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On a theorem of Brian Fisher in the framework of
w-distance

DARKO KOCEV1 and VLADIMIR RAKOČEVIĆ2

ABSTRACT. In 1980. Fisher in [Fisher, B., Results on common fixed points on complete metric spaces, Glasgow
Math. J., 21 (1980), 165–167] proved very interesting fixed point result for the pair of maps. In 1996. Kada,
Suzuki and Takahashi introduced and studied the concept of w–distance in fixed point theory. In this paper, we
generalize Fisher’s result for pair of mappings on metric space to complete metric space with w–distance. The
obtained results do not require the continuity of maps, but more relaxing condition (C; k). As a corollary we
obtain a result of Chatterjea.

1. INTRODUCTION

In 1980, Fisher [10] proved the following very interesting result.

Theorem 1.1. [10] Let f, g : X 7→ X be two continuous mappings on a complete metric space
(X, d) satisfying the inequality

(1.1) d(fpx, gqy) ≤ λmax {d(frx, gsy) | 0 ≤ r ≤ p, 0 ≤ s ≤ q} , x, y ∈ X,
for some fixed p, q ∈ n and λ ∈ (0, 1). Then f and g have a unique common fixed point in X .

Let us point out that the maps in the above theorem are not commutative; (for very
recent results related to Fisher theorem see eg., [4]).

In 1996. Kada, Suzuki and Takahashi [13] introduced and studied the concept of w–
distance in fixed point theory, they gave examples of the w-distance and, among other
things, generalized Caristi’s fixed point theorem [2], Ekeland’s variational principle [7]
and the nonconvex minimization theorem by Takahashi [17]. See also ([15], [16]). For
more recent, related results on w–distance see eg., ([6], [11], [12]).

Definition 1.1. Let X be a metric space with metric d. Then a function p : X×X → [0,∞)
is called a w-distance on X if the following are satisfied:

(1) p(x, z) ≤ p(x, y) + p(y, z), for any x, y, z ∈ X ,
(2) for any x ∈ X , p(x, ·) : X → [0,∞) is lower semicontinuous,
(3) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply

d(x, y) ≤ ε.

Let us recall that a real-valued function f defined on a metric space X is said to be
lower semicontinuous at a point x0 in X if either lim infxn→x0

f(xn) = ∞ or f(x0) ≤
lim infxn→x0

f(xn), whenever xn ∈ X and xn → x0.
The following, very useful lemma has been proved in [13].

Lemma 1.1. Let X be a metric space with metric d and let p be a w-distance on X . Let {xn} and
{yn} be sequences in X , let {αn} and {βn} be sequences in [0,+∞) converging to 0, and let x, y,
z ∈ X . Then the following hold:
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(i) if p(xn, y) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then y = z. In particular, if
p(x, y) = 0 and p(x, z) = 0, then y = z;

(ii) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then yn converges to z;
(iii) if p(xn, xm) ≤ αn for any n, m ∈ N with m > n, then {xn} is a Cauchy sequence;
(iv) if p(y, xn) ≤ αn for any n ∈ N, then {xn} is a Cauchy sequence.

In this paper, we generalize Fisher’s result for pair of mappings on metric space to
w–distance on complete metric space. In contrast to Fisher’s result, our results do not
require the continuity of maps, but more relaxing new condition (C; k). Further more,
our methods of proofs are new, and even simpler than the corresponding methods in
metric spaces.

We say that a map T : X → X on a metric space (X, d) obeys the condition (C; k) if
there is a constant k ≥ 0 such that for every sequence xn ∈ X ,

xn → x0 ∈ X ⇒ D(x0) ≤ k · lim supD(xn),

where D(x) = d(x, Tx), x ∈ X. We point out that the the condition (C; 1) was introduced
and studied by Ćirić [5].

For the convenient of a reader we recall the following result of Chatterjea [3].

Theorem 1.2. Let T be a mapping of a complete metric space (X, d) into itself. If for some
α ∈ [0, 1/2),

(1.2) d(Tx, Ty) ≤ α · d(x, Ty) + α · d(Tx, y) for every x, y ∈ X
then T has a unique fixed point u ∈ X .

Mapping T in Theorem 1.2 is called Chattereja operator; (for more details see eg., [1],
[10], [14]).

2. MAIN RESULTS

Now we state and prove our main results.

Theorem 2.3. Let S and T be mappings of a complete metric space (X, d) into itself and let p be
a w-distance. If S and T obey the condition (C; k), and if for some fixed positive integers l and q
and some λ ∈ [0, 1)

(2.3) max{p(Slx, T qy), p(T qy, Slx)) ≤ λ ·max
{
p(Srx, T sy), p(T sy, Srx) :

0 ≤ r ≤ l, 0 ≤ s ≤ q
}

then S and T have a unique common fixed point u ∈ X . Moreover, p(u, u) = 0.

Proof. Fix x ∈ X . Let

ω ≡ ω(x) =
∑

0≤i≤l,0≤j≤q

p(Six, T jx) +
∑

0≤i≤l,0≤j≤q

p(T jx, Six)+

∑
0≤i,j≤l

p(Six, Sjx) +
∑

0≤i,j≤q

p(T ix, T jx).

We will prove that

max
{
p(Six, T jx), p(T jx, Six)

}
≤ 1

1− λ
· ω,

for every i, j ∈ N. Suppose that n0 is a natural number such that n0 > max{l, q}, that our
hypothesis holds for every i, j < no and let us prove that it holds for i = n0 or j = n0. Put

p(Skx, Tn0x) = max
{
p(Six, Tn0x), p(Tn0x, Six), p(Sn0x, T jx), p(T jx, Sn0x) :
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0 ≤ i, j ≤ n0
}

(On a similar way we can discuss the other cases)
We have to consider two cases:

(i) k < l. It follows from (2.3) that

p(Skx, Tn0x) ≤ p(Skx, Slx) + p(Slx, Tn0x) ≤ ω(x) + λ · v,
where

v = max
{
p(Srx, T sx), p(T sx, Srx) : 0 ≤ r ≤ l, n0 − q ≤ s ≤ n0

}
.

(i.1) Suppose that v = p(Six, T jx) or v = p(T jx, Six) , j < n0. By assumption,

v ≤ 1

1− λ
· ω,

so
p(Skx, Tn0x) ≤ ω +

λ

1− λ
· ω =

1

1− λ
· ω.

(i.2) Suppose that v = p(Six, Tn0x) or v = p(Tn0x, Six), 0 ≤ i ≤ l. Now we have that

p(Skx, Tn0x) ≤ ω + λ · p(Skx, Tn0x).

That implies
(1− λ) · p(Skx, Tn0x) ≤ ω,

so
p(Skx, Tn0x) ≤ 1

1− λ
· ω.

(ii) k ≥ l. It follows from inequality (2.3) that

p(Skx, Tnox) ≤ λ ·m,
where

m = max
{
p(Srx, T sx), p(T sx, Srx) : k − l ≤ r ≤ k, n0 − q ≤ s ≤ n0

}
,

so p(T kx, Tn0x) = 0.
Suppose that ε > 0. Choose δ > 0 as in (3) of Definition 1.1. Let N be a natural number

such that
λN · 1

1− λ
· ω ≤ δ.

Assume that m,n are natural numbers such that m,n > N · max{l, q}. Thus, for every
i ≥ max{m,n}, i ∈ N, we have

p(Six, Tmx) ≤ max{p(Six, Tmx), p(Tmx, Six)} ≤ λ ·max
{
p(Srx, T sx), p(T sx, Srx) :

i− l ≤ r ≤ i,m− q ≤ s ≤ m
}

≤ λ2 ·max
{
p(Srx, T sx), p(T sx, Srx) :

i− 2l ≤ r ≤ i,m− 2q ≤ s ≤ m
}
≤ . . .

≤ λN ·max
{
p(Srx, T sx), p(T sx, Srx) : i−Nl ≤ r ≤ i,m−Nq ≤ s ≤ m}

≤ λN · 1

1− λ
· ω ≤ δ

and analogously holds

p(Six, Tnx) ≤ λN · 1

1− λ
· ω ≤ δ.
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Hence, d(Tnx, Tmx) ≤ ε, and Tnx is a Cauchy sequence. Since (X, d) is a complete metric
space, Tnx is convergent, say limn→∞ Tnx = u ∈ X . Since T obeys the condition (C; k),
we have

d(u, Tu) ≤ k · lim sup d(Tnx, TTnx) = 0,

so u is a fixed point of T .
From the fact that p is lower semi-continuous, for n > N ·max{l, q}we have

(2.4) p(Snx, u) ≤ lim infmp(S
nx, Tmx) ≤ λN · 1

1− λ
· ω.

On the other hand, for n,m, r > N · max{l, q} using (2.3), (2.4) and the definition of
w-distance, we have

p(Snx, Smx) ≤ p(Snx, T rx) + p(T rx, Smx)

(2.5) ≤ λN · 1

1− λ
· ω + λN · 1

1− λ
· ω = 2λN · 1

1− λ
· ω

From (2.4), (2.9) and Lemma 1.1 we conclude that sequence Snx converges to u. Be-
cause S obeys the condition (C; k) we obtain that u is a fixed point of S too.

Moreover,
p(u, u) = p(Slu, T qu)

≤ λ ·max
{
p(Sru, T su), p(T su, Sru) : 0 ≤ r ≤ l, 0 ≤ s ≤ q

}
≤ λ · p(u, u),

and therefore, p(u, u) = 0.
Let us prove the uniqueness of u. If Tv = v, then

p(u, v) = p(Slu, T qv)

≤ λ ·max
{
p(Sru, T sv), p(T sv, Sru) : 0 ≤ r ≤ l, 0 ≤ s ≤ q

}
≤ λmax{p(u, v), p(v, u)}.

On the other hand,
p(v, u) = p(T qv, Slu)

≤ λ ·max
{
p(Srv, T su), p(T su, Srv) : 0 ≤ r ≤ l, 0 ≤ s ≤ q

}
≤ λmax{p(u, v), p(v, u)}.

Thus, p(u, v) = p(v, u) = 0 and p(u, u) = 0, and it follows from Lemma 1.1 that u = v.
�

From the above theorem, in the special case S = T , and l = q = 1 we have

Corollary 2.1. Let T be a mapping of a complete metric space (X, d) into itself and let p be a
w-distance. If T obeys the condition (C; k), and if for some λ ∈ [0, 1)

(2.6) p(Tx, Ty) ≤ λ ·max
{
p(T sy, T rx) : 0 ≤ r, s ≤ 1

}
,

for every x, y ∈ X , then T has a unique fixed point u ∈ X . Moreover, p(u, u) = 0.

Now, from the above corollary we obtain the following result connected with the Chat-
terjea operator.
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Corollary 2.2. Let T be a mapping of a complete metric space (X, d) into itself, let T obeys the
condition (C; k), and let p be a w-distance. If for some α ∈ [0, 1/2)

p(Tx, Ty) ≤ max{α · p(x, Ty) + α · p(Tx, y), α · p(x, Tx) + α · p(y, Tx),
α · p(Tx, x) + α · p(Tx, y), α · p(Tx, x) + α · p(y, Tx)},

for every x, y ∈ X , then T has a unique fixed point u ∈ X . Moreover, p(u, u) = 0.

Let us prove that Chatterjea operator obeys the condition (C; k).

Lemma 2.2. Let T be a Catterjea operator as in Theorem 1.2. Then T obeys the condition (C; k)
for k = (1 + α)/(1− α).

Proof. Assume that xn, x0 ∈ X and xn → x0 as n→∞. Now,

d(Tx0, x0) ≤ d(Tx0, Txn) + d(Txn, xn) + d(xn, x0)

≤ α · [d(x0, Txn) + d(Tx0, xn)] + d(Txn, xn) + d(xn, x0)

≤ α · [d(x0, xn) + d(xn, Txn) + d(Tx0, xn)] + d(Txn, xn) + d(xn, x0).

Hence,

d(Tx0, x0) ≤ α · [lim sup d(xn, Txn) + d(Tx0, x0)] + lim sup d(Txn, xn),

and
d(Tx0, x0) ≤

1 + α

1− α
· lim sup d(xn, Txn).

�

Remark 2.1. From Corollary 2.2 and Lemma 2.2 we obtain Theorem 1.2.

The following example shows that we can not apply Theorem 2.3 if the condition (C; k)
is not satisfied.

Example 2.1. Let (X, d) be a metric space where X = [0, 1] and d(x, y) = |x− y|, x, y ∈ X
and let T : X → X be a function defined as follows: Tx = 1 if x = 0 and Tx = x

2 for x 6= 0

(see [9]). Then for p, q ≥ 2 we have d(T px, T qy) ≤ 1
2d(T

p−1x, T q−1y) for every x, y ∈ X .
Nevertheless, T does not obey the condition (C; k) at 0, so T does not have a fixed point.

We now give an example, to show that it is possible to apply our result with the condi-
tion (C; k), but Fisher result does not apply because the functions are not continuous.

Example 2.2. Let (X, d) be a metric space where X = [0, 3] ∪ [4, 5] and
d(x, y) = |x−y|, x, y ∈ X. Let us define T : X → X, by Tx = 0, x ∈ [0, 3], Tx = 3, x ∈ [4, 5)
and T (5) = 4 1

4 and S : X → X by Sx = 0, x ∈ [0, 3], Sx = 3, x ∈ [4, 5) and S(5) = 4 1
8 . Let

us prove that there is λ ∈ [0, 1) such that

(2.7) d(Tx, S2y) ≤ λ ·max
{
d(T sx, Sry) : 0 ≤ r ≤ 1, 0 ≤ s ≤ 2

}
holds. It is obvious that S2x = 0 for x ∈ [0, 5) and S2(5) = 3.

If x ∈ [0, 3] and y = 5, then d(Tx, S2y) = 3. Furthermore, d(Tx, Sy) = 41
8 . Hence

d(Tx, S2y) ≤ 8
11 · d(Tx, Sy).

If x ∈ [4, 5) and y ∈ [0, 5), then d(Tx, S2y) = 3. Since, d(x, S2y) ≥ 4, we have
d(Tx, S2y) ≤ 3

4 · d(x, S
2y).

If x = 5 and y ∈ [0, 5), then d(T5, S2y) = 41
4 . From d(5, S2y) = 5 we have

d(Tx, S2y) ≤ 17
20 · d(5, S

2y).

If x = 5 and y = 5, then d(T5, S25) = 11
4 . Since d(5, S25) = 3 and 5

4 ≤
17
20 · 3,

d(T5, S25) ≤ 17
20 · d(5, S

25). So, T and S satisfy the Fisher quasi-contraction, where p = 1,
q = 2, and λ = 17

20 . It is easy to prove that operators T and S obey the condition (C; 1).
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For example, 3
4 = d(5, T5) ≤ lim sup d(xn, Txn) ≤ limxn − 3 = 2, where xn ∈ X is any

sequence such that xn → 5, as n→∞. By Theorem 2.3, T and S have a unique fixed point
in X , and this fixed point is x = 0. On the other hand, T and S are not continuous, so they
do not satisfy the conditions of Fisher theorem.

In the next result we suppose that l = 1, and S is an arbitrary function.

Theorem 2.4. Let S and T be mappings of a complete metric space (X, d) into itself, assume that
T obeys the condition (C : k) and let p be a w-distance. If for some fixed positive integer q and
some λ ∈ [0, 1)

(2.8) max{p(Sx, T qy), p(T qy, Sx)) ≤ λ ·max
{
p(Srx, T sy), p(T sy, Srx) :

0 ≤ r ≤ 1, 0 ≤ s ≤ q
}
,

then S and T have a unique common fixed point u ∈ X . Moreover, p(u, u) = 0.

Proof. Let x be an arbitrary point in X . As in the proof of Theorem 2.3, we show that the
sequences Snx and Tnx converge to some u ∈ X . Since T obeys the condition (C : k)
we know that u is a fixed point of T . It is clear that Tnu = u for every n ∈ N and that
sequences Tnu and Snu converge to u. Using the same notation as in the proof of Theorem
2.3, when we put u instead of x, for n > N ·max{l, q}we have

(2.9) p(u, u) = p(Tnu, u) ≤ lim infmp(T
nu, Smu) ≤ λN · 1

1− λ
· ω,

so p(u, u) = 0. On the other hand, using (2.8) we obtain

p(Su, u) = p(Su, T qu) ≤ λ ·max
{
p(Sru, T su), p(T su, Sru) :

0 ≤ r ≤ 1, 0 ≤ s ≤ q
}
≤ λ ·max

{
p(Su, u), p(u, Su)

}
and

p(u, Su) = p(T qu, Su) ≤ λ ·max
{
p(Sru, T su), p(T su, Sru) :

0 ≤ r ≤ 1, 0 ≤ s ≤ q
}
≤ λ ·max

{
p(Su, u), p(u, Su)

}
.

Hence, p(u, Su) = p(Su, u) = 0. From p(u, u) = p(u, Su) = 0 and Lemma 1.1 we conclude
that Su = u. �

Remark 2.2. We are very grateful to a referee that we can generalize our result on the way
that instead of condition (C; k) we can use the condition (C; k) with respect to p denoted
by (C; k)p as follows:

If lim supn{m > n : p(xn, xm)} = 0 and xn converges to x0, then

(2.10) p(x0, Tx0) ≤ k · lim sup
n

p(xn, Txn).

Theorem 2.3. is still valid under the assumption of (C; k) wrt p instead of (C; k) wrt d. Be-
cause (2) of Definition 1.1 implies limn→∞ p(Tnx, u) = 0. (C; k) wrt p implies p(u, Tu) = 0,
by (1) and (3) of Definition 1.1 we obtain Tu = u.
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[6] Ćirić, Lj. B., Lakzian, H. and Rakočević, V., Fixed point theorems for w-cone distance contraction mappings in

TVS- cone metric spaces, Fixed Point Theory Appl., (2012), (2012:3)
[7] Ekelend, I., Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443–474
[8] Fisher, B., A Fixed Point Theorem, Mathematics Magazine, 48 (1975), 223–225
[9] Fisher, B., Quasi-Contractions on Metric Spaces, Proc. Amer. Math. Soc., 75 (1979), 321–325

[10] Fisher, B., Results on common fixed points on complete metric spaces, Glasgow Math. J., 21 (1980), 165–167
[11] Graily, E. and Mansour Vaezpour, S., Generalized Distance and Fixed Point Theorems for Weakly Contractive

Mappings, J. Basic. Appl. Sci. Res., 3 (2013), No. 4, 161–164
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