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Existence of solutions for Caputo fractional boundary value
problems with integral conditions

WENJUN LIU and HEFENG ZHUANG

ABSTRACT. In this paper, we investigate the existence results for Caputo fractional boundary value problems
with integral conditions. Our analysis relies on Banach’s contraction principle, Leray-Schauder nonlinear alter-
native, Boyed and Wong fixed point theorem, and Krasnoselskii’s fixed point theorem. As applications, some
examples are provided to illustrate our main results.

1. INTRODUCTION

Fractional differential equations arise in many engineering and scientific disciplines as
the mathematical modeling of systems and processes in the fields of physics, chemistry,
aerodynamics, biology, economics and control theory. They also serve as an excellent tool
for the description of hereditary properties of various materials and processes. In con-
sequence, the subject of fractional differential equations is gaining much importance and
attention. There are a large number of papers dealing with the existence or multiplicity of
solutions or positive solutions of boundary value problem for some fractional differential
equations. For details, see [1] - [8], [12, 13, 15, 19, 20, 22, 24, 25, 26] and the references
therein.

For example, in [7], Bai and Lü discussed the following fractional boundary value pro-
blem {

Dαu(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u(1) = 0,

where 1 < α ≤ 2 is a real number,Dα is the standard Riemann-Liouville fractional deriva-
tive and f : [0, 1]× [0,∞)→ [0,∞) is a continuous function. By means of some fixed-point
theorems on cone, some existence and multiplicity results of positive solutions are obtai-
ned.

In [5], Ahmad and Sivasundaram considered the following nonlinear fractional integro-
differential equation with four-point nonlocal boundary conditions{

cDαu(t) = f(t, u(t), (φu)(t), (ψu)(t)), 0 < t < 1, 1 < α ≤ 2,

u′(0) + au(η1) = 0, bu′(1) + u′(η2) = 0, 0 < η1 ≤ η2 < 1,

where cDα is the Caputo’s fractional derivative, X is a Banach space and f : [0, 1] × X ×
X×X→ X is continuous. Applying some standard fixed point theorems, they proved the
existence and uniqueness of solutions.

However, we note that among the existing literatures, few people have studied the
boundary value problems of fractional differential equations with only integral conditi-
ons. So, in this paper, we discuss the existence results for the following Caputo fractional
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boundary value problems:
cDαu(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) =

∫ 1

0

u(t)dt, u(1) =

∫ 1

0

tu(t)dt,
(1.1)

where 1 < α ≤ 2 is a real number and f : [0, 1] × R → R is a continuous function. Our
results are based on Banach’s contraction principle, Leray-Schauder nonlinear alternative,
Boyed and Wong fixed point theorem, and Krasnoselskii’s fixed point theorem. To be de-
tail, we first consider the related problem (2.3) below and find out the equivalent integral
equation (2.4), and then we define an operator F by (2.8). We observe that problem (1.1)
have solutions if and only if the operator F have fixed points.

It is noteworthy that, if α = 2 then problem (1.1) recaptures the following boundary
value problem: u

′′(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) =

∫ 1

0

u(t)dt, u(1) =

∫ 1

0

tu(t)dt,
(1.2)

of which Guezane-Lakoud et al. [17] established the existence of nontrivial solution by
using Banach’s contraction principle and Leray-Schauder nonlinear alternative.

The rest of this paper is organized as follows. In Section 2, we present some necessary
definitions from fractional calculus theory and two useful lemmas. In Section 3, we give
the main results. In the end, Section 4, some examples illustrating the results established
in this paper are also presented.

2. PRELIMINARIES

In this section, we present some necessary definitions from fractional calculus theory
and two useful lemmas.

Definition 2.1. [21] The Riemann-Liouville fractional integral of orderα > 0 for a function
y : (0,∞)→ R is defined by

Iαy(t) =
1

Γ(α)

∫ t

0

y(s)

(t− s)1−α
ds,

where Γ(α) is Gamma function, and y(t) is pointwise defined on (0,∞).

Definition 2.2. [21] The Riemann-Liouville fractional derivative of order α > 0 for a
function y : (0,∞)→ R is defined by

Dαy(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

0

y(s)

(t− s)α−n+1
ds,

where n = [α] + 1, [α] denotes the integral part of real number α, and y(t) is pointwise
defined on (0,∞).

Definition 2.3. [21] The Caputo’s fractional derivative of order α > 0 for a function y is
defined by

cDαy(t) =
1

Γ(n− α)

∫ t

0

y(n)(s)

(t− s)α−n+1
ds,

where n = [α] + 1, [α] denotes the integral part of real number α, and y(t) is pointwise
defined on (0,∞).
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Lemma 2.1. [24] For α > 0, then

Iα(cDα)y(t) = y(t) + c0 + c1t+ c2t
2 + . . .+ cn−1t

n−1

for some ci ∈ R, i = 1, . . . , n− 1, (n = [α] + 1).

Lemma 2.2. Let y ∈ C([0, 1] ,R), then the boundary value problem
cDαu(t) + y(t) = 0, 0 < t < 1,

u(0) =

∫ 1

0

u(t)dt, u(1) =

∫ 1

0

tu(t)dt
(2.3)

is equivalent to the integral equation

u(t) =− 8

3

1

Γ(α+ 1)

∫ 1

0

(1− s)αy(s)ds+
2α

α+ 1

1

Γ(α)

∫ 1

0

(1− s)α+1y(s)ds

+
2

Γ(α+ 1)

∫ 1

0

(t− s)(1− s)αy(s)ds− 1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds,(2.4)

where 1 < α ≤ 2 is a real number.

Proof. From Lemma 2.1, we obtain u(t) + e0 + e1t + Iαy(t) = 0. Then u(t) = −e0 − e1t−
Iαy(t). By the definition of Iα, we have

(2.5) u(t) = −e0 − e1t−
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds.

Using the first integral condition and by the fact that u(0) = −e0, we get

(2.6) −e0 = −e0 −
e1
2
− 1

Γ(α)

∫ 1

0

∫ t

0

(t− s)α−1y(s)dsdt,

where

1

Γ(α)

∫ 1

0

∫ t

0

(t− s)α−1y(s)dsdt =
1

Γ(α)

∫ 1

0

∫ 1

s

(t− s)α−1y(s)dtds

=
1

αΓ(α)

∫ 1

0

(1− s)αy(s)ds =
1

Γ(α+ 1)

∫ 1

0

(1− s)αy(s)ds.

Substituting above calculation in (2.6), we have e1 = − 2

Γ(α+ 1)

∫ 1

0

(1 − s)αy(s)ds. Sub-

stituting e1 in (2.5), we get

(2.7) u(t) = −e0 +
2t

Γ(α+ 1)

∫ 1

0

(1− s)αy(s)ds− 1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds.

Using the second integral condition, we have

− e0 +
2

Γ(α+ 1)

∫ 1

0

(1− s)αy(s)ds− 1

Γ(α)

∫ 1

0

(1− s)α−1y(s)ds

=

∫ 1

0

{
−e0t+

2t2

Γ(α+ 1)

∫ 1

0

(1− s)αy(s)ds− 1

Γ(α)

∫ t

0

t(t− s)α−1y(s)ds

}
dt

=− e0
2

+
2

3

1

Γ(α+ 1)

∫ 1

0

(1− s)αy(s)ds− 1

Γ(α)

∫ 1

0

∫ t

0

t(t− s)α−1y(s)dsdt,
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where

1

Γ(α)

∫ 1

0

∫ t

0

t(t− s)α−1y(s)dsdt

=
1

Γ(α)

∫ 1

0

∫ t

0

(t− s)(t− s)α−1y(s)dsdt+
1

Γ(α)

∫ 1

0

∫ t

0

s(t− s)α−1y(s)dsdt

=
1

(α+ 1)Γ(α)

∫ 1

0

(1− s)α+1y(s)ds+
1

Γ(α+ 1)

∫ 1

0

s(1− s)αy(s)ds.

Then we have

− e0 +
2

Γ(α+ 1)

∫ 1

0

(1− s)αy(s)ds− 1

Γ(α)

∫ 1

0

(1− s)α−1y(s)ds

=− e0
2

+
2

3

1

Γ(α+ 1)

∫ 1

0

(1− s)αy(s)ds− 1

(α+ 1)Γ(α)

∫ 1

0

(1− s)α+1y(s)ds

− 1

Γ(α+ 1)

∫ 1

0

s(1− s)αy(s)ds,

which means that

e0 =
8

3

1

Γ(α+ 1)

∫ 1

0

(1− s)αy(s)ds− 2α

α+ 1

1

Γ(α)

∫ 1

0

(1− s)α+1y(s)ds

+
2

Γ(α+ 1)

∫ 1

0

s(1− s)αy(s)ds.

Substituting e0 in (2.7), we have

u(t) =− 8

3

1

Γ(α+ 1)

∫ 1

0

(1− s)αy(s)ds+
2α

α+ 1

1

Γ(α)

∫ 1

0

(1− s)α+1y(s)ds

+
2

Γ(α+ 1)

∫ 1

0

(t− s)(1− s)αy(s)ds− 1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds.

The proof is completed. �

Let C = C([0, 1] ,R) denotes the Banach space of all continuous functions from [0, 1]
to R endowed with the norm defined by ‖u‖ = sup {|u(t)| , t ∈ [0, 1]}. Define an operator
F : C→ C by

(Fu)(t) =− 8

3

1

Γ(α+ 1)

∫ 1

0

(1− s)αf(s, u(s))ds+
2α

α+ 1

1

Γ(α)

∫ 1

0

(1− s)α+1f(s, u(s))ds

+
2

Γ(α+ 1)

∫ 1

0

(t− s)(1− s)αf(s, u(s))ds− 1

Γ(α)

∫ t

0

(t− s)α−1f(s, u(s))ds.(2.8)

Observe that problem (1.1) have solutions if and only if the operator F have fixed points.
For the sake of convenience, we set a constant Λ as

(2.9) Λ =
8

3

1

Γ(α+ 2)
+

2α

(α+ 1)(α+ 2)Γ(α)
+

α+ 4

(α+ 2)Γ(α+ 1)
.

3. EXISTENCE OF SOLUTIONS

In this section, we will introduce our main results. Our first result is based on Banach’s
fixed point theorem.
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Theorem 3.1. Assume that f : [0, 1]×R→ R is a continuous function satisfying the conditions
(H1) |f(t, u)− f(t, v)| ≤ L |u− v| , ∀ t ∈ [0, 1] and u, v ∈ R
(H2) LΛ < 1

where L is a Lipschitz constant, and Λ is defined by (2.9). Then problem (1.1) has a unique
solution.

Proof. We transform problem (1.1) into a fixed point problem u = Fu, where F : C→ C is
defined by (2.8). Assume that sup

t∈[0,1]
|f(t, 0)| = M , and choose a constant R satisfying

R ≥ MΛ

1− LΛ
.(3.10)

First, we will show that FBR ⊂ BR, where BR = {u ∈ C : ‖u‖ ≤ R}. For any u ∈ BR,
we have

‖Fu‖ ≤(L‖u‖+M) sup
t∈[0,1]

∣∣∣∣83 1

Γ(α+ 1)

∫ 1

0

(1− s)αds+
2α

α+ 1

1

Γ(α)

∫ 1

0

(1− s)α+1ds

+
2

Γ(α+ 1)

∫ 1

0

(t− s)(1− s)αds+
1

Γ(α)

∫ t

0

(t− s)α−1ds
∣∣∣∣

≤(LR+M)Λ ≤ R.

Therefore FBR ⊂ BR.
Next, we will show that F is a contraction. For any u, v ∈ C and for each t ∈ [0, 1], we

have

‖Fu− Fv‖ ≤ sup
t∈[0,1]

{
L‖u− v‖8

3

1

Γ(α+ 1)

∫ 1

0

(1− s)αds +L‖u− v‖ 2α

α+ 1

1

Γ(α)

∫ 1

0

(1− s)α+1ds

+L‖u− v‖ 2

Γ(α+ 1)

∫ 1

0

(t− s)(1− s)αds + L‖u− v‖ 1

Γ(α)

∫ t

0

(t− s)α−1ds
}

≤LΛ‖u− v‖.

As LΛ < 1, therefore F is a contraction. Thus, the conclusion of the theorem follows by
Banach’s contraction mapping principle. This completes the proof. �

Remark 3.1. In Theorem 3.1, if α = 2, then Λ =
8

3

1

Γ(4)
+

1

3Γ(2)
+

3

2Γ(3)
. Problem (1.1)

reduces to problem (1.2) and problem (1.2) has a unique solution.

Next, we prove the existence of solutions of problem (1.1) by using the following Leray-
Schauder nonlinear alternative:

Theorem 3.2. (Nonlinear Alternative for Single Valued Maps) [16] Let E be a Banach space, C
be a closed convex subset of E, U be an open subset of C, and 0 ∈ U. Suppose that F : U→ C is a
continuous, compact (that is, F (U) is a relatively compact subset of C) map. Then, either

(1) F has a fixed point in U or
(2) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF (u).

Theorem 3.3. Assume that:
(H3) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a function

p ∈ L1 ([0, 1] ,R+) such that |f(t, u)| ≤ p(t)ψ(‖u‖), for each (t, u) ∈ [0, 1]× R;

(H4) there exists a constant M > 0 such that
M

ψ(‖u‖)‖p‖L1Λ
> 1, where ‖p‖L1 6= 0.

Then problem (1.1) has at least one solution.
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Proof. We define F : C→ C as in (2.8). The proof consists of several steps.
(1) F maps bounded sets into bounded sets in C([0, 1],R).
Let BK = {u ∈ C ([0, 1] ,R) : ‖u‖ ≤ K} be a bounded set in C ([0, 1] ,R) and u ∈ BK .

Then we have

|Fu(t)| ≤8

3

1

Γ(α+ 1)

∫ 1

0

(1− s)α |f(s, u(s))| ds+
2α

α+ 1

1

Γ(α)

∫ 1

0

(1− s)α+1 |f(s, u(s))| ds

+
2

Γ(α+ 1)

∫ 1

0

(t− s)(1− s)α |f(s, u(s))| ds+
1

Γ(α)

∫ t

0

(t− s)α−1 |f(s, u(s))| ds

≤ψ(‖u‖)‖p‖L1

{
8

3

1

Γ(α+ 1)

∫ 1

0

(1− s)αds+
2α

α+ 1

1

Γ(α)

∫ 1

0

(1− s)α+1ds

+
2

Γ(α+ 1)

∫ 1

0

(t− s)(1− s)αds+
1

Γ(α)

∫ t

0

(t− s)α−1ds
}

≤ψ(‖u‖)‖p‖L1Λ.

Thus

‖Fu‖ ≤ ψ(K)‖p‖L1Λ.

(2) F maps bounded sets into equicontinuous sets of C([0, 1],R).
Let r1, r2 ∈ [0, 1] , r1 < r2 and BK be a bounded set of C([0, 1],R) as before, then for

u ∈ Bk we have

|Fu(r2)− Fu(r1)|

=

∣∣∣∣ 2

Γ(α+ 1)

∫ 1

0

(r2 − r1)(1− s)αf(s, u(s))ds− 1

Γ(α)

∫ r1

0

(r2 − s)α−1f(s, u(s))ds

− 1

Γ(α)

∫ r2

r1

(r2 − s)α−1f(s, u(s))ds+
1

Γ(α)

∫ r1

0

(r1 − s)α−1f(s, u(s))ds

∣∣∣∣
≤
∣∣∣∣ 2

Γ(α+ 1)

∫ 1

0

(r2 − r1)(1− s)αf(s, u(s))ds+
1

Γ(α)

∫ r2

r1

(r2 − s)α−1f(s, u(s))ds

+
1

Γ(α)

∫ r1

0

c1(r2 − r1)
[
(r1 − s)α−2 − (r2 − s)α−2

]
f(s, u(s))ds

∣∣∣∣
≤ 2

Γ(α+ 1)

∫ 1

0

|r2 − r1| (1− s)αp(s)ψ(K)ds+
1

Γ(α)

∫ r2

r1

(r2 − s)α−1p(s)ψ(K)ds

+
1

Γ(α)

∫ r1

0

{
c1 |r2 − r1|

[
(r1 − s)α−2 − (r2 − s)α−2

]
p(s)ψ(K)

}
ds,

where c1 is a positive constant. As r2 − r1 → 0, the right-hand side of the above in-
equality tends to zero independently of u ∈ BK . Thus F is equicontinuous. As F
satisfies the above assumptions, therefore, it follows by the Arzela-Ascoli theorem that
F : C ([0, 1] ,R)→ C ([0, 1] ,R) is completely continuous.

(3) Let λ ∈ (0, 1) and let u = λFu. Then, for t ∈ [0, 1], we have

|u(t)| = |λFu(t)|

≤8

3

1

Γ(α+ 1)

∫ 1

0

(1− s)α |f(s, u(s))| ds+
2α

α+ 1

1

Γ(α)

∫ 1

0

(1− s)α+1 |f(s, u(s))| ds

+
2

Γ(α+ 1)

∫ 1

0

(t− s)(1− s)α |f(s, u(s))| ds+
1

Γ(α)

∫ t

0

(t− s)α−1 |f(s, u(s))| ds

≤ψ(‖u‖)‖p‖L1Λ,
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and consequently

‖u‖
ψ(‖u‖)‖p‖L1Λ

≤ 1.

In view of (H4), there exists M such that ‖u‖ 6= M . Let us set

U = {u ∈ C ([0, 1] ,R) : ‖u‖ < M} .

Note that the operator F : U → C ([0, 1] ,R) is continuous and completely continuous
(which is well known to be compact restricted to bounded sets). From the choice of U ,
there is no u ∈ ∂U such that u = λFu for some λ ∈ (0, 1). Consequently, by the nonlinear
alternative of Leray-Schauder type, we deduce that F has a fixed point u ∈ U, which is a
solution of the problem (1.1). This completes the proof. �

Remark 3.2. In Theorem 3.3, if α = 2, then Λ =
8

3

1

Γ(4)
+

1

3Γ(2)
+

3

2Γ(3)
and M satisfies

M

Λψ(‖u‖)‖p‖L1

> 1, where ‖p‖L1 =

∫ 1

0

p(s)ds 6= 0. Problem (1.1) reduces to Problem (1.2)

and Problem (1.2) has at least one solution.

The third result is based on Boyed and Wong fixed point theorem below.

Definition 3.4. [23] Let E be a Banach space and let A : E→ E be a mapping. A is said to
be a nonlinear contraction if there exists a continuous nondecreasing function Ψ : R+ →
R+ such that Ψ(0) = 0 and Ψ(ρ) < ρ for all ρ > 0 with the following property:

‖Ax−Ay‖ ≤ Ψ(‖x− y‖), ∀x, y ∈ E.

Lemma 3.3. (Boyed and Wong) [11] Let E be a Banach space and let A : E → E be a nonlinear
contraction. Then, A has a unique fixed point in E.

Theorem 3.4. Suppose that
(H5) there exists a continuous function h : [0, 1]→ R+ such that

|f(t, x)− f(t, y)| ≤ h(t)
|x− y|

G+ |x− y|

for all t ∈ [0, 1] and x, y ≥ 0, where

G =
8

3

1

Γ(α+ 1)

∫ 1

0

(1− s)αh(s)ds+
2α

α+ 1

1

Γ(α)

∫ 1

0

(1− s)α+1h(s)ds

+
2

Γ(α+ 1)

∫ 1

0

(1− s)α+1h(s)ds+
1

Γ(α)

∫ 1

0

(1− s)α−1h(s)ds.

Then, problem (1.1) has a unique solution.

Proof. Let the operator F : C→ C be defined as (2.8). We define a continuous nondecrea-
sing function Ψ : R+ → R+ by

Ψ(ρ) =
Gρ

G+ ρ
, ∀ρ ≥ 0,

such that Ψ(0) = 0 and Ψ(ρ) < ρ, for all ρ > 0. Let u, v ∈ C. Then, we get

|f(s, u(s))− f(s, v(s))| ≤ h(s)
|u− v|

G+ |u− v|
.
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Thus

|Fu(t)− Fv(t)|

≤
{

8

3

1

Γ(α+ 1)

∫ 1

0

(1− s)αh(s)ds+
2α

α+ 1

1

Γ(α)

∫ 1

0

(1− s)α+1h(s)ds

+
2

Γ(α+ 1)

∫ 1

0

(t− s)(1− s)αh(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

}
× ‖u− v‖
G+ ‖u− v‖

≤ G‖u− v‖
G+ ‖u− v‖

, ∀t ∈ [0, 1] .

This implies that ‖Fu−Fv‖ ≤ Ψ(‖u−v‖). Hence, F is a nonlinear contraction. Therefore,
by Lemma 3.3, the operator F has a unique fixed point in C, which is a unique solution of
problem (1.1). �

Remark 3.3. In Theorem 3.4, if α = 2, then

G =
8

3

1

Γ(3)

∫ 1

0

(1− s)2h(s)ds+
4

3

1

Γ(2)

∫ 1

0

(1− s)3h(s)ds

+
2

Γ(3)

∫ 1

0

(1− s)3h(s)ds+
1

Γ(2)

∫ 1

0

(1− s)h(s)ds.

Problem (1.1) reduces to Problem (1.2) and Problem (1.2) has a unique solution.

As the fourth result, we prove the existence of solutions of (1.1) by using Krasnoselskii’s
fixed point theorem below.

Theorem 3.5. [18] Let K be a bounded closed convex and nonempty subset of a Banach space X .
Let A,B be operators such that:

(1) Ax+By ∈ K whenever x, y ∈ K,
(2) A is compact and continuous,
(3) B is a contraction mapping.
Then, there exists z ∈ K such that z = Az +Bz.

Theorem 3.6. Assume that f : [0, 1]× R→ R is a continuous function satisfying (H1) and the
following assumption holds:

(H6) |f(t, u)| ≤ µ(t), ∀(t, u) ∈ [0, 1]× R, and µ ∈ L1([0, 1] ,R+).
If

L

{
8

3

1

Γ(α+ 2)
+

2α

(α+ 1)(α+ 2)Γ(α)
+

2

(α+ 2)Γ(α+ 1)

}
< 1,(3.11)

then problem (1.1) has at least one solution on [0, 1].

Proof. Setting max
t∈[0,1]

|µ(t)| = ‖µ‖ and choosing a constant

R ≥ ‖µ‖Λ,

where Λ is given by (2.9), and define BR = {u ∈ C : ‖µ‖ ≤ R}.
We define the operators F1 and F2 on the ball BR as

(F1u)(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1f(s, u(s))ds
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(F2u)(t) =− 8

3

1

Γ(α+ 1)

∫ 1

0

(1− s)αf(s, u(s))ds+
2α

α+ 1

1

Γ(α)

∫ 1

0

(1− s)α+1f(s, u(s))ds

+
2

Γ(α+ 1)

∫ 1

0

(t− s)(1− s)αf(s, u(s))ds.

For u, v ∈ BR, we have

‖F1u+ F2v‖ ≤‖µ‖ sup
t∈[0,1]

{
8

3

1

Γ(α+ 1)

∫ 1

0

(1− s)αds

+
2α

α+ 1

1

Γ(α)

∫ 1

0

(1− s)α+1ds+
2

Γ(α+ 1)

∫ 1

0

(t− s)(1− s)αds

+
1

Γ(α)

∫ t

0

(t− s)α−1ds
}

≤‖µ‖Λ ≤ R.
Therefore, F1u + F2v ∈ BR. In view of condition (3.11), it follows that F2 is a contraction
mapping.

Next, we will show that F1 is compact and continuous. Continuity of f together with
the assumption (H6) implies that the operator F1 is continuous and uniformly bounded
on BR. We define sup

(t,u)∈[0,1]×BR

|f(t, u)| = fmax < ∞. Then, for t1, t2 ∈ [0, 1] with t1 ≤ t2

and u ∈ BR, we have

|F1u(t2)− F1u(t1)|

≤fmax
{

1

Γ(α)

∫ t2

t1

(t2 − s)α−1ds+
1

Γ(α)

∫ t1

0

c2 |t2 − t1|
[
(t1 − s)α−2 − (t2 − s)α−2

]
ds

}
.

where c2 is a positive constant. Actually, as t2 − t1 → 0, the right-hand side of the above
inequality tends to be zero. So F1 is relatively compact onBR. Hence, by the Arzela-Ascoli
Theorem, F1 is compact on BR. Thus all the assumption of Theorem 3.5 are satisfied and
the conclusion of Theorem 3.5 implies that problem (1.1) has at least one solution on [0, 1].
This completes the proof. �

Remark 3.4. In Theorem 3.6, if α = 2, then L

{
8

3

1

Γ(4)
+

1

3Γ(2)
+

1

2Γ(3)

}
< 1. Problem

(1.1) reduces to Problem (1.2) and Problem (1.2) has at least one solution.

4. EXAMPLES

Example 4.1. Consider the following boundary value problem:
cD

3
2u(t) +

|u(t)| sin 3t

5(1 + t)2(1 + |u6(t)|)et
= 0, 0 < t < 1,

u(0) =

∫ 1

0

u(t)dt, u(1) =

∫ 1

0

tu(t)dt.

(4.12)

Here, f(t, u(t)) =
|u(t)| sin 3t

5(1 + t)2(1 + |u6(t)|)et
, α =

3

2
. We find that

Λ =
8

3

1

Γ( 7
2 )

+
12

35

1

Γ( 3
2 )

+
11

7

1

Γ( 5
2 )
≈ 2.3714

Since, |f(t, u)− f(t, v)| ≤ 1

5
|u− v|, then (H1) is satisfied with L = 1

5 . We find that LΛ ≈
0.47428 < 1. Hence, by Theorem (3.1), problem (4.12) has a unique solution on [0, 1].
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Example 4.2. Consider the following boundary value problem:
cD

3
2u(t) +

(t+ 1) |u|
1 + |u|

= 0, 0 < t < 1

u(0) =

∫ 1

0

u(t)dt, u(1) =

∫ 1

0

tu(t)dt.

(4.13)

Here, f(t, u(t)) =
(t+ 1) |u|

1 + |u|
, α =

3

2
. Choosing h(t) = t+ 1, we find that

G =
8

3

1

Γ( 5
2 )

∫ 1

0

(1− s) 3
2 (s+ 1)ds+

(
6

5

1

Γ( 3
2 )

+
2

Γ( 5
2 )

)∫ 1

0

(1− s) 5
2 (s+ 1)ds

+
1

Γ( 3
2 )

∫ 1

0

(1− s) 1
2 (1 + s)ds

≈3.0830

Here, |f(t, u)− f(t, v)| ≤ (t+ 1) |u− v|
3.0830 + |u− v|

. Therefore, by Theorem 3.4, the problem (4.13)

has a unique solution on [0, 1].

Acknowledgments. This work was supported by the National Natural Science Founda-
tion of China (Grant No. 11301277), the Natural Science Foundation of Jiangsu Province
(Grant No. BK20151523), the Six Talent Peaks Project in Jiangsu Province (Grant No. 2015-
XCL-020), and the Qing Lan Project of Jiangsu Province.

REFERENCES

[1] Abbas, S. and Benchohra, M., Partial hyperbolic differential equations with finite delay involving the Caputo fracti-
onal derivative, Commun. Math. Anal., 7 (2009), No. 2, 62–72

[2] Agarwal, R. P., Benchohra, M. and Hamani, S., A survey on existence results for boundary value problems of
nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), No. 3, 973–1033

[3] Agarwal, R. P., Hristova, S. and O’Regan, D., Stability of solutions to impulsive Caputo fractional differential
equations, Electron. J. Differential Equations, 2016, Paper No. 58, 22 pp.

[4] Ahmad, B. and Sivasundaram, S., Existence and uniqueness results for nonlinear boundary value problems of
fractional differential equations with separated boundary conditions, Commun. Appl. Anal., 13 (2009), No. 1,
121–127

[5] Ahmad, B. and Sivasundaram, S., On four-point nonlocal boundary value problems of nonlinear integro-
differential equations of fractional order, Appl. Math. Comput., 217 (2010), No. 2, 480–487

[6] Anguraj, A. et al., On new existence results for fractional integro-differential equations with impulsive and integral
conditions, Comput. Math. Appl., 66 (2014), No. 12, 2587–2594
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