1996), 371-382
[17] Takahashi, W., A convexity in metric space and nonexpansive mappings, I. Kodai Math. Sem. Pep., 22 (1970), 142-149
${ }^{1}$ University of Belgrade
Technical Faculty
VJ 12, 19210 Bor, SERbia
E-mail address: darkosun@open.telekom.rs
${ }^{2}$ Department of Mathematics
Faculty of Sciences and Mathematics
University of Niš
18000 Niš , Serbia
E-mail address: vrakoc@sbb.rs

[^0]: Received: 15.12.2016. In revised form: 29.05.2017. Accepted: 05.06.2017
 2010 Mathematics Subject Classification. 47H10, 54H25.
 Key words and phrases. w-distance, fixed point, Chatterjea operator.
 Corresponding author: Vladimir Rakočević; vrakoc@sbb.rs

